Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IV (2005), 27-57

Sur la transformation d'Abel-Radon des courants localement résiduels

Bruno Fabre

Abstract. After recalling the definitions of the Abel-Radon transformation of currents and of locally residual currents, we show that the Abel-Radon transform $\mathcal{R}(\alpha)$ of a locally residual current α remains locally residual. Then a theorem of P. Griffiths, G. Henkin and M. Passare (cf. [7], [9] and [10]) can be formulated as follows : Let U be a domain of the Grassmannian variety G(p, N) of complex p-planes in \mathbb{P}^N , $U^* := \cup_{t \in U} H_t$ be the corresponding linearly p-concave domain of \mathbb{P}^N , and α be a locally residual current of bidegree (N, p). Suppose that the meromorphic n-form $\mathcal{R}(\alpha)$ extends meromorphically to a greater domain \tilde{U} of G(p, N). If α is of type $\omega \wedge [T]$, with T an analytic subvariety of pure codimension p in U^* , and ω a meromorphic (resp. regular) q-form (q > 0) on T, then α extends in a unique way as a locally residual current to the domain $\tilde{U}^* := \bigcup_{t \in \tilde{U}} H_t$. In particular, if $\mathcal{R}(\alpha) = 0$, then α extends as a $\overline{\partial}$ -closed residual current on \mathbb{P}^N . We show in this note that this theorem remains valid for an arbitrary residual current of bidegree (N, p), in the particular case where p = 1.

Mathematics Subject Classification (2000): 32C30 (primary); 44A12 (secondary).