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Dirichlet problem with Lp-boundary data in contractible domains
of Carnot groups
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Abstract. Let L be a sub-Laplacian on a stratified Lie group G. In this paper
we study the Dirichlet problem for L with L p-boundary data, on domains �
which are contractible with respect to the natural dilations of G. One of the main
difficulties we face is the presence of non-regular boundary points for the usual
Dirichlet problem for L. A potential theory approach is followed. The main
results are applied to study a suitable notion of Hardy spaces.

Mathematics Subject Classification (2000): 35J70 (primary); 35H20, 31B05,
31C15, 43A80 (secondary).

1. Introduction

In this paper, we deal with a boundary value problem (in a suitable L p sense) for
sub-Laplacians on Carnot groups, i.e., on stratified Lie groups. In recent years, the
interest in these operators is rapidly growing: they appear both in theoretical and
application settings, mainly involving partial differential equations of sub-elliptic
type, the theory of several complex variables, mathematical models of crystal ma-
terial and human vision, see [15, 18, 21, 25, 32, 34, 35, 36, 37, 41, 42].

As it is well known, a sub-Laplacian L on a Carnot group G is a linear second
order operator with nonnegative characteristic form, which is elliptic only in the
“trivial” case when G is the Euclidean group and L is (up to a linear change of
coordinates) the classical Laplace operator. Then due to the “degeneracy” of L,
given a bounded open set � ⊂ G, the Dirichlet problem{

Lu = 0 in �,

u|∂� = ϕ ϕ ∈ C(∂�),
(1.1)

may not be solvable in a classical sense even if ∂� (the boundary of �) is a C∞
embedded manifold (see [26, 30, 31]).

However, the operator L has the following redeeming feature. Denoting by T
the topology of G, the map

T � � �→ HL(�) := {u ∈ C∞(�) : Lu = 0}
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is a harmonic sheaf endowing G with a structure of B-harmonic space of elliptic
type (we directly refer to Section 2 for the definitions, notation and basic results
recalled in this introduction). Then the Dirichlet problem (1.1) has a generalized
solution in the sense of Perron-Wiener-Brelot, for every ϕ ∈ C(∂�). We shall
denote this generalized solution by H�

ϕ . This function is L-harmonic in �, i.e.,

H�
ϕ ∈ C∞(�) and L(H�

ϕ )(x) = 0 for every x ∈ �.

However, given a point y ∈ ∂�, it is well known that we do not have, in general,

lim
x→y

H�
ϕ (x) = ϕ(y). (1.2)

The point y ∈ ∂� is called L-regular if (1.2) holds for every ϕ ∈ C(∂�). If we set

∂reg� := {y ∈ ∂� : y is L-regular},
then the Dirichlet problem (1.1) has a classical solution for every ϕ ∈ C(∂�) (i.e.,
there exists u ∈ C∞(�)∩C(�) such that Lu = 0 in � and u|∂� = ϕ) if and only if

∂reg� = ∂�. (1.3)

In this case the only solution of (1.1) is given by the cited Perron-Wiener-Brelot
function H�

ϕ (in short, PWB function).
The aim of this paper is to show that H�

ϕ provides the unique solution of (1.1),
in a suitable L p-sense, if � is any δλ-contractible domain, without assuming neither
(1.3) nor any other regularity assumption on the boundary. Here {δλ}λ>0 is the
dilation group of G. We shall say that a bounded open set � containing the origin
is δλ-contractible if δλ(∂�) ⊂ � for every λ ∈]0, 1[ (see Section 4). Moreover, our
solvability result does not require the continuity of the boundary datum ϕ: it holds
only assuming ϕ ∈ L p(∂�) with respect to the L-harmonic measures related to �.

In order to clearly state our main result, we need some more notation and
definitions. For any x ∈ �, let µ�

x be the L-harmonic measure related to � and x ,
i.e., the Radon measure supported on ∂� such that

H�
ϕ (x) =

∫
∂�

ϕ(y) dµ�
x (y) (1.4)

for every ϕ ∈ C(∂�). From potential theory in abstract harmonic spaces (see e.g.,
[19]) we know that the function

� � x �→
∫

∂�

ϕ(y) dµ�
x (y) (1.5)

is L-harmonic in � if and only if the function ϕ belongs to L1(∂�, µ�
x ) for every

x ∈ �. When ϕ satisfies this condition, we still denote by H�
ϕ the function defined

in (1.4) (and (1.5)). As a consequence of the Harnack inequality for L, when � is
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connected, the summability of ϕ with respect to a fixed L-harmonic measure µ�
x0

implies the summability of ϕ with respect to every µ�
x , x ∈ � (see Proposition 3.5).

