Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IX (2010), 351-384

Energy improvement for energy minimizing functions in the complement of generalized Reifenberg-flat sets

ANTOINE LEMENANT

Abstract. Let *P* be a hyperplane in \mathbb{R}^N , and denote by d_H the Hausdorff distance. We show that for all positive radius r < 1 there is an $\varepsilon > 0$, such that if *K* is a Reifenberg-flat set in $B(0,1) \subset \mathbb{R}^N$ that contains the origin, with $d_H(K,P) \le \varepsilon$, and if *u* is an energy minimizing function in $B(0,1)\setminus K$ with restricted values on $\partial B(0,1)\setminus K$, then the normalized energy of *u* in $B(0,r)\setminus K$ is bounded by the normalized energy of *u* in $B(0,1)\setminus K$. We also prove the same result in \mathbb{R}^3 when *K* is an ε -minimal set, that is a generalization of Reifenberg-flat sets with minimal cones of type \mathbb{Y} and \mathbb{T} . Moreover, the result is still true for a further generalization of sets called ($\varepsilon, \varepsilon_0$)-minimal. This article is a preliminary study for a forthcoming paper where a regularity result for the singular set of the Mumford-Shah functional close to minimal cones in \mathbb{R}^3 is proved by the same author.

Mathematics Subject Classification (2010): 49Q20 (primary); 49Q05 (secondary).