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Self-similar solutions of fully nonlinear curvature flows

JAMES ALEXANDER MCCOY

Abstract. We consider closed hypersurfaces which shrink self-similarly under
a natural class of fully nonlinear curvature flows. For those flows in our class
with speeds homogeneous of degree 1 and either convex or concave, we show
that the only such hypersurfaces are shrinking spheres. In the setting of convex
hypersurfaces, we show under a weaker second derivative condition on the speed
that again only shrinking spheres are possible. For surfaces this result is extended
in some cases by a different method to speeds of homogeneity greater than 1. Fi-
nally we show that self-similar hypersurfaces with sufficiently pinched principal
curvatures, depending on the flow speed, are again necessarily spheres.
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1. Introduction

As part of his investigation into the asymptotic behaviour of the mean curvature
flow of hypersurfaces with positive mean curvature, Huisken considered in [21]
self-similar solutions which evolve by simple scaling. Such solutions satisfy the
elliptic equation

H = 〈X, ν〉 (1.1)

where X , ν and H denote respectively the position vector, unit normal and mean
curvature of the hypersurface and the inner product is the ordinary Euclidean dot
product. Abresch and Langer [1] showed for dimension n = 1 there is a two
parameter family of closed immersed curves in R2 of positive geodesic curvature
which are self similar solutions to the corresponding curvature flow in the plane.
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