Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. VIII (2009), 333-368

Approximation of complex algebraic numbers by algebraic numbers of bounded degree

YANN BUGEAUD AND JAN-HENDRIK EVERTSE

Abstract. To measure how well a given complex number ξ can be approximated by algebraic numbers of degree at most n one may use the quantities $w_n(\xi)$ and $w_n^*(\xi)$ introduced by Mahler and Koksma, respectively. The values of $w_n(\xi)$ and $w_n^*(\xi)$ have been computed for real algebraic numbers ξ , but up to now not for complex, non-real algebraic numbers ξ . In this paper we compute $w_n(\xi), w_n^*(\xi)$ for all positive integers n and algebraic numbers $\xi \in \mathbf{C} \setminus \mathbf{R}$, except for those pairs (n,ξ) such that n is even, $n \ge 6$ and $n+3 \le \deg \xi \le 2n-2$. It is known that every real algebraic number of degree > n has the same values for w_n and w_n^* as almost every real number. Our results imply that for every positive even integer *n* there are complex algebraic numbers ξ of degree > *n* which are unusually well approximable by algebraic numbers of degree at most n, i.e., have larger values for w_n and w_n^* than almost all complex numbers. We consider also the approximation of complex non-real algebraic numbers ξ by algebraic integers, and show that if ξ is unusually well approximable by algebraic numbers of degree at most *n* then it is unusually badly approximable by algebraic integers of degree at most n + 1. By means of Schmidt's Subspace Theorem we reduce the approximation problem to compute $w_n(\xi)$, $w_n^*(\xi)$ to an algebraic problem which is trivial if ξ is real but much harder if ξ is not real. We give a partial solution to this problem.

Mathematics Subject Classification (2000): 11J68.