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Abstract. We give necessary and sufficient local conditions for the simultaneous
unitarizability of a set of analytic matrix maps from an analytic 1-manifold into
SLnC under conjugation by a single analytic matrix map.

We apply this result to the monodromy arising from an integrable partial
differential equation to construct a family of k-noids, genus-zero constant mean
curvature surfaces with three or more ends in Euclidean, spherical and hyperbolic
3-spaces.
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Introduction

In this paper we find necessary and sufficient conditions for the existence of an
SLnC-valued analytic matrix map on an analytic 1-manifold which simultaneously
unitarizes a given set of analytic matrix maps via conjugation. We apply these
results to construct families of constant mean curvature (CMC) immersions with
arbitrarily many ends into ambient 3-dimensional space forms (Theorem 8.5). The
ends are conjectured to be asymptotic to half-Delaunay surfaces.

We show that the existence of a global unitarizer is equivalent to the existence
of analytic unitarizers defined only on local neighborhoods (Theorem 1.10). In
the case of SL2C the necessary and sufficient conditions for global simultaneous
unitarization are local diagonalizability, pointwise simultaneous unitarizability, and
pairwise infinitesimal irreducibility (Theorem 3.4). This latter condition means that
at each point of the 1-manifold, the coefficient of the leading term of the series ex-
pansion of the commutator has full rank. For general SLnC, global unitarizability
is equivalent to pointwise unitarizability together with a graph condition (Theo-
rem 2.7). These results are proven by linearizing the unitarization problem and
applying analytic Cholesky decompositions.

The Unitarization Theorem 2.7 is a refinement of the variant r -unitarization
Theorem 4.4 (see [22, 6] for the case of SL2C). In Theorem 4.4, the analytic curve
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is the standard unit circle S1, and an analytic simultaneous unitarizer C is found on
a radius-r circle for some r less than 1.

While the unitarized loops extend holomorphically to S1, the unitarizer C gen-
erally has branch points. The conditions of the Unitarization Theorem 2.7 are the
obstructions to extending C holomorphically to S1.

One application of the Unitarization Theorem 2.7 is to solving the monodromy
problem arising in the construction of CMC surfaces via the extended Weierstrass
representation. In this construction, using integrable system methods, the problem
of closing the surface is solved by unitarizing the monodromy group, whose ele-
ments are defined on a loop. The unitarization theorem provides a construction of a
global analytic simultaneous unitarizer once it is known that the monodromy group
is pointwise simultaneously unitarizable along the loop.

Hence in the second part of the paper we apply the unitarization theorem to
the construction of CMC genus-zero surfaces with arbitrary numbers k ≥ 3 of
ends which are asymptotic to half-Delaunay surfaces [12], lying in ambient 3-
dimensional space forms (see Figures 1.1 and 1.2). We call these surfaces k-noids,
and trinoids when k = 3. For k = 2 these are the well-known Delaunay surfaces,
CMC surfaces of revolution with translational periodicity.

Trinoids in R3, either embedded or non-Alexandrov-embedded, were first con-
structed by Kapouleas [11] using techniques that glue parts of CMC surfaces to-
gether via the study of Jacobi operators, and later there has been further work in
this direction [16, 19], but this approach only gives examples that are in some sense
“close” to the boundary of the moduli space of the surfaces.

Figure 1.1. Symmetric CMC 5-noids in R
3, one with unduloidal ends and one with

nodoidal ends (cutaway view). The images were produced by CMCLab [20].

A construction that gives a broader collection of Alexandrov embedded trinoids [9,
10] and k-noids [8] in R3 with embedded ends asymptotic to Delaunay unduloids
was found by Große-Brauckmann, Kusner and Sullivan, using an isometric corre-
spondence between minimal surfaces in the 3-dimensional sphere S3 and CMC 1
surfaces in R3. The family of k-noids we construct here also includes surfaces with
asymptotically Delaunay ends [12].
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Constant mean curvature trinoids in R3 with embedded ends via loop group
techniques are constructed in [22, 5] by methods derived from integrable systems
techniques. Developed initially by Dorfmeister, Pedit and Wu [4], this construc-
tion employs the r -Unitarization Theorem together with the r -Iwasawa decompo-
sition [17], a generalization of the Iwasawa decomposition on the unit circle to a
radius-r circle with r < 1.

These trinoids extend to larger classes of non-Alexandrov-embedded trinoids:
In one way, Kilian, Sterling and the second author [13] dressed these trinoids into
“bubbleton” versions, also conformal to thrice-punctured spheres; these bubbleton
versions have ends asymptotic to embedded Delaunay unduloids [12], and com-
puter graphics suggest that they are not Alexandrov embedded. In another way,
Kilian, Kobayashi and the authors [22] extended the class of trinoids to CMC 1 sur-
faces in R3 whose potentials are perturbations of nonembedded Delaunay nodoid
potentials, and hence are not Alexandrov embedded [12]. Also, in [22], trinoids in
S3 and hyperbolic 3-space H3 were proved to exist, including examples that are not
Alexandrov embedded.

In this work, we establish the closing conditions for trinoids and symmetric
k-noids via loop group techniques by a more elementary approach using only the
1-unitarization theorem and 1-Iwasawa decomposition.

Figure 1.2. Symmetric CMC 5-noids in S
3 and H

3. Here, S
3 has been stereographically

projected to R
3 ∪ {∞}, and H

3 is shown in the Poincaré model.

1. Simultaneous unitarizability for SLnC

1.1. Preliminaries

An analytic curve is a connected real analytic one-dimensional manifold without
boundary. On an analytic curve C we denote by HCV the set of analytic maps
C → V into a space V , and by MCV the set of analytic maps C → V with possible
poles.
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M ∈ HCSLnC is locally diagonalizable at p ∈ C if there exists a neighbor-
hood U ⊆ C of p and V ∈ HUSLnC such that V MV −1 is diagonal.

M1, . . . , Mq ∈ HCSLnC are locally simultaneously unitarizable at p ∈ C if
there exists a neighborhood U ⊆ C of p and V ∈ HUSLnC such that V M1V −1, . . .

. . . , V Mq V −1 ∈ HUSUnC.

M1, . . . , Mq ∈ HCSLnC are simultaneously unitarizable on C if there exists
V ∈ HCSLnC such that V M1V −1, . . . , V Mq V −1 ∈ HCSUnC.

For f ∈ MCC, define f ∗ = f , and for M ∈ MCMn×nC, define M∗ = M
t
.

For 0 < r < s < ∞, let Ar,s ⊂ C denote the open annulus Ar,s = {λ ∈
C | r < |λ| < s}.

A subset G ⊂ Mn×nC is reducible if there exists a proper non-zero subspace
V ⊂ Cn such that GV ⊂ V for all G ∈ G. In the case G = {A, B} is a set of two
elements, we say A, B ∈ Mn×nC are reducible.

We have the following Schur-type lemma.

Lemma 1.1. If A, B ∈ Mn×nC are irreducible and X ∈ Mn×nC commutes with
A and B, then X is a multiple of the identity matrix I ∈ Mn×nC.

Proof. Suppose X 	∈ C I and let λ ∈ C be an eigenvalue of X . Let V = {v ∈
Cn | Xv = λv}, so V 	= {0}. Then V ⊂ Cn is a proper subspace because X 	∈ C I.

For any v ∈ V , we have X Av = AXv = λAv, so Av ∈ V . Hence AV ⊆ V .
Similarly, BV ⊆ V , so A and B would be reducible.

1.2. Linearizing the simultaneous unitarization problem

We begin with an elementary proof of a specialization of standard results in the
theory of holomorphic vector bundles, constructing a global kernel of a suitable
bundle map which depends holomorphically (or real analytically) on a parameter.

Lemma 1.2. Let D be an analytic 1-manifold or 2-manifold, N , M ∈ N, and L :
D → Hom(CN, CM) a holomorphic map. Suppose dim ker L = 1 on D away from
a subset S ⊂ D of isolated points. Then

(i) dim ker L ≥ 1 on D.
(ii) There exists a holomorphic map X : D → CN which is not identically 0 such

that X ∈ ker L, that is, for each p ∈ D, X (p) ∈ ker L(p).

Proof. Since L has rank N − 1 on D \ S, all the N × N minor determinants of L
are holomorphic on D and zero on D \ S, and hence 0 on D. Hence dim ker L ≥ 1
on D.

Since L has rank N −1 on D \ S, then there exists an (N −1)× (N −1) minor
determinant of L which is not identically 0 on D. Hence by a permutation we may
assume without loss of generality that

L =
(

A B
C D

)
,
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where A ∈ HDM(N−1)×(N−1)C with a := det A 	≡ 0 on D, B ∈ HDM(N−1)×1C,
C ∈ HDM(M−N+1)×(N−1)C, and D ∈ HDM(M−N+1)×1C.

Define X = (−a A−1 B, a)
t
. Then a A−1 is holomorphic on D because its en-

tries are polynomials in the entries of A. Hence X is holomorphic on D. Moreover,
X 	≡ 0 because a 	≡ 0.

