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Markov uniqueness of degenerate elliptic operators

DEREK W. ROBINSON AND ADAM SIKORA

Abstract. Let ! be an open subset of Rd and H! = −∑d
i, j=1 ∂i ci j ∂ j be a

second-order partial differential operator on L2(!) with domain C∞
c (!), where

the coefficients ci j ∈ W1,∞(!) are real symmetric and C = (ci j ) is a strictly
positive-definite matrix over !. In particular, H! is locally strongly elliptic. We
analyze the submarkovian extensions of H!, i.e., the self-adjoint extensions that
generate submarkovian semigroups. Our main result states that H! is Markov
unique, i.e., it has a unique submarkovian extension, if and only if cap!(∂!) = 0
where cap!(∂!) is the capacity of the boundary of ! measured with respect to
H!. The second main result shows that Markov uniqueness of H! is equivalent
to the semigroup generated by the Friedrichs extension of H! being conservative.
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1. Introduction

The Markov uniqueness problem [9] consists of finding conditions which ensure

that a diffusion operator has a unique submarkovian extension, i.e. an extension

that generates a submarkovian semigroup. An operator with this property is said to

be Markov unique. Our aim is to analyze this problem for the class of second-order,

divergence-form, elliptic operators with real Lipschitz continuous coefficients act-

ing on an open subset of ! of Rd . Each of these operators has at least one sub-

markovian extension, the Friedrichs extension [16]. This extension corresponds to

Dirichlet boundary conditions on ∂! and alternative boundary conditions can lead

to different submarkovian extensions. Our principal results establish that Markov

uniqueness is equivalent to the boundary ∂! having zero capacity, Theorem 1.2, or

to conservation of probability, Theorem 1.3.

Define H! as the positive symmetric operator on L2(!)with domain D(H!)=
C∞
c (!) and action

H!ϕ = −
d∑

i, j=1
∂i ci j ∂ jϕ = −

d∑

i, j=1
ci j ∂i ∂ jϕ −

d∑

i, j=1
(∂i ci j ) ∂ jϕ (1.1)
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