Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XII (2013), 1-41

A structural theorem for codimension-one foliations on \mathbb{P}^n , $n \ge 3$, with an application to degree-three foliations

DOMINIQUE CERVEAU AND ALCIDE LINS NETO

Abstract. Let \mathcal{F} be a codimension-one foliation on \mathbb{P}^n : for each point $p \in \mathbb{P}^n$ we define $\mathcal{J}(\mathcal{F}, p)$ as the order of the first non-zero jet $j_p^k(\omega)$ of a holomorphic 1-form ω defining \mathcal{F} at p. The singular set of \mathcal{F} is $\operatorname{sing}(\mathcal{F}) = \{p \in \mathbb{P}^n \mid \mathcal{J}(\mathcal{F}, p) \ge 1\}$. We prove (main Theorem 1.2) that a foliation \mathcal{F} satisfying $\mathcal{J}(\mathcal{F}, p) \le 1$ for all $p \in \mathbb{P}^n$ has a non-constant rational first integral. Using this fact we are able to prove that any foliation of degree-three on \mathbb{P}^n , with $n \ge 3$, is either the pull-back of a foliation on \mathbb{P}^2 , or has a transverse affine structure with poles. This extends previous results for foliations of degree at most two.

Mathematics Subject Classification (2010): 37FF75 (primary); 34M45 (secondary).