It is clear that the upper (N − 1) × 1 block of L X is 0. To show that the lower
(M−N +1)×1 block of L X is zero, let Ak ∈ HCM1×(N−1)C and Bk ∈ HCC be the
respective k’th rows of A and B (k ∈ {1, . . . , N −1}). Then since B − AA−1 B = 0,

Bk − Ak A−1 B = 0, k ∈ {1, . . . , N − 1}. (1.1)

Fix j ∈ {1, . . . , M − N + 1} and let C j ∈ HCM1×(N−1)C and D j ∈ HCC be the
respective j’th rows of C and D. Because all N × N minor determinants of L are
0, then C j = ∑

rk Ak and D j = ∑
rk Bk for some holomorphic scalar functions

r1, . . . , rN−1. By (1.1), C j A−1 B = D j . Since this holds for all j ∈ {1, . . . , M −
N + 1}, we have D − C A−1 B = 0. Hence the lower (M − N + 1) × 1 block
a(D − C A−1 B) of L X is 0, L X = 0, and X ∈ ker L .

A global simultaneous unitarizer of a suitable set of analytic maps M1, . . . , Mq
on an analytic curve is constructed in two steps. First, a global analytic solution X to
the linear system X Mk X−1 = M∗

k
−1, k ∈ {1, . . . , q}, is found which is Hermitian

positive definite. Then the analytic Cholesky decomposition gives X = V ∗V , and
V is a simultaneous unitarizer of M1, . . . , Mq .

We continue by defining a linear map L whose kernel will contain X .

Definition 1.3. For M1, . . . , Mq ∈ SLnC (n ≥ 1), define L = L(M1, . . . , Mq) as
the linear map L : Mn×nC → (Mn×nC)n

L(X) =
(

X M1 − M∗
1

−1 X, . . . , X Mq − M∗
q

−1 X
)

.

L is similarly defined for M1, . . . , Mq ∈ HCSLnC.
The linear map L(M1, . . . , Mq) has the following easily computed properties.

The first of these properties motivates the definition of L .

Lemma 1.4. With n ≥ 2, let M1, . . . , Mq ∈ SLnC and let L = L(M1, . . . , Mq) be
as in Definition 1.3. Then

(i) If A ∈ SLnC and A∗ A ∈ ker L, then A simultaneously unitarizes M1, . . . , Mq.
(ii) If X ∈ ker L, then X∗ ∈ ker L.

(iii) Let C ∈ GLnC and let L̃ = L(C M1C−1, . . . , C MqC−1). Then X ∈ ker L̃ if
and only if C∗XC ∈ ker L.

We will require the following further properties of L .

Lemma 1.5. With n ≥ 2, let M1, . . . , Mq ∈ SLnC and L = L(M1, . . . , Mq). If
for some i, j ∈ {1, . . . , q}, Mi and M j are irreducible, and if M1, . . . , Mq are
simultaneously unitarizable, then dim ker L = 1.
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Proof. Let C be a simultaneous unitarizer of M1, . . . , Mq , define Pk = C MkC−1 ∈
SUn (k ∈ {1, . . . , n}), and set L̃ = L(P1, . . . , Pr ). Since Pk = P∗

k
−1, then ker L̃ is

the set of X ∈ Mn×nC such that [X, Pk] = 0 (k ∈ {1, . . . , q}). Since Mi and M j

are irreducible, then Pi and Pj are irreducible. By Lemma 1.1, ker L̃ = C ⊗ I. By
Lemma 1.4(iii), ker L = C ⊗(C∗C), so dim ker L = 1.

Lemma 1.6. Let M1, M2 ∈ SLnC and L = L(M1, M2). Suppose M1 and M2 are
irreducible and simultaneously unitarizable. Let X ∈ Mn×nC \ {0} and suppose
X ∈ ker L and X∗ = X. Then X is positive or negative definite.

Proof. First assume the special case that M1, M2 ∈ SUn . Then X ∈ ker L means
[X, M1] = 0 and [X, M2] = 0. Since M1 and M2 are irreducible, by Lemma 1.1,
X = r I for some r ∈ C∗. Since X is Hermitian, then r ∈ R∗. Hence X is positive
or negative definite.

To show the general case, let C ∈ SLnC be a simultaneous unitarizer of M1 and
M2, and let L̃ = L(C M1C−1, C M2C−1). Then X̃ = (C−1)

∗
XC−1 is Hermitian,

and X̃ ∈ ker L̃ by Lemma 1.4(iii). By the special case above, X̃ is positive or
negative definite. Hence X is positive or negative definite.

Lemma 1.7. Let C be an analytic curve, and M1, . . . , Mq ∈ HCSLnC (q ≥ 2),
and let L = L(M1, . . . , Mq). Suppose for some subset S ⊂ C of isolated points,
M1 and M2 are irreducible on C \ S, and M1, . . . , Mq are pointwise simultaneously
unitarizable on C \ S. Then there exists X ∈ (HCMn×nC) ∩ ker L with X∗ = X
and a subset S′ ⊂ C of isolated points such that X is positive definite on C \ S′.

Proof. By Lemma 1.5, dim ker L = 1 on C \ S. By Lemma 1.2, dim ker L ≥ 1 on
C and there exists an analytic map X1 ∈ HCMn×nC such that X1 ∈ (ker L) \ {0}.

If X1 is Hermitian, define X2 = X1; otherwise define X2 = i(X1 − X∗
1). Then

X2 	≡ 0, X2 is Hermitian, and X2 ∈ ker L by Lemma 1.4(ii).
By Lemma 1.6, X2 is (pointwise) either positive definite or negative definite

except at the set of isolated points at which X2 = 0 or where M1, . . . , Mq all
commute.

Let v ∈ Cn \ {0} be any non-zero constant vector and define f = v∗X2v.
Then f 	≡ 0 and X = f X2 is positive definite on C away from a set of isolated
points.

1.3. Analytic Cholesky decompositions

We prove two analytic versions of the Cholesky decomposition theorem. The first
(Proposition 1.8) is for Hermitian positive definite maps on an analytic curve, used
in the Unitarization Theorem 1.10. The second (Proposition 4.2), used in the r -
unitarization Theorem 4.4, is for meromorphic maps on S1 which are Hermitian
positive definite except at a finite set of points.
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Proposition 1.8 (Holomorphic Cholesky decomposition). Let C be an analytic
curve and let X ∈ HCSLnC be Hermitian positive definite. Then

(i) There exists V ∈ HCSLnC such that X = V ∗V .
(ii) V is unique up to left multiplication by elements of HCSUn.

Proof. We first prove the following analytic version of the LDU-decomposition: if
X ∈ HCGLnC is Hermitian positive definite, then there exists R, D ∈ HCGLnC

such that X = R∗DR, where R is upper triangular with diagonal elements ≡ 1,
and D is diagonal with diagonal elements in HCR>0. The proof is by induction on
n. The case n = 1 is clear, with R = I, D = X .

Now assume the statement is true for n − 1 and write

X =
(

X0 Y0
Y ∗

0 z

)
,

with X0 ∈ HCGLn−1C, Y0 ∈ HCM(n−1)×1C and z ∈ HCC. Then X0 is Her-
mitian positive definite, so let X0 = R∗

0 D0 R0 be the decomposition given by
the induction hypothesis. Then D0 and R∗

0 are invertible on C, so we can define
R, D ∈ HCGLnC by

R =
(

R0 S0
0 1

)
, S0 = (R∗

0 D0)
−1Y0, D =

(
D0 0
0 d

)
, d = z − S∗

0 D0S0.

Then we have X = R∗DR. Taking the determinant yields det X = det D =
d det D0, showing that d takes values in R>0. This proves the statement for n.

To show the first part of the theorem, take Hermitian positive definite X ∈
HCSLnC, and let X = R∗DR be its analytic LDU factorization. With D =
diag(d1, . . . , dn), let E = diag(

√
d1, . . . ,

√
dn), choosing positive square roots. Let

V = E R, so X = V ∗V . It is clear that det V ≡ 1, so V ∈ HCSLnC, proving (i).
To show uniqueness (ii), suppose V, W ∈ HCSLnC with V ∗V = W ∗W . Let

U = W V −1 ∈ HCSLnC. Then U∗ = U−1, so U ∈ HCSUn .

Lemma 1.9. If X1, X2 ∈ SLnC are positive definite, and X2 is a multiple of X1,
then X1 = X2.

Proof. Let X2 = cX1. Since X1 and X2 are positive definite, then c > 0. Taking
the determinant, cn = 1, so c is an n’th root of 1. Hence c = 1, so X1 = X2.

1.4. Simultaneous unitarization

We are now prepared to prove the following unitarization theorem. Conditions
equivalent to condition (ii) of this theorem (local simultaneous unitarizability) are
found in Sections 2.1–3.

Theorem 1.10. Let C be an analytic curve and M1, . . . , Mq ∈ HCSLnC (q ≥ 2).
Suppose M1 and M2 are irreducible on C except at a subset of isolated points. Then
the following are equivalent:
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(i) M1, . . . , Mq are globally simultaneously unitarizable on C.
(ii) M1, . . . , Mq are locally simultaneously unitarizable at each p ∈ C.

In this case, any simultaneous unitarizer V is unique up to left multiplication by an
element of HCSUn.

