A quantitative characterisation of functions with low Aviles Giga energy on convex domains

ANDREW LORENT

Abstract. Given a connected Lipschitz domain Ω we let $\Lambda(\Omega)$ be the set of functions in $W^{2,2}(\Omega)$ with u = 0 on $\partial\Omega$ and whose gradient (in the sense of trace) satisfies $\nabla u(x) \cdot \eta_x = 1$, where η_x is the inward pointing unit normal to $\partial\Omega$ at x. The functional $I_{\epsilon}(u) = \frac{1}{2} \int_{\Omega} \epsilon^{-1} \left| 1 - |\nabla u|^2 \right|^2 + \epsilon \left| \nabla^2 u \right|^2 dz$, minimised over $\Lambda(\Omega)$, serves as a model in connection with problems in liquid crystals and thin film blisters. It is also the most natural higher order generalisation of the Modica and Mortola functional. In [16] Jabin, Otto and Perthame characterised a class of functions which includes all limits of sequences $u_n \in \Lambda(\Omega)$ with $I_{\epsilon_n}(u_n) \to 0$ as $\epsilon_n \to 0$. A corollary to their work is that if there exists such a sequence (u_n) for a bounded domain Ω , then Ω must be a ball and (up to change of sign) $u := \lim_{n\to\infty} u_n$ is equal dist $(\cdot, \partial\Omega)$. We prove a quantitative generalisation of this corollary for the class of bounded convex sets. Namely we show that there exists a positive constant γ_1 such that, if Ω is a convex set of diameter 2 and $u \in \Lambda(\Omega)$ with $I_{\epsilon}(u) = \beta$, then $|B_1(x)\Delta\Omega| \le c\beta^{\gamma_1}$ for some x and

$$\int_{\Omega} \left| \nabla u(z) + \frac{z - x}{|z - x|} \right|^2 dz \le c\beta^{\gamma_1}.$$

A corollary of this result is that there exists a positive constant $\gamma_2 < \gamma_1$ such that if Ω is convex with diameter 2 and C^2 boundary with curvature bounded by $\epsilon^{-\frac{1}{2}}$, then for any minimiser v of I_{ϵ} over $\Lambda(\Omega)$ we have

$$\|v-\zeta\|_{W^{1,2}(\Omega)} \le c(\epsilon + \inf_{y} |\Omega \triangle B_1(y)|)^{\gamma_2},$$

where $\zeta(z) = \text{dist}(z, \partial \Omega)$. Neither of the constants γ_1 or γ_2 are optimal.

Mathematics Subject Classification (2010): 49N99 (primary).