Degree counting theorems for singular Liouville systems

YI GU AND LEI ZHANG

Abstract. Let (M, g) be a compact Riemann surface with no boundary and $u = (u_1, ..., u_n)$ be a solution of the following singular Liouville system:

$$\Delta_g u_i + \sum_{j=1}^n a_{ij} \rho_j \left(\frac{h_j e^{u_j}}{\int_M h_j e^{u_j} dV_g} - \frac{1}{vol_g(M)} \right) = \sum_{t=1}^N 4\pi \gamma_t \left(\delta_{p_t} - \frac{1}{vol_g(M)} \right).$$

where $i = 1, ..., n, h_1, ..., h_n$ are positive smooth functions, $p_1, ..., p_N$ are distinct points on M, δ_{p_l} are Dirac masses, $\rho = (\rho_1, ..., \rho_n)$ ($\rho_i \ge 0$) and ($\gamma_1, ..., \gamma_N$) ($\gamma_l > -1$) are constant vectors. If the coefficient matrix $A = (a_{ij})_{n \times n}$ satisfies standard assumptions, we identify a family of critical hyper-surfaces Γ_k for $\rho = (\rho_1, ..., \rho_n)$ so that a priori estimate of u holds if ρ is not on any of the $\Gamma_k s$. Thanks to the a priori estimate, a topological degree for u is well defined for ρ staying between every two consecutive $\Gamma_k s$. In this article we establish this degree counting formula which depends only on the Euler Characteristic of M and the location of ρ . Finally if the Liouville system is defined on a bounded domain in \mathbb{R}^2 with Dirichlet boundary condition, a similar degree counting formula that depends only on the topology of the domain and the location of ρ is also determined.

Mathematics Subject Classification (2010): 35R01 (primary); 35B44, 35J57, 35J91, 47H11 (secondary).