Proof. Clearly (i) implies (ii). Conversely, suppose (ii). A global analytic simulta-
neous unitarizer V is constructed as follows.

Fix p ∈ C. By (ii), there exists a neighborhood Up of p and W ∈ HUSLnC

such that W M j W −1 ∈ HUp SUn , j ∈ {1, . . . , q}. Define X p = W ∗W . Then
X p ∈ HUp SLnC ∩ ker L and X p is Hermitian positive definite. By Lemma 1.9, X p
is the unique map in a neighborhood of p which takes values in SLnC, is in ker L ,
and is Hermitian positive definite.

Define X : C → SLnC by X (p) = X p(p). Then for each p ∈ C, X is
analytic at p because it coincides with the local analytic map X p on Up, again by
Lemma 1.9. This defines the unique map X ∈ HCSLnC∩ker L which is Hermitian
positive definite on C.

By the Cholesky Decomposition Proposition 1.8, there exists V ∈ HCSLnC

such that X = V ∗V . Then for k ∈{1, . . . , q}, V Mk V −1 ∈HCSUn by Lemma 1.4(i),
so V is the required simultaneous unitarizer.

To show uniqueness, suppose W ∈ HCSLnC is another simultaneous unita-
rizer. Then W ∗W is a Hermitian positive definite element of HCSLnC ∩ ker L . By
Lemma 1.9, W ∗W = X = V ∗V . The uniqueness result follows by the uniqueness
result in the Cholesky Decomposition Proposition 1.8.

2. Local conditions for simultaneous unitarizability

Theorem 1.10 effectively reduces global simultaneous unitarizability to local si-
multaneous unitarizability. We will now give more explicit conditions for local
simultaneous unitarizability.

2.1. �n-graphs

Given two matrix maps M1, M2 ∈ HCSLnC with M1 diagonal, the local simulta-
neous unitarizability of M1 and M2 at p is equivalent to the equalities of the orders
of certain corresponding entries of M2 and M∗

2
−1 at p. These relations are naturally

expressed in terms of graphs on {1, . . . , n} (Definition 2.1).

Definition 2.1. A �n-graph is a directed graph with vertices V = {1, . . . , n}. A
�n-graph is not a multigraph — it may not have two instances of the same edge.
However, it may have an edge connecting a vertex to itself. A �n-graph is con-
nected if it is connected as a undirected graph.

Let C be an analytic curve, let p ∈ C, and let A, B ∈ HCMn×nC. For µ, ν ∈
{1, . . . , n}, let Aµν denote the entry of A lying in row µ and column ν, and similarly
for B.



SIMULTANEOUS UNITARIZABILITY AND k-NOIDS 557

Let G be a �n-graph. A is G-non-zero at p if for every directed edge (µ, ν) ∈
V 2 from µ to ν of G we have ordp Aµν < ∞. (Since C is connected and A is
holomorphic, this order condition is equivalent to the condition Aµν 	≡ 0.)

Let G be a �n-graph. A and B are G-compatible at p if for every directed
edge (µ, ν) ∈ V 2 of G, we have ordp Aµν = ordp Bµν < ∞.

Let e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) ∈ Cn be the standard basis for
Cn . Fixing n, we have the natural correspondence between the nonempty subsets of
{1, . . . , n} and the nonzero subspaces of Cn generated by standard basis elements,
where K ⊂ {1, . . . , n} corresponds to the subspace

EK = span{ek | k ∈ K } ⊆ C
n.

This correspondence induces a natural one-to-one correspondence between the set
of partitions of {1, . . . , n} all of whose terms are non-empty, and the set of direct
sum decompositions of Cn relative to its standard basis, all of whose terms are
non-zero.

The following lemma expresses in terms of �n-graphs a notion closely related
to block-diagonalizability.

Lemma 2.2. Let C be an analytic curve, let A ∈ HCMn×nC, and let p ∈ C. Then
the following are equivalent:

(i) Every �n-graph H for which A is H-non-zero at p is disconnected.
(ii) There exists a direct decomposition Cn = V1 ⊕ V2 into non-zero summands V1

and V2 generated by standard basis elements of Cn such that AV1 ⊆ V1 and
AV2 ⊆ V2 near p.

Proof. Suppose (ii) and let G1 � G2 = {1, . . . , n} be the corresponding partition.
The conditions AV1 ⊆ V1 and AV2 ⊆ V2 are equivalent to the condition that
Aµν ≡ 0 for all (µ, ν) ∈ (G1 × G2) ∪ (G2 × G1). Let G be a �n-graph for
which A is G-non-zero at p. Then G does not contain any of the edges in (G1 ×
G2) ∪ (G2 × G1). Hence the two subsets G1 and G2 of the vertex set of G are
disconnected, proving (i).

Conversely, suppose (i) and let G be the maximal �n-graph among the �n-
graphs H for which A is H -non-zero at p. Then G is disconnected, so let G1�G2 =
{1, . . . , n} be a partition with G1 and G2 nonempty such that no edge of G is in
(G1 × G2)∪ (G2 × G1). Since G is maximal, then Aµν ≡ 0 for all (µ, ν) ∈ (G1 ×
G2)∪(G2×G1). Let Cn = V1⊕V2 be the direct sum decomposition corresponding
to the partition G1 � G2. Then AV1 ⊆ V1 and AV2 ⊆ V2, proving (ii).

We shall say that X ∈ HCMn×nC is infinitesimally invertible at p if the leading
term in its series expansion at p in some local coordinate on C near p has full rank.
Equivalently, there exists a local meromorphic scalar function f near p such that
f X is holomorphic at p and rank( f X)(p) = n.

Lemma 2.3. Let C be an analytic curve, let p ∈ C and let A, B ∈ HCMn×nC.
Let X ∈ HCMn×nC be diagonal with X 	≡ 0, and suppose X A = B X. Then the
following are equivalent:
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(i) A and B are G-compatible at p for some connected �n-graph G.
(ii) X is infinitesimally invertible at p, and neither of the equivalent conditions of

Lemma 2.2 hold for A at p.

Proof. First suppose (ii) holds. Since X is diagonal, the infinitesimal invertibility
of X is equivalent to

ord
p

X11 = · · · = ord
p

Xnn < ∞. (2.1)

The components of X A − B X are

0 = (X A − B X)µν = Xµµ Aµν − Xνν Bµν. (2.2)

Let G be a connected �n-graph such that A is G-non-zero at p. Then for each edge
(µ, ν) of G, we have ordp Aµν < ∞. Then (2.1) and (2.2) imply

ord
p

Aµν = ord
p

Bµν < ∞. (2.3)

Hence A and B are G-compatible at p.
Conversely, suppose (i), that A and B are G-compatible at p for some con-

nected �n-graph G. Then (2.3) holds for each edge (µ, ν) of G. Hence A is
G-non-zero at p. By (2.2),

ord
p

Xµµ = ord
p

Xνν < ∞.

The connectedness of G implies (2.1).

Lemma 2.4. Let C be an analytic curve, p ∈ C, and suppose X ∈ HCMn×nC is
infinitesimally invertible at p. Then

(i) det X has a local analytic n’th root in some neighborhood U ⊂ C of p.
(ii) (det X)−1/n X ∈ HUSLnC.

(iii) If X is Hermitian positive definite on a punctured neighborhood of p, then the
n’th root can be chosen so that (det X)−1/n X is Hermitian positive definite in
a neighborhood of p.

Proof. Let t be a local coordinate on C near p with t (p) = 0. Since X is infinitesi-
mally invertible at p, we have

X = Xmtm + O(tm+1), det Xm 	= 0. (2.4)

Taking the determinant of (2.4),

det X = (det Xm)tnm + O(tnm+1). (2.5)

Since det Xm 	= 0, then ordp(det X) = nm. Since nm is divisible by n, then det X
has a local analytic n’th root in a neighborhood U ⊂ C of p, proving (i).
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Taking an n’th root of (2.5),

(det X)1/n = (det Xm)1/ntm + O(tm+1), (2.6)

so
Y := (det X)−1/n X = (det Xm)−1/n Xm + O(t1),

and hence Y ∈ HUSLnC, proving (ii).
To show (iii), suppose U is a neighborhood of p such that X is positive def-

inite on U \ {p}. Then det X is positive on U \ {p}, and hence by its continuity
is nonnegative on U . By (2.5), det Xm > 0, so we can choose (det Xm)1/n > 0
in (2.6). Equation (2.4) and a limit argument imply that m is even. Equation (2.6)
then implies that (det X)1/n is non-negative on U . Then Y = (det X)1/n X is posi-
tive definite in a punctured neighborhood of p. Hence Y (p) is positive semidefinite,
and so Y (p) is positive definite since det Y (p) = 1.

Lemma 2.5. Let C be an analytic curve, let p ∈ C and let M1, M2 ∈ HCSLnC.
Suppose M1 and M2 are irreducible on C \ {p}. Suppose M1 is diagonal and no
two local analytic eigenvalues of M1 are identically equal. Then the following are
equivalent:

(i) M1 and M2 are locally simultaneously unitarizable at p.
(ii) M1 and M2 are pointwise simultaneously unitarizable at each point of a neigh-

borhood of p, and M2 and M∗
2

−1 are G-compatible at p for some connected
�n-graph G.

