Bergman-harmonic maps of balls

ELISABETTA BARLETTA AND SORIN DRAGOMIR

Abstract. We study Bergman-harmonic maps between balls $\Phi : \mathbb{B}_n \to \mathbb{B}_N$ extending of class either C^2 or \mathfrak{M}^1 to the boundary of \mathbb{B}_n . For every holomorphic (anti-holomorphic) map $\Phi : \mathbb{B}_n \to \mathbb{B}_N$ extending smoothly to the boundary and every smooth homotopy $H : \Phi \simeq \Psi$ we prove a Lichnerowicz-type (cf. [28]) result, *i.e.*, we show that $E_{\Omega_{\epsilon}}(\Psi) \ge E_{\Omega_{\epsilon}}(\Phi) + O(\epsilon^{-n+1})$. When Φ is proper, Bergman-harmonic, and C^2 up to the boundary, the boundary values map $\phi : S^{2n-1} \to S^{2N-1}$ is shown to satisfy a compatibility system similar to the tangential Cauchy-Riemann equations on S^{2n-1} (and satisfied by the boundary values of any proper holomorphic map). For every weakly Bergman-harmonic map $\Phi \in W^1(\mathbb{B}_n, \mathbb{B}_N)$ admitting Sobolev boundary values $\phi \in \mathfrak{M}^1(S^{2n-1}, \mathbb{B}_N)$ in the sense of [6], the boundary values ϕ are shown to be a weakly subelliptic harmonic map of (S^{2n-1}, η) into (\mathbb{B}_N, h) , provided that $\Phi^{-1}\nabla^h$ stays bounded at the boundary of \mathbb{B}_n and ϕ has vanishing weak normal derivatives.

Mathematics Subject Classification (2010): 32H40 (primary); 32V20, 35H20, 35J20, 53C43, 58E20 (secondary).