Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XI (2012), 143-165

Two solutions for a singular elliptic equation by variational methods

MARCELO MONTENEGRO AND ELVES A. B. SILVA

Abstract. We find two nontrivial solutions of the equation $-\Delta u = (-\frac{1}{u^{\beta}} + \lambda u^{p})\chi_{\{u>0\}}$ in Ω with Dirichlet boundary condition, where $0 < \beta < 1$ and $0 . In the first approach we consider a sequence of <math>\varepsilon$ -problems with $1/u^{\beta}$ replaced by $u^{q}/(u + \varepsilon)^{q+\beta}$ with 0 < q < p < 1. When the parameter $\lambda > 0$ is large enough, we find two critical points of the corresponding ε -functional which, at the limit as $\varepsilon \to 0$, give rise to two distinct nonnegative solutions of the original problem. Another approach is based on perturbations of the domain Ω , we then find a unique positive solution for λ large enough. We derive gradient estimates to guarantee convergence of approximate solutions u_{ε} to a true solution u of the problem.

Mathematics Subject Classification (2010): 34B16 (primary); 35J20, 35B65 (secondary).