Proof. To show (i) ⇒ (ii), let V ∈ HUSLnC be a local simultaneous unitarizer of
M1 and M2 at p and let X = V ∗V . Then

X Mk = M∗
k

−1 X, k ∈ {1, 2}.
Since M1 is unitarizable, it has unimodular eigenvalues. Since M1 is diagonal, then
M1 ∈ HCSUn . Hence M1 = M∗

1
−1, and so [X, M1] = 0. Since no two eigenvalues

of M1 are identically equal, X is diagonal away from the set of isolated points where
two eigenvalues of M1 coincide, so by its continuity, X is diagonal.

Since M1 is diagonal and M1 and M2 are irreducible in a punctured neigh-
borhood of p, then there is no non-zero proper subspace W ⊂ Cn generated by
standard basis elements of Cn such that M2W ⊂ W in a neighborhood of p. Hence
M2 is not block-diagonalizable at p via a permutation at p. Since X (p) ∈ SLnC,
then X has full rank at p. By Lemma 2.3, M2 and M∗

2
−1 are G-compatible at p for

some connected �n-graph G. This proves (ii).
To show (ii) ⇒ (i), since M1 and M2 are irreducible on C\{p} and are pointwise

simultaneous unitarizable at each point in a neighborhood of p, by Lemma 1.7 there
exists a neighborhood U of p and a map X ∈ HUMn×nC ∩ ker L for which X is
Hermitian positive definite on U \ {p}. By condition (ii) and Lemma 2.3, X is
infinitesimally invertible at p. By Lemma 2.4, there exists a neighborhood V of
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p and a choice of n’th root of det X such that Y = (det X)−1/n X ∈ HVSLnC is
Hermitian positive definite.

By the Cholesky Decomposition Proposition 1.8, there exists V ∈ HVSLnC

such that Y = V ∗V . Then by Lemma 1.4(i), V Mk V −1 ∈ HVSUn , k ∈ {1, 2}, so
V is a local simultaneous unitarizer of M1 and M2 at p.

Lemma 2.6. For q ≥ 2, let M1, . . . , Mq ∈ SLnC with M1, M2 irreducible and
M1, M2 ∈ SUn. If M1, . . . , Mq are simultaneously unitarizable by an element of
SLnC, then M1, . . . , Mn ∈ SUn.

Proof. Let C ∈ SLnC be a simultaneous unitarizer. Then C∗C commutes with
each of M1 and M2. By Lemma 1.1, C∗C ∈ C I. Since C∗C is positive definite, by
Lemma 1.9, C∗C = I. Hence C ∈ SUn . Since C MkC−1 ∈ SUn for k ∈ {1, . . . , q},
then Mk ∈ SUn for k ∈ {1, . . . , q}.

Lemma 2.5, Lemma 2.6 and Theorem 1.10 give the following result.

Theorem 2.7 (Unitarization theorem). Let C be an analytic curve, let p ∈ C and
let M1, . . . , Mq ∈ HCSLnC, q ≥ 2. Suppose M1 and M2 are irreducible on
C except at a subset of isolated points. Suppose M1 is locally diagonalizable at
each point p ∈ C, and that no two local analytic eigenvalues of M1 are identically
equal. Then M1, . . . , Mq are globally simultaneously unitarizable if and only if the
following conditions hold:

(i) M1, . . . , Mq are pointwise simultaneously unitarizable at each point of C.
(ii) For each p ∈ C, let C be a local diagonalizer of M1 at p, and let P2 =

C M2C−1. Then P2 and P∗
2

−1 are G-compatible at p for some connected �n-
graph G.

In this case, any simultaneous unitarizer is unique up to left multiplication by an
element of HCSUn.

3. Simultaneous unitarizability for SL2C

For the case SL2C, the �n-graph condition in Theorem 1.10 is particularly simple
and can be recast in terms of commutators.

Note that for A, B ∈ M2×2C, A and B are irreducible if and only if [A, B]
has rank 2.

Definition 3.1. We say that A, B ∈ HCSL2C are infinitesimally irreducible at p ∈
C if [A, B] 	≡ 0 and the leading order term in the series expansion of [A, B] at p
has full rank.

The property infinitesimally irreducible (respectively reducible) is preserved
under conjugation by an element of HCSL2C.

Lemma 3.2. If A is diagonal, then A and B are infinitesimally irreducible if and
only if the two off-diagonal terms of B have the same finite order.
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We give a sufficient condition for local diagonalizability:

Lemma 3.3. Let C be an analytic curve, p ∈ C, and M ∈ HCSU2 be an analytic
map. Then M is locally diagonalizable in a neighborhood U ⊂ C of p by a map
C ∈ HUSU2.

Proof. It follows from the characteristic equation of M that its eigenvalues µ1, µ2 =
µ−1

1 are analytic in a neighborhood U ⊂ C of p. It can be shown, for example by an
analytic version of the QR-decomposition, that there exist corresponding analytic
eigenvector functions v1, v2 ∈ HUC2 such that V = (v1, v2) ∈ HUSU2. Then
V −1 MV = diag(µ1, µ2), so C = V −1 is the required diagonalizer.

Theorem 3.4 (Unitarization theorem for SL2 C). Let C be an analytic curve,
M1, . . . , Mq ∈ HCSL2C (q ≥ 2), and suppose that [Mr , Ms] 	≡ 0 for some fixed
choice r, s ∈ {1, . . . , q}. Then M1, . . . , Mq are globally simultaneously unitariz-
able if and only if the following conditions hold at each p ∈ C:

(i) M1, . . . , Mq are pointwise simultaneously unitarizable at p.
(ii) Mr or Ms is locally diagonalizable at p.

(iii) Mr and Ms are infinitesimally irreducible at p.

In this case, any simultaneous unitarizer V is unique up to left multiplication by an
element of HCSU2.

Remark 3.5. Examples exist which show the independence of the three conditions
(i)–(iii) of Theorem 3.4.

Proof. Renumber so that r = 1 and s = 2. Suppose M1, . . . , Mq are globally
simultaneously unitarizable on C. Then (i) clearly holds, and condition (ii) holds
by Lemma 3.3. To show condition (iii), let V be a local unitarizer of M1 and M2,
and let Pk = V Mk V −1, k ∈ {1, 2}. By Lemma 3.3, there exists a local unitary
diagonalizer C of P1. Let Qk = C PkC−1, k ∈ {1, 2}. Then Q1 is diagonal. Since
Q2 is unitary, its off-diagonal terms have the same order. Since [M1, M2] 	≡ 0, then
[Q1, Q2] 	≡ 0, so Q2 is not identically diagonal. Hence the off-diagonal entries
of Q2 are not both identically zero. By Lemma 3.2, Q1 and Q2 are infinitesimally
irreducible, and hence M1 and M2 are infinitesimally irreducible.

Conversely, assume conditions (i)–(iii) and assume M1 is locally diagonaliz-
able at p. We show that the conditions of Theorem 2.7 are satisfied. Since M1 is
locally diagonalizable, and [M1, M2] 	≡ 0, then M1 does not have identically equal
eigenvalues. Let C be a local diagonalizer of M1 at p, and let Pk = C MkC−1,
k ∈ {1, 2}. By (iii), the two off-diagonal terms of P2 and those of P∗

2
−1 all have

the same finite order. Hence P1 and P2 are irreducible in a punctured neighborhood
of p, so M1 and M2 are irreducible in a punctured neighborhood of p. Let G be the
connected �2-graph with single edge (1, 2). Then P2 and P2

∗−1 are G-compatible.
The existence and uniqueness of the global simultaneous unitarizer follows by The-
orem 2.7.
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4. Simultaneous r-unitarization

The r -Unitarization Theorem 4.4 for SLnC-valued loops is a variant of the Unita-
rization Theorem 1.10 on the standard unit circle S1 = {λ ∈ C | |λ| = 1}. This
variant has been proven for the case of SL2C [22], where it finds application to the
construction of non-simply-connected CMC surfaces.

In the r -Unitarization Theorem, a holomorphic map V is constructed on an
annulus Ar,1 which simultaneously unitarizes the given set of loops M1, . . . , Mq in
the sense that the V Mk V −1 extend holomorphically to S1 and are unitary there. In
this case, the unitarizing loop V does not in general extend holomorphically to S1,
but has zeros and poles there.

We note that a unitary map cannot have poles. This follows from the fact that
SUn and Un are compact:

Proposition 4.1. Let C be an analytic curve. Then MCUn =HCUn and MCSUn =
HCSUn.

We now extend the Cholesky decomposition theorem to the case of an analytic
map on S1 which is Hermitian positive definite except at a finite subset.

Proposition 4.2 (Meromorphic Cholesky decomposition). Let C = S1 ⊂ C and
let X ∈ MCMn×nC be Hermitian positive definite except at a finite subset of points
S ⊂ C. Then

(i) There exists V ∈ MCMn×nC such that X = V ∗V .
(ii) V is unique up to left multiplication by elements of HCUn.

Proof. We will apply the LDU-decomposition stated at the beginning of the proof
of Proposition 1.8, with holomorphicity replaced by meromorphicity.

