On the rationality problem for forms of moduli spaces of stable marked curves of positive genus

MATHIEU FLORENCE, NORBERT HOFFMANN AND ZINOVY REICHSTEIN

Abstract. Let $M_{g,n}$ (respectively, $\overline{M}_{g,n}$) be the moduli space of smooth (respectively stable) curves of genus g with n marked points. Over the field of complex numbers, it is a classical problem in algebraic geometry to determine whether or not $M_{g,n}$ (or equivalently, $\overline{M}_{g,n}$) is a rational variety. Theorems of J. Harris, D. Mumford, D. Eisenbud and G. Farkas assert that $M_{g,n}$ is not even unirational for any $n \ge 0$ if $g \ge 22$. Moreover, P. Belorousski and A. Logan showed that $M_{g,n}$ is unirational for only finitely many pairs (g, n) with $g \ge 1$. Finding the precise range of pairs (g, n), where $M_{g,n}$ is rational, stably rational or unirational, is a problem of ongoing interest.

In this paper we address the rationality problem for twisted forms of $\overline{M}_{g,n}$ defined over an arbitrary field F of characteristic $\neq 2$. We show that all F-forms of $\overline{M}_{g,n}$ are stably rational for g = 1 and $3 \le n \le 4$, for g = 2 and $2 \le n \le 3$, for g = 3 and $1 \le n \le 14$, g = 4 and $1 \le n \le 9$, and for g = 5 and $1 \le n \le 12$.

Mathematics Subject Classification (2020): 14E08 (primary); 14H10, 14G27, 14H45 (secondary).