Characterizations of signed measures in the dual of *BV* and related isometric isomorphisms

NGUYEN CONG PHUC AND MONICA TORRES

This paper is dedicated to William P. Ziemer on the occasion of his 81st birthday

We characterize all (signed) measures in $BV_{\frac{n}{n-1}}(\mathbb{R}^n)^*$, where Abstract. $BV_{\frac{n}{n-1}}(\mathbb{R}^n)$ is defined as the space of all functions u in $L^{\frac{n}{n-1}}(\mathbb{R}^n)$ such that Du is a finite vector-valued measure. We also show that $BV_{\frac{n}{n-1}}(\mathbb{R}^n)^*$ and $BV(\mathbb{R}^n)^*$ are isometrically isomorphic, where $BV(\mathbb{R}^n)$ is defined as the space of all functions u in $L^1(\mathbb{R}^n)$ such that Du is a finite vector-valued measure. As a consequence of our characterizations, an old issue raised in Meyers-Ziemer [19] is resolved by constructing a locally integrable function f such that f belongs to $BV(\mathbb{R}^n)^*$ but |f| does not. Moreover, we show that the measures in $BV_{\frac{n}{n-1}}(\mathbb{R}^n)^*$ coincide with the measures in $\dot{W}^{1,1}(\mathbb{R}^n)^*$, the dual of the homogeneous Sobolev space $\dot{W}^{1,1}(\mathbb{R}^n)$, in the sense of isometric isomorphism. For a bounded open set Ω with Lipschitz boundary, we characterize the measures in the dual space $BV_0(\Omega)^*$. One of the goals of this paper is to make precise the definition of $BV_0(\Omega)$, which is the space of functions of bounded variation with zero trace on the boundary of Ω . We show that the measures in $BV_0(\Omega)^*$ coincide with the measures in $W_0^{1,1}(\Omega)^*$. Finally, the class of finite measures in $BV(\Omega)^*$ is also characterized.

Mathematics Subject Classification (2010): 46E35 (primary); 46E27, 35A23 (secondary).