Let ρ : C̃ → C be a double cover and let τ : C̃ → C̃ be the deck transformation
induced by a single counterclockwise traversal of C. Let ρ∗ and τ ∗ denote the
respective pullbacks. Write D = diag(d1, . . . , dn) and for k ∈ {1, . . . , n}, define
bk to be either of the global square roots of dk on C̃. Define B̃ = diag(b1, . . . , bn)

and Ṽ = B̃(ρ∗ R), so ρ∗X = Ṽ ∗Ṽ . With λ the standard unimodular parameter on
S1, define

ck = 1 if τ ∗bk = bk , and ck = √
λ if τ ∗bk = −bk ,

and define C = diag(c1, . . . , cn) ∈ HC̃Un . Then τ ∗(CṼ ) = CṼ . Let V ∈
MCMn×nC be the unique map satisfying ρ∗V = U Ṽ . Then X = V ∗V , prov-
ing (i).

To show uniqueness (ii), suppose V, W ∈ MCMn×nC with V ∗V = W ∗W .
Let U = W V −1 ∈ MCMn×nC. Then U∗ = U−1, so U takes values in Un on S1

away from its poles. By Proposition 4.1, U ∈ HCUn .
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Definition 4.3. Let M1, . . . , Mq ∈ HS1SLnC. Let r ∈ (0, 1) and suppose M1, . . .

. . . , Mq extend holomorphically to respective maps M̃1, . . . M̃q ∈ HAr,1SLnC.
Then M1, . . . , Mq are simultaneously r-unitarizable if there exists V ∈ HAr,1SLnC

which extends holomorphically to S1 minus a finite subset such that V M̃1V −1, . . .

. . . , V M̃q V −1 extend holomorphically to S1 and their respective restrictions to S1

are in HS1SUn .

Theorem 4.4 (r-unitarization theorem). Let M1, . . . , Mq ∈ HS1SLnC (q ≥ 2)
and suppose for some i, j ∈ {1, . . . , r} that Mi and M j are irreducible except at a
finite subset of S1. Then the following are equivalent:

(i) M1, . . . , Mq are simultaneously r-unitarizable for some r ∈ (0, 1).
(ii) M1, . . . , Mq are pointwise simultaneously unitarizable on S1 minus a finite sub-

set.

Moreover, r-unitarizers are unique in the following sense. If V1 ∈ HAr1,1SLnC

and V2 ∈ HAr2,1SLnC are respective r1- and r2- unitarizers, then V2V −1
1 extends

holomorphically to S1 and its restriction to S1 is in HS1SUn.

Proof. First suppose a simultaneous r -unitarizer V exists as in (i) and let S ⊂ S1

be the finite singular set of the extension of V to S1. Then by the definition of
r -unitarizer, for all p ∈ S1 \ S, V Mk V −1

∣∣
p ∈ SUn , proving (ii).

Conversely, suppose (ii) holds. A simultaneous r -unitarizer V is constructed
as follows.

Let L be as in Definition 1.3. By Lemma 1.7, there exists X1 ∈ HCMn×nC

such that X1 ∈ ker L , X∗
1 = X1, and away from a finite subset of S1, X1 is positive

definite.
By the Cholesky Decomposition Proposition 4.2 there exists V1 ∈ MCMn×nC

such that X1 = V ∗
1 V1.

By the holomorphicity of M1, . . . , Mq and the meromorphicity of V1, there
exists r ∈ (0, 1) such that M1, . . . , Mq and V1 extend holomorphically to Ar,1 and
det V1 is non-zero in Ar,1.

Let Ã → Ar,1 be an n-fold cover and let τ : Ã → Ã be the deck trans-
formation induced by a single counterclockwise traversal of S1. Define V2 =
(det V )−1/nV1 on Ã. Then for some k ∈ Z≥0, τ ∗V2 = εk V2, where ε = e2π i/n .
Let λ be the standard unimodular parameter on S1. Define U ∈ HÃSUn by

U = λ−k/n diag(1, . . . , 1, λk),

so τ ∗U = ε−kU . Let V = U V2. Then τ ∗V = V , so V on Ã descends to a single
valued holomorphic map on Ar,1. This gives us V ∈ HAr,1SL2C.

Let S ⊂ S1 be the singular set of V . By Lemma 1.4(i), on S1 \ S for each
k ∈ {1, . . . , q}, Pk := V Mk V −1 takes values in SUn . Since V1 is meromorphic on
S, then Pk = V1 Mk V −1

1 is meromorphic on S. By Proposition 4.1, Pk ∈ HS1SUn .
Hence V is the required simultaneous r -unitarizer.

The uniqueness result follows as in the proof of Theorem 1.10.
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5. The extended Weierstrass representation

We now construct trinoids and symmetric n-noids, conformal CMC immersions of
the n-punctured Riemann sphere into each of the space forms Euclidean 3-space
R3, spherical 3-space S3 and hyperbolic 3-space H3. We first describe the extended
Weierstrass representation used in the construction. As it is thoroughly described
in a number of places, such as [4, 3, 22], we give only a brief outline here.

5.1. The Iwasawa decomposition

Given an analytic Lie group G, we denote by �G the group Cω(S1, G) of analytic
maps S1 → G. Let D1 ⊂ C be the open disk bounded by S1. The subgroup
�+SL2(C) ⊂ �SL2C of positive loops is the subgroup of loops B ∈ �SL2C

such that B extends holomorphically to D1 and B(0) is upper triangular with real
positive diagonal entries. The subgroup �∗SL2C ⊂ �SL2C of unitary loops is the
subgroup of loops F ∈ �SL2C which satisfy the condition F∗ = F−1, where for
any F ∈ �SL2C, F∗ ∈ �SL2C is defined by

F∗(λ) = F(1/λ)
t
. (5.1)

Note that F ∈ �∗SL2C implies F(p) ∈ SU2 at each point p ∈ S1.
Multiplication �∗SL2C×�+SL2(C) → �SL2C is a real-analytic diffeomor-

phism onto [18, 4]. For 
 ∈ �SL2C,


 = F B

with F ∈ �∗SL2C and B ∈ �+SL2(C), is called the 1-Iwasawa (or just Iwasawa)
decomposition of 
. The chosen normalization of B(0) gives uniqueness of this
decomposition. We call F the unitary factor of 
.

5.2. The extended Weierstrass construction

Every conformal CMC H immersion into one of the 3-dimensional space forms
R3 or S3 or H3 can be locally constructed by the extended Weierstrass representa-
tion [22, 4] (with H 	= 0 for R3 and |H | > 1 for H3) as follows:

1. Let � be a domain in the z-plane C, and choose a holomorphic Cω(S1, sl2C)-
valued differential form ξ = A(z, λ)dz which extends meromorphically to D1
with a pole only at λ = 0, which is simple and appears only in the upper-right
entry of ξ .

2. Solve the ordinary differential equation d
 = 
ξ .
3. Iwasawa split 
 into 
 = F B. Then F is an extended frame for some CMC

immersion.
4. Apply one of three Sym-Bobenko formulas described below to obtain a CMC

immersion into R3, S3 or H3.
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5.3. The Sym-Bobenko formulas

The final step in the extended Weierstrass representation is a Sym-Bobenko for-
mula, which computes the immersion into R3, S3 or H3 from its extended frame.

1. CMC immersions into R3: The Sym-Bobenko formula [2]

−2iλH−1
(

d

dλ
F

)
F−1 (5.2)

gives a conformal CMC H 	= 0 immersion into R3 for each fixed λ0 ∈ S1.
Formula (5.2) gives an immersion into the Lie algebra su2, which being a real
3-dimensional vector space can be identified with R3.

2. CMC immersions into S3: For µ ∈ S1 \{1} and each λ0 ∈ S1, the Sym-Bobenko
formula [2]

Fµλ0 F−1
λ0

(5.3)

gives a conformal CMC H = i(1 + µ)/(1 − µ) immersion into S3. Here H can
take any real value, including 0. Formula (5.3) gives an immersion into the Lie
group SU2, which we are identifying with the unit sphere S3 ∈ R4.

3. CMC immersions into H3: For s ∈ (0, 1) and any λ ∈ S1, set λ0 = sλ. Then
the Sym-Bobenko formula [2]

Fλ0 Fλ0

t
(5.4)

gives a conformal CMC H = (1 + s2)/(1 − s2) > 1 immersion into H3 for
each fixed λ ∈ S1. Formula (5.4) gives an immersion into the determinant 1
Hermitian matrices, which we are identifying with H3.

We choose the following normalizations for the Sym-Bobenko formulas:

for R
3: λ0 = 1 ,

for S
3: λ0 ∈ S

1 \ {±1}, and µ = λ−2
0 ,

for H
3: λ0 ∈ (−1, 0) ∪ (0, 1).

(5.5)

5.4. Monodromy

The primary result in [4] is that every CMC immersion into R3 can be obtained via
the extended Weierstrass representation, and this is true for the cases of S3 and H3

as well [22] (with the restrictions H 	= 0 for R3 and |H | > 1 for H3). This method
can also be applied to constructing non-simply-connected CMC immersions, and
it is shown in [4] that even when � is a non-simply-connected open non-compact
Riemann surface, one can still always choose ξ to be well-defined on �, as long as
the resulting CMC immersion is well-defined on �.

