Nori's fundamental group over a non algebraically closed field

LEI ZHANG

Abstract. Let *X* be a connected reduced scheme over a field *k*, and $x \in X(k)$ be a k-rational point. M. V. Nori constructed in his Ph.D thesis a fundamental group scheme $\pi^N(X, x)$ which generalizes A. Grothendieck's étale fundamental group $\pi_1^{\text{ét}}(X, x)$ by including infinitesimal covers. However, Nori's fundamental group scheme carries little arithmetic information, and it behaves like the étale fundamental group only when k is algebraically closed. For example, if X = Spec(k), then Nori's fundamental group scheme is always trivial while the étale fundamental group $\pi_1^{\text{ét}}(X, x) = \text{Gal}(\bar{k}/k)$. In this paper, we study a slightly modified version of Nori's fundamental group scheme: we take x to be a geometric point instead of a rational point. It is very surprising to the author that this tinv little modification of Nori's original definition brings a lot of arithmetic information and makes the fundamental group scheme more like $\pi_1^{\text{ét}}(X, x)$. For example, now if we take X = Spec(k) again, with $\bar{x} \in X(\bar{k})$, then we get a profinite group scheme $\pi^N(k/k, \bar{x})$ over k which admits $\operatorname{Gal}(\bar{k}/k)$ as a (pro-constant) quotient of its. Thus not only the Galois extensions, but also the purely inseparable extensions of k are encoded into $\pi^N(k/k, \bar{x})$. We call $\pi^N(k/k, \bar{x})$ the Nori-Galois group of k. We also studied the fundamental sequence which relates the Nori-Galois group to the geometric fundamental group. It turns out that the expected fundamental exact sequence is always a complex and exact on the right, but fails to be exact in the middle and on the left. Then we give conditions to determine when the exactness holds.

Mathematics Subject Classification (2010): 14F35 (primary), 14G17, 14H30, 14A15, 14L15, 14D23 (secondary).