Sign-changing blowing-up solutions for the critical nonlinear heat equation

MANUEL DEL PINO, MONICA MUSSO, JUNCHENG WEI AND YOUQUAN ZHENG

Abstract. Let Ω be a smooth bounded domain in \mathbb{R}^n and denote the regular part of the Green function on Ω with Dirichlet boundary condition by H(x, y). Assume the integer k_0 is sufficiently large, $q \in \Omega$ and $n \ge 5$. For $k \ge k_0$ we prove that there exist initial data u_0 and smooth parameter functions $\xi(t) \to q$ and $0 < \mu(t) \to 0$ for $t \to +\infty$ such that the solution u_q of the critical nonlinear heat equation

$$\begin{cases} u_t = \Delta u + |u|^{\frac{4}{n-2}}u & \text{in } \Omega \times (0,\infty) \\ u = 0 & \text{on } \partial \Omega \times (0,\infty) \\ u(\cdot,0) = u_0 & \text{in } \Omega \end{cases}$$

has the form

$$u_q(x,t) \approx \mu(t)^{-\frac{n-2}{2}} \left(Q_k \left(\frac{x-\xi(t)}{\mu(t)} \right) - H(x,q) \right),$$

where the profile Q_k is the non-radial sign-changing solution of the Yamabe equation

$$\Delta Q + |Q|^{\frac{4}{n-2}}Q = 0 \text{ in } \mathbb{R}^n,$$

constructed in [9]. In dimension 5 and 6 we also investigate the stability of $u_q(x, t)$.

Mathematics Subject Classification (2010): 35K20 (primary); 35J15, 35J61, 35K15 (secondary).