However, in this case, closing conditions must be satisfied in order for the
resulting CMC immersion to be well-defined on �. Considering a deck transfor-
mation τ of � associated to some loop γ in �, let us suppose that we can choose the
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solution 
 so that 
◦τ = Mγ 
 with Mγ ∈ �∗SL2C. Then Mγ is the monodromy
of 
 about γ , and Mγ is independent of z. Because Mγ ∈ �∗SL2C, we also have
F ◦ τ = Mγ F . Then the immersion obtained from the Sym-Bobenko formula at
λ0 for R3 will be invariant about γ if Mγ |λ0 = ± I and d

dλ
Mγ |λ0 = 0. There are

similar conditions for the cases of S3 and H3. This gives the following sufficient
conditions for the resulting CMC immersion to be well-defined on �:

for R
3: Mγ ∈ �∗SL2C, Mγ |λ0 = ± I,

d

dλ
Mγ |λ0 = 0 , (5.6)

for S
3: Mγ ∈ �∗SL2C, Mγ |µλ0 = Mγ |λ0 = ± I , (5.7)

for H
3: Mγ ∈ �∗SL2C, Mγ |λ0 = ± I, (5.8)

for all loops γ in �. These are the conditions we will show are satisfied, to prove
the existence of CMC trinoids and symmetric n-noids, by making an appropriate
choice of solution 
 of d
 = 
ξ .

In the remainder of the paper we construct families of CMC trinoids and sym-
metric n-noids. For each family, the hypotheses of the Unitarization Theorem 3.4
are shown to hold under a suitable set of constraints on the end weights. The unita-
rization theorem then produces a dressing which closes the ends.

6. Constructing n-noids

6.1. The n-noid potential

We define a class of potentials whose local monodromies have the same eigenvalues
as those of a Delaunay surface.

Definition 6.1. Let � = P1 be the Riemann sphere with the standard coordinate
z ∈ C ∪ {∞}. Let λ0 ∈ (R ∪ S1) \ {0, −1} be as in (5.5), and let

h(λ) = 1

4
λ−1(λ − λ0)(λ − λ−1

0 ). (6.1)

Let Q be a meromorphic quadratic differential on � all of whose poles are double
poles with real quadratic residues. Assume that for each pole of Q, with quadratic
residue w/4, the function 1 + wh is non-negative on S1. An n-noid potential is an
extended Weierstrass potential of the form

ξ =
(

0 λ−1dz
λh(λ)Q/dz 0

)
.

Let p be a double pole of Q with quadratic residue w/4 ∈ R \ {0}. Choosing a
basepoint z0 ∈ �, let γp be a curve based at z0 which winds once around p and
does not wind around any other poles of Q. Let Mp be the monodromy about γp of
the solution 
 = 
(z, λ) to the equation d
 = 
ξ , 
(z0, λ) = I along γp.
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Remark 6.2. By [12], the ends of a surface constructed via the extended Weier-
strass representation from an n-noid potential are complete and asymptotic to De-
launay surfaces.

Multiplying 
 on the right by an analytic matrix g = g(λ, z) does not change
the resulting CMC immersion if g = g1 · g2, where g1 is a λ-independent diagonal
matrix and g2 ∈ �+SL2(C). We then call 
g a gauge of 
. This gauge will change
ξ to

ξ.g = g−1ξg + g−1dg. (6.2)

If Q is holomorphic at z = ∞, then ξ has a pole there. The following lemma shows
that this is an artifact of our choice of potential, not a feature of the monodromy
representation or induced CMC immersion. This lemma will be used in Section 8.

Lemma 6.3. Let ξ be an n-noid potential as in Definition 6.1 with � = P1. Sup-
pose Q is holomorphic at z = ∞ ∈ P1, and let M∞ be a local monodromy at ∞.
Then M∞ = I, and ∞ is a smooth finite point of the CMC immersions induced by
the extended Weierstrass representation obtained from ξ .

Proof. Applying the gauge

g =
(

z 0
−λ z−1

)
,

the result follows from the fact that ξ.g is holomorphic at ∞.

6.2. Delaunay monodromy

We will need several facts about the n-noid monodromy defined in Section 6.1. The
first lemma computes the eigenvalues of the monodromy and proves the latter half
of the closing conditions 5.6–5.8.

Proposition 6.4. Let Mp be a monodromy arising from an n-noid potential as in
Section 6.1. Then

(i) The eigenvalues of Mp are exp(±2π iρw), where

ρw(λ) = 1

2
− 1

2

√
1 + wh(λ). (6.3)

(ii) With λ0 as in (5.5),

Mp(λ
±1
0 ) = I and if λ0 = 1, then

d

dλ

∣∣∣∣
λ0

Mp = 0. (6.4)

Proof. The eigenvalues of Mp can be computed using the theory of regular singu-
larities [22, 5].

The first part of (6.4), Mp(λ
±1
0 ) = I, can be computed directly as the mon-

odromy associated to ξ(λ±1
0 ). To show the second part of (6.4), assume λ0 = 1.
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Define the parameter θ by λ = eiθ and let L = diag(eiθ , e−iθ ). Then ξ has
the symmetry ξ(−θ) = L(θ)ξ(θ)L−1(θ), from which it follows that Mp(−θ) =
L(θ)Mp(θ)L−1(θ). Then

0 = d

dθ

∣∣∣∣
θ=0

(
Mp(−θ)L(θ) − L(θ)Mp(θ)

) = −2

(
d

dθ
Mp

)∣∣∣∣
θ=0

.

The result d
dλ

∣∣
λ0

Mp = 0 follows.

6.3. Local diagonalizability

We show that subject to a bound on the end weights, the n-noid monodromies satisfy
the local diagonalizability condition (ii) of the Unitarization Theorem 3.4.

Lemma 6.5. Let C be an analytic curve and M ∈ HCM2×2C with local analytic
eigenvalues µ1, µ2 ∈ HCC at p ∈ C. Then

(i) ordp(µ1 − µ2) ≥ ordp(M − µ1 I) = ordp(M − µ2 I).
(ii) Assume M is not identically a scalar multiple of I. Then the eigenlines of M are

non-coincident at p if and only if ordp(µ1 − µ2) = ordp(M − µ1 I).

Proof. For M = (
a b
c d

)
, define adjoint (M) = (

d −b−c a

)
. To prove (i), since M +

adjoint (M) = (µ1 + µ2) I, then

M − µ1 I = −(adjoint (M) − µ2 I) = − adjoint (M − µ2 I).

Hence

ord
p

(M − µ1 I) = ord
p

(− adjoint (M − µ2 I)) = ord
p

(M − µ2 I).

Then, using (µ1 − µ2) I = (M − µ2 I) − (M − µ1 I), we have

ord
p

(µ1 − µ2) ≥ min(ord
p

(M − µ1 I), ord
p

(M − µ2 I)) = ord
p

(M − µ1 I).

To prove (ii), let t be a local coordinate at p on C such that t = 0 at p. By (i), we
can define n = ordp(M − µ1 I) = ordp(M − µ2 I). Write

M − µk I = Aktn + O(tn+1), k ∈ {1, 2},
with A1 	= 0 and A2 	= 0. For k ∈ {1, 2}, the eigenline map C → P1 corresponding
to µk can be written locally as [vk], where vk = ak + O(t) for some ak ∈ C2 \ {0}.
Then (M − µk I)vk = 0 implies ak ∈ ker Ak . Then

(µ1 − µ2) I = (M − µ2 I) − (M − µ1 I) = (A2 − A1)t
n + O(tn+1),

so ordp(µ1 − µ2) > n if and only if A1 = A2. If A1 = A2, then a1 ∈ ker A1
and a2 ∈ ker A1, and a1 	= 0, a2 	= 0, A1 	= 0 imply [a1] = [a2]. Conversely,
if [a1] = [a2], then a1 ∈ ker A1 and a1 ∈ ker A2, so a1 ∈ ker(A1 − A2). Since
A1 − A2 is a scalar multiple of I, then A1 − A2 = 0.
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Lemma 6.6. Let M = Mp ∈ �SL2C be an n-noid monodromy at p as above. Let
ρ = ρw be as in (6.3) and assume |ρ| < 1

2 on S1. Then M is locally diagonalizable
at each point of S1.

Proof. Let µ be an eigenvalue of M . Then µ is locally analytic on S1 because
1
2 tr M ∈ [−1, 1] on S1. Let λ0 be as in (5.5). Because |ρ| < 1

2 , µ is never −1 on

S1, and µ is +1 on S1 only at λ±1
0 . Define n = nλ0 : S1 → {0, 1, 2} by

nλ0(p) = 0 if p ∈ S
1 \ {λ±1

0 } ,

nλ0(λ
±1
0 ) = 1 if λ0 ∈ S

1 \ {1} ,

nλ0(λ0) = 2 if λ0 = 1.

Then for all p ∈ S1, we have ordp(µ − 1) = n(p) = ordp(µ − µ−1), and by (6.4),
ordp(M − I) ≥ n(p), Then using M − µ I = (M − I) − (µ − 1) I, we have

ord
p

(M − µ I) ≥ min(ord
p

(M − I), ord
p

(µ − 1)) = n(p) = ord
p

(µ − µ−1),

and the result follows by Lemma 6.5.

