An inscribed radius estimate for mean curvature flow in Riemannian manifolds

SIMON BRENDLE

Abstract. We consider a family of embedded, mean convex hypersurfaces in a Riemannian manifold which evolve by the mean curvature flow. We show that, given any number T > 0 and any $\delta > 0$, we can find a constant *C* with the following property: if $t \in [0, T)$ and *p* is a point on M_t where the curvature is greater than *C*, then the inscribed radius is at least $\frac{1}{(1+\delta)H}$ at the point *p*. The constant *C* depends only on δ , *T*, and the initial data.

Mathematics Subject Classification (2010): 53C44 (primary); 35K55 (secondary).