Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XIII (2014), 225-254

Unprojection and deformations of tertiary Burniat surfaces

JORGE NEVES AND ROBERTO PIGNATELLI

Abstract. We construct a 4-dimensional family of surfaces of general type with $p_g = 0$ and $K^2 = 3$ and fundamental group $\mathbb{Z}/2 \times Q_8$, where Q_8 is the quaternion group. The family constructed contains the Burniat surfaces with $K^2 = 3$. Additionally, we construct the universal coverings of the surfaces in our family as complete intersections on $(\mathbb{P}^1)^4$ and we also give an action of $\mathbb{Z}/2 \times Q_8$ on $(\mathbb{P}^1)^4$ lifting the natural action on the surfaces.

The strategy is the following. We consider an étale $(\mathbb{Z}/2)^3$ -cover T of a surface with $p_g = 0$ and $K^2 = 3$ and assume that it may be embedded in a Fano 3-fold V. We construct V by using the theory of parallel unprojection. Since V is an Enriques–Fano 3-fold, considering its Fano cover yields the simple description of the above universal covers.

Mathematics Subject Classification (2010): 14J29 (primary).