6.4. Unitarizing three loops whose product is I

The following well-known proposition [7] (see also [1, 23]) gives a condition for
simultaneous unitarizability of three matrices whose product is I in terms of their
traces.

Proposition 6.7 ([7]). Let M1, M2, M3 ∈ SL2C and suppose M1 M2 M3 = I. For
k ∈ {1, 2, 3}, let tk = 1

2 tr Mk and suppose tk ∈ [−1, 1]. Define

T = 1 − t2
1 − t2

2 − t2
3 + 2t1t2t3. (6.5)

Then the M1, M2, M3 are reducible if and only if T = 0, and are irreducible and
simultaneously unitarizable if and only if T > 0.

If M1, M2, M3 : C → SL2C are analytic maps on an analytic curve C, then
their infinitesimal irreducibility at a zero of T can in some cases be computed by
the following technique.

Lemma 6.8. Let C be an analytic curve and p ∈ C. Let M1, M2, M3 ∈ HCSL2C

satisfy M1 M2 M3 = I. Let T be as in (6.5) with tk = 1
2 tr Mk, k ∈ {1, 2, 3}. Then

for any pair j, k in {1, 2, 3}, if ordp[M j , Mk] ≥ n ≥ 0,

det([M j , Mk](n))(p) = 4

b2n,n
T (2n)(p),

where the superscript (n) denotes differentiation n times with respect to a coordi-
nate at p, and br,s denotes the binomial coefficient.
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Proof. We first show that for any analytic map X : C → M2×2C with tr X ≡ 0, if
ordp X ≥ n ≥ 0, then

det(X (n)(p)) = 1

b2n,n
(det X)(2n)(p). (6.6)

Differentiating the Cayley-Hamilton equation (det X) I = −X2, we have

(det X)(2n) · I = − ∑2n
k=0 b2n,k X (k)X (2n−k).

As X (k)(p) = 0 for k < n, all terms in the sum are zero except possibly when
k = n. This yields

(det X)(2n)(p) · I = −b2n,n(X (n)(p))2 = b2n,n det(X (n)(p)) · I,

proving (6.6).
A calculation shows

det([M j , Mk]) = 4T . (6.7)

The result follows directly from (6.7) and (6.6) with X = [M j , Mk].

7. Trinoids

In [22] a three-parameter family of constant mean curvature trinoids was con-
structed for each mean curvature H in each of the space forms R3, S3 and H3, using
r -Iwasawa decomposition for r < 1. Here we show, employing the 1-unitarization
Theorem 3.4, that these immersions can be constructed with less machinery, using
only the 1-Iwasawa decomposition.

7.1. Trinoid potentials

Definition 7.1 (Trinoid potentials). Let �=P1\{0, 1, ∞} be the thrice-punctured
Riemann sphere. The family of trinoid potentials ξ on �, parametrized by λ0 and
w0, w1, w∞ ∈ R \ {0}, is given by ξ in Definition 6.1 with

Q = w∞z2 + (w1 − w0 − w∞)z + w0

4z2(z − 1)2
dz2.

Q is the unique quadratic differential with double poles at {0, 1, ∞} (the ends of
the surface) with respective quadratic residues w0/4, w1/4, w∞/4, and no other
poles.

A set of generators of the monodromy representation of a trinoid potential ξ is
defined as follows. Choose a basepoint z0 ∈ P1 \ {0, 1, ∞}. For k ∈ {0, 1, ∞}, a
set of closed curves γk based at z0 can be chosen which wind respectively around
k ∈ P1 once and not around any other point in {0, 1, ∞}, satisfying γ0γ1γ∞ = I.
Define Mk : C∗ → SL2C as the monodromy of the solution 
 = 
(z, λ) to the
equation d
 = 
ξ , 
(z0, λ) = I along γk . Then by the choice of γ0, γ1, γ∞, we
have M0 M1 M∞ = I.
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7.2. Pointwise unitarizability

A key step from [22] in the trinoid construction is showing, with a suitable set of in-
equalities, that the monodromy representation is pointwise unitarizable on S1. The
following lemma is a restatement of the required lemma in [22] with inequalities
replaced by strict inequalities.

Lemma 7.2 ([22]). Let ξ be a trinoid potential parametrized by λ0, w0, w1, w∞,
and let {M0, M1, M∞} be the generators of the monodromy representation for ξ as
described above. For k ∈ {0, 1, ∞} define ρk = ρwk as in (6.3) and nk = ρwk (−1)

and mk = ρwk (1). Suppose the following inequalities hold for every permutation
(i, j, k) of (0, 1, ∞):

|n0| + |n1| + |n∞| < 1 and |ni | < |n j | + |nk | for all space forms, (7.1)

|m0| + |m1| + |m∞| < 1 and |mi | < |m j | + |mk | for S
3 and H

3 , (7.2)

|wi | < |w j | + |wk | for R
3. (7.3)

Then the monodromy representation for ξ is pointwise unitarizable on S1, and is
irreducible on S1 \ {λ±1

0 }. Moreover, |ρk | < 1
2 on S1.

7.3. Infinitesimal irreducibility

Lemma 7.3. Let ξ be a trinoid potential parametrized by λ0, w0, w1, w∞. Let
M0, M1, M∞ be the monodromies for ξ as in Section 7.2. Suppose condition (7.3)
holds. Then M0, M1, M∞ are pairwise infinitesimally irreducible at {λ±1

0 }.
Proof. Let ′ denote differentiation with respect to λ, and let the superscript (k)

denote differentiation k times with respect to λ. Let T be as in (6.5). Choose
distinct j, k ∈ {0, 1, ∞}.

Let χ ∈ R be defined by

χ = (w0 +w1 +w∞)(−w0 +w1 +w∞)(w0 −w1 +w∞)(w0 +w1 −w∞). (7.4)

Note that χ = 0 if and only if |wi | = |w j | + |wk | for some permutation (i, j, k) of
(0, 1, ∞). Hence by condition (7.3), χ 	= 0.

First take the case λ0 	= 1. A calculation using Mr (λ
±1
0 ) = I, r ∈ { j, k},

shows ord
λ±1

0
[M j , Mk] ≥ 2. By Lemma 6.8 and a calculation,

det([M j , Mk](2)(λ±1
0 )) = 4

b4,2
T (4)(λ±1

0 ) = 4

b4,2
3 · 2−11π4(1 − λ∓2

0 )4χ.

Thus since χ 	= 0, then det([M j , Mk](2)(λ±1
0 )) 	= 0 and M j and Mk are infinitesi-

mally irreducible at λ±1
0 by Definition 3.1.



572 WAYNE ROSSMAN AND NICHOLAS SCHMITT

For the case λ0 = 1, a calculation using Mr (1) = I, M ′
r (1) = 0, r ∈ { j, k},

shows ord1[M j , Mk] ≥ 4. By Lemma 6.8 and a calculation,

det([M j , Mk](4)(1)) = 4

b8,4
T (8)(1) = 4

b8,4
315 · 2−7π4χ.

Thus since χ 	= 0, then det([M j , Mk](4)(1)) 	= 0 and M j and Mk are infinitesimally
irreducible at 1 by Definition 3.1.

7.4. Constructing trinoids

The results of Sections 7.1–7.3 are now brought together to construct a family of
trinoids.

Theorem 7.4 (Trinoids). Let ξ be a trinoid potential on � = P1 \ {0, 1, ∞} sat-
isfying the inequalities (7.1)–(7.3). Then there exists a solution � of the equation
d� = �ξ such that � induces a CMC H immersion of � into the appropriate
space form R3 or S3 or H3 via the extended Weierstrass representation, where the
mean curvature H is subject to the restrictions in Section 5.3.

Proof. Let z0 ∈� be a basepoint, and let 
 be the solution to d
=
ξ , 
(z0, λ)= I.
We show that the hypotheses of Theorem 3.4 hold for the generators {M0,M1,M∞}
of the trinoid monodromy representation.

By Lemma 7.2, M0, M1, M∞ are pairwise irreducible on S1\{λ±1
0 } and hence

no two identically commute. By the same lemma, M0, M1, M∞ are pointwise
unitarizable on S1, condition (i) of Theorem 3.4.

Lemma 7.2 provides the bound |ρk | < 1
2 , so by Lemma 6.6, M0, M1, M∞ are

each locally diagonalizable at each point of S1, condition (ii) of Theorem 3.4.
Since M0, M1, M∞ are irreducible on S1 \ {λ±1

0 }, they are pairwise infinitesi-
mally irreducible there. By Lemma 7.3, M0,M1,M∞ are pairwise infinitesimally ir-
reducible at {λ±1

0 }. Therefore M0, M1, M∞ are pairwise infinitesimally irreducible
on S1, condition (iii) of Theorem 3.4.

Thus all conditions of Theorem 3.4 are satisfied, so by that theorem there exists
an analytic loop C ∈ �SL2C which unitarizes the monodromy representation of

. In the case of the spaceform H3, C may be singular at λ0, so let C = Cu · C+ be
the 1-Iwasawa decomposition of C . Then C+ likewise unitarizes the monodromy
representation of 
, and is nonsingular at λ0 for any spaceform.

