Reverse approximation of gradient flows as Minimizing Movements: a conjecture by De Giorgi

FLORENTINE FLEISSNER AND GIUSEPPE SAVARÉ

Abstract. We consider the Cauchy problem for the gradient flow

$$u'(t) = -\nabla \phi(u(t)), \quad t \ge 0; \quad u(0) = u_0, \tag{(\star)}$$

generated by a continuously differentiable function $\phi : \mathbb{H} \to \mathbb{R}$ in a Hilbert space \mathbb{H} and study the reverse approximation of solutions to (*) by the De Giorgi Minimizing Movement approach.

We prove that if \mathbb{H} has finite dimension and ϕ is quadratically bounded from below (in particular if ϕ is Lipschitz) then for *every* solution u to (\star) (which may have an infinite number of solutions) there exist perturbations $\phi_{\tau} : \mathbb{H} \to \mathbb{R}$ ($\tau > 0$) converging to ϕ in the Lipschitz norm such that u can be approximated by the Minimizing Movement scheme generated by the recursive minimization of $\Phi(\tau, U, V) := \frac{1}{2\tau} |V - U|^2 + \phi_{\tau}(V)$:

$$U^{n}_{\tau} \in \operatorname{argmin}_{V \in \mathbb{H}} \Phi(\tau, U^{n-1}_{\tau}, V) \quad n \in \mathbb{N}, \quad U^{0}_{\tau} := u_{0}. \quad (\star\star)$$

We show that the piecewise constant interpolations with time step $\tau > 0$ of *all* possible selections of solutions $(U_{\tau}^{n})_{n \in \mathbb{N}}$ to $(\star \star)$ will converge to u as $\tau \downarrow 0$. This result solves a question raised by Ennio De Giorgi in [9].

We also show that even if \mathbb{H} has infinite dimension the above approximation holds for the distinguished class of minimal solutions to (\star), that generate all the other solutions to (\star) by time reparametrization.

Mathematics Subject Classification (2010): 49M25 (primary); 34G20, 47J25, 47J30 (secondary).