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Quadrature rules and distribution of points on manifolds
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Abstract. We study the error in quadrature rules on a compact manifold. Our
estimates are in the same spirit of the Koksma-Hlawka inequality and they depend
on a sort of discrepancy of the sampling points and a generalized variation of the
function. In particular, we give sharp quantitative estimates for quadrature rules
of functions in Sobolev classes.
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1. Introduction

In what follows, M is a smooth compact d-dimensional Riemannian manifold
without boundary, with Riemannian measure dx , normalized so that the total vol-
ume of the manifold is 1, and 1 is the Laplace-Beltrami operator. This opera-
tor is self-adjoint in L2(M), it has a sequence of eigenvalues {�2} and an or-
thonormal complete system of eigenfunctions {'�(x)}, 1'�(x) = �2'�(x). The
eigenvalues, possibly repeated, are ordered with increasing modulus. In partic-
ular, the first eigenvalue is 0 and the associated eigenfunction is 1. An exam-
ple is the torus Td

= Rd/Zd with the Laplace operator �

P
@2/@x2j , eigenval-

ues {4⇡2|k|2}k2Zd and eigenfunctions {exp(2⇡ ikx)}k2Zd . Another example is the
sphere Sd = {x 2 Rd+1

: |x | = 1} with dx the normalized surface measure and
with 1 the angular component of the Laplacian in the space Rd+1, eigenvalues
{n(n+ d � 1)}+1

n=0 and eigenfunctions the restriction to the sphere of homogeneous
harmonic polynomials in space. With a small abuse of notation and in analogy with
the Euclidean space, the Riemannian distance between x and y will be denoted
|x � y|.

A classical problem is to approximate an integral
R
M f (x)dx with Riemann

sums N�1PN
j=1 f (z j ), or weighted analogues

PN
j=1 ! j f (z j ), and what follows

will be concerned with the discrepancy between integrals and sums for functions in
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