Then � = C+
 satisfies the appropriate closing condition (5.6)–(5.8) since
condition (6.4) is independent of conjugation by an analytic loop. Hence the im-
mersion induced by � is well-defined on �.

Remark 7.5. In the case in which any of the inequalities (7.1)–(7.3) becomes an
equality, the trinoid can be constructed via the r -Unitarization Theorem 4.4
(see [22]).
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8. Symmetric n-noids

The above ideas are now applied to the construction of CMC symmetric n-noids,
genus-zero surfaces similar to trinoids, but having n ends and full dihedral symme-
try of order n.

8.1. Symmetric n-noid potentials

Definition 8.1 (Symmetric n-noid potentials). Let n be an integer with n ≥ 3.
Let � be the n-punctured Riemann sphere � = P1 \ {zn = 1}. Let w ∈ R \ {0}.
The family of symmetric n-noid potentials ξ , parametrized by λ0 and w, is given by
ξ in Definition 6.1 with

Q = n2wzn−2

4(zn − 1)2
dz2 .

Q is chosen to have double poles at {zn = 1} (the ends of the surface), with
quadratic residue w/4 at each pole, and no other poles. The choice of ends gives
Q a symmetry that will imply the pointwise simultaneously unitarizability of the
monodromy group for ξ on S1.

A set of generators of the monodromy representation of a symmetric n-noid
potential ξ is defined as follows. A set of closed curves γ0, . . . , γn−1, γ∞ based at
0 can be chosen which respectively wind around e2π i0/n, . . . , e2π i(n−1)/n, ∞ once
and not around any other of these points, satisfying γ0 . . . γn−1γ∞ = I. Define
M0, . . . , Mn−1, M∞ : C∗ → SL2C as the monodromies of the solution 
(z, λ)

to the equation d
 = 
ξ , 
(0, λ) = I along γ0, . . . , γn−1, γ∞ respectively. This
choice gives M0 · · · Mn−1 M∞ = I.

Lemma 8.2. Let ξ be a symmetric n-noid potential. Define the gauge

g = diag(α1/2, α−1/2), α = e2π i/n. (8.1)

Let τ : P1 → P1 be the automorphism of P1 defined by τ(z) = αz. Then, referring
to (6.2) for the action of a gauge on a potential,

(i) ξ has the symmetry τ ∗ξ = ξ.(g−1) = Ad g · ξ .
(ii) Let 
 = 
(z, λ) solve d
 = 
ξ , 
(0, λ) = I. Then 
 has the symmetry

τ ∗
 = g
g−1.
(iii) The monodromy matrices M0, . . . , Mn−1 of 
 satisfy Mk = gk M0g−k for

k = 0, . . . , n − 1.

Proof. Showing (i) is a calculation. By (i), every solution of d
 = 
ξ has the
symmetry τ ∗
 = A
g−1 for some A. Evaluating at z = 0 yields A = g, implying
(ii). Symmetry (iii) follows.
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8.2. Pointwise unitarizability

The techniques of Section 6.4 do not directly apply to the generators M0, . . . , Mn−1
of the symmetric n-noid monodromy representation, but rather to the triple M0, g,
(M0g)−1, whose product is I and whose traces are computable. The pointwise or
loopwise unitarizability of this triple implies the same for the symmetric n-noid
monodromy representation.

The value of w in the symmetric n-noid potential determines the weight of the
Delaunay potential to which the symmetric n-noid potential is asymptotic [12, 22,
14, 15]. So the condition (8.2) in the lemma below amounts to a restriction on the
weight of the ends.

Lemma 8.3. Let ξ be an n-noid potential with parameters w and λ0. With h as
in (6.1) and ρw as in (6.3), let M0 be the symmetric n-noid monodromy defined
above and let g be as in (8.1). Suppose

|ρ(1)| <
1

n
and |ρ(−1)| <

1

n
. (8.2)

Then g and M0 are pointwise simultaneously unitarizable on S1, and are irreducible
on S1 \ {λ±1

0 }.
Proof. Since ρ attains it minimum and maximum on S1 at λ = 1 and λ = −1
in some order, condition (8.2) is equivalent to the condition that ρ takes values in
(−1/n, 1/n) on S1.

By Lemma 6.3 we have M0 · · · Mn−1 = I. A calculation using Lemma 8.2(iii)
implies

(M0g)n = − I . (8.3)

It follows that the eigenvalues of M0g are n’th roots of −1, and are hence constant.
With α as in (8.1), using M0(λ0) = I we get

the eigenvalues of M0g are α±1/2. (8.4)

Now consider the triple (M0, g, (M0g)−1). Their product is I, and

t := 1

2
tr M0 = cos(2πρw)

1

2
tr g = 1

2
tr((M0g)−1) = (α1/2 + α−1/2)/2.

Hence with T as in (6.5),

T (λ) = (1 − t)(t − (α + α−1)/2). (8.5)

Condition (8.2) implies that ρw takes values in (−1/n, 1/n) on S1, and ρw is zero
only at λ±1

0 . Hence t takes values in ((α +α−1)/2, 1] and the zero set of T on S1 is
{λ±1

0 }. Then by Proposition 6.7, (M0, g, (M0g)−1) are simultaneously unitarizable
and irreducible on S \ {λ±1

0 }. We have by (6.4) that M0 = I, so (M0, g, (M0g)−1)

are simultaneously unitarizable at {λ±1
0 }, and hence on S1.
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8.3. Infinitesimal irreducibility

Lemma 8.4. Let ξ be a symmetric n-noid potential. Let M0 be the symmetric n-
noid monodromy defined in Section 8.2 and g as in (8.1). Then g and M0 are
infinitesimally irreducible at {λ±1

0 }.
Proof. If λ0 	= 1, then M0(λ

±1
0 ) = I, so ord

λ±1
0

[g, M0] ≥ 1. By Lemma 6.8

and a calculation using (8.5), taking derivatives with respect to the parameter θ for
λ = eiθ , with α as in (8.1),

det([g, M0](1)(λ±1
0 )) = 4

b2,1
T (2)(λ±1

0 ) = 1

αb2,1
2−5π2(1 − α)2(λ0 − λ−1

0 )2w2,

and since λ2
0 	= 1, α 	= 1 and w 	= 0, then det([g, M0](1)(λ±1

0 )) 	= 0 and g and M0

are infinitesimally irreducible at λ±1
0 by the definition of infinitesimal irreducibility

in Section 3.
If λ0 = 1, then M0(1) = I and M (1)

0 (1) = 0, so ord1[g, M0] ≥ 2. By
Lemma 6.8 and a calculation using (8.5),

det([g, M0](2)(1)) = 4

b4,2
T (4)(1) = − 1

αb4,2
3 · 2−3π2(1 − α)2w2,

so det([g, M0](2)(1)) 	= 0 and g and M0 are infinitesimally irreducible at 1.

8.4. Constructing symmetric n-noids

The results of Sections 8.1–8.3 are now brought together to construct a family of
symmetric n-noids.

Theorem 8.5. With n ≥3, let ξ be a symmetric n-noid potential on �=P1\{zn =1}
such that the inequalities (8.2) hold. Then there exist solutions � of the equation
d� = �ξ such that the � induce a 1-parameter family of CMC H immersions
of � into each of the space forms R3, S3 and H3, where H ∈ R is subject to the
restrictions of Section 5.3.

Proof. Let M0 be the monodromy described in Section 8.1 and let g be as in 8.2.
Let 
 solve the equation d
 = 
ξ with 
(0, λ) = I. We show that the hypotheses
of Theorem 3.4 hold for the triple {M0, g, (M0g)−1}.

By Lemma 8.3, M0 and g are irreducible on S1 \{λ±
0 }, and hence [M0, g] 	≡ 0.

By the same lemma, M0 and g are pointwise simultaneously unitarizable at every
point of S1, condition (i) of Theorem 3.4. Condition (ii) of Theorem 3.4 holds
because g is diagonal. Lemmas 8.3 and 8.4 show that M0 and g are infinitesimally
irreducible at every point of S1, condition (iii) of Theorem 3.4.

Thus all conditions of Theorem 3.4 are satisfied, so there exists an analytic
loop C ∈ �SL2C which simultaneously unitarizes M0 and g. C unitarizes the
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monodromy representation described in Section 8.1, because it is contained in the
group generated by M0 and g. In the case of the spaceform H3, C may be singular
at λ0, so let C = Cu · C+ be the 1-Iwasawa decomposition of C . Then C+ likewise
unitarizes the monodromy representation.

Let � = C+
. Then the solution � to d
 = �ξ , �(0, λ) = C+ has
unitary monodromy satisfying the appropriate closing condition (5.6)–(5.8), since
condition (6.4) is independent of conjugation by an analytic loop. Hence the CMC
immersion induced by � via the extended Weierstrass representation into the ap-
propriate space form is well-defined on �. Note that z = ∞ is a finite smooth point
of the immersion, by Lemma 6.3, so the surface has n ends. For each spaceform
and each choice of n, this produces a one-parameter family of surfaces parametrized
by w.

Remark 8.6. The methods in this section can be extended to a broader family of
symmetric n-noids whose end axes are not coplanar [21].
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