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An analytic approach to infinite-dimensional continuity
and Fokker–Planck–Kolmogorov equations
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Abstract. We prove a new uniqueness result for solutions to Fokker-Planck-
Kolmogorov (FPK) equations for probability measures on infinite-dimensional
spaces. We consider infinite-dimensional drifts that admit certain finite-dimensi-
onal approximations. In contrast to much of the previous work on FPK-equations
in infinite dimensions, we include cases with non-constant coefficients in the sec-
ond order part and also include degenerate cases where these coefficients can
even be zero. A new existence result is also proved. Some applications to FPK
equations associated with SPDE’s are presented.
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Introduction

In this paper we study the Cauchy problem for infinite-dimensional Fokker-Planck-
Kolmogorov equations of the form @tµ = L⇤µ for bounded Borel measures µ on
the space R1

⇥ (0, T0), where R1 is the countable power of R with the product
topology, and second order operators

L' =

X
i, j

ai j@xi @x j' +

X
i
Bi@xi'

defined on smooth functions of finitely many variables. Then A = (ai j ) is called the
diffusion matrix and B = (Bi ) is called the drift coefficient. Such equations arise in
many applications and have been intensively studied in the last decades. In partic-
ular, they are satisfied by transition probabilities of infinite-dimensional diffusions,
which is an important motivation for this paper. The finite-dimensional case has
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