Two-sided non-collapsing curvature flows

BEN ANDREWS AND MAT LANGFORD

Abstract. It was recently shown that embedded solutions of curvature flows in Euclidean space with concave (convex), degree one homogeneous speeds are interior (exterior) non-collapsing [6]. These results were subsequently extended to hypersurface flows in the sphere and hyperbolic space [11]. In the first part of the paper, we show that locally convex solutions are exterior non-collapsing for a larger class of speed functions than previously considered; more precisely, we show that the previous results hold when convexity of the speed function is relaxed to inverse-concavity. We note that inverse-concavity is satisfied by a large class of concave speed functions [4]. Thus, as a consequence, we obtain a large class of two-sided non-collapsing flows, whereas previously two-sided non-collapsing was only known for the mean curvature flow. In Section 3, we demonstrate the utility of two sided non-collapsing with a straightforward proof of convergence of compact, convex hypersurfaces to round points. The proof of the non-collapsing estimate is similar to those of the previous results mentioned, in that we show that the exterior ball curvature is a viscosity supersolution of the linearised flow equation. The new ingredient is the following observation: Since the function which provides an upper support in the derivation of the viscosity inequality is defined on $M \times M$ (or TM in the 'boundary case'), whereas the exterior ball curvature and the linearised flow equation depend only on the first factor, we are privileged with a freedom of choice in which second derivatives from the extra directions to include in the calculation. The optimal choice is closely related to the class of inverse-concave speed functions.

Mathematics Subject Classification (2010): 53C44 (primary); 35K55, 58J35 (secondary).