We would like to explicitly remark that the boundary of a general δλ-contractible
domain may contain L-irregular boundary points even if it is a C∞ manifold (as
showed by the counter-examples in [26], comprising suitable Euclidean balls). The
balls related to any δλ-homogeneous norm centered at the origin are simple exam-
ples of δλ-contractible domains.

For a δλ-contractible domain � there is a natural way to define the L p-trace
on the boundary for any continuous function u : � → R. If we denote by µ

the L-harmonic measure related to � and the origin (i.e., µ := µ�
0 ) we say that

ϕ ∈ L p(∂�, µ) (1 ≤ p ≤ ∞) is the L p-trace of u on ∂� if

u ◦ δλ −→ ϕ in L p(∂�, µ), as λ → 1−. (1.6)

When (1.6) holds, we shall write u|∂� = ϕ in L p.
Since every δλ-contractible domain is connected, we would obtain an equiv-

alent definition of L p-trace on ∂� by replacing µ�
0 with any L-harmonic mea-

sure µ�
x , x ∈ �. Moreover, since L p(∂�, µ) ⊆ L1(∂�, µ), any function ϕ ∈

L p(∂�, µ) is summable with respect to every L-harmonic measure and the PWB
function

H�
ϕ (x) :=

∫
∂�

ϕ(y) dµ�
x (y), x ∈ �,

is well defined and L-harmonic in �.
As a first goal, we shall show that ϕ is the L p-trace of H�

ϕ on ∂�. More
precisely, our main result reads as follows:

Theorem 1.1. Let � ⊂ G be a δλ-contractible domain and let 1 ≤ p < ∞. Then,
for every ϕ ∈ L p(∂�, µ), the boundary value problem{

Lu = 0 in �,

u|∂� = ϕ in L p (1.7)

has a unique solution given by u = H�
ϕ .

When saying that u is a solution of (1.7), we obviously mean that u is L-
harmonic in � and its L p-trace on ∂� is the function ϕ.

A crucial step in proving Theorem 1.1 is the uniqueness part, which will be
obtained as an easy corollary of the following monotonocity result:

For every L-harmonic function u in �, the map

]0, 1[� λ �→
∫

∂�

|u(δλ(y))|p dµ(y)

is monotone increasing (see Theorem 4.4).
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We shall prove this theorem by using the Poisson-Jensen formula for L-sub-
harmonic functions recently proved by one of us and C. Cinti in [4] (see also [7]
where the Poisson-Jensen formula was demonstrated for L-regular domains).

From our existence and uniqueness theorem, we readily obtain a L p-maximum
principle. We first fix the following definition: Let u : � → R be a continuous
function and let 1 ≤ p < ∞. We say that u|∂� ≥ 0 in L p, if u has a nonnegative
L p-trace on ∂�. Then, we have the following result (see Corollary 5.9):

Theorem 1.2. Let � be a δλ-contractible domain and let 1 ≤ p < ∞. If u is
L-harmonic in � and u|∂� ≥ 0 in L p, then u ≥ 0 in �.

From Theorem 1.1, by using well established Harmonic Analysis results on
stratified Lie groups (see [21]), we easily obtain an existence and uniqueness theo-
rem for the non-homogeneous boundary value problem{

Lu = f in �,

u|∂� = ϕ in L p (1.8)

for every ϕ ∈ L p(∂�, µ) (1 < p < ∞) and any f ∈ Lq(�, dx) with q > Q/p
(see Theorem 6.6).

In Section 6.1, we shall also show the following property of the PWB operator:
If � ⊂ G is a δλ-contractible domain, 1 < p < ∞, and u is a L-harmonic

function in � such that

‖ u ‖h p := sup
0<λ<1

(∫
∂�

|u ◦ δλ|p dµ

)1/p

< ∞,

then there exists a function ϕ ∈ L p(∂�, µ) such that u = H�
ϕ . As a consequence,

if we define the L-Hardy space in � as

h p(�, µ) := {u ∈ C∞(�) | Lu = 0 in � and ‖ u ‖h p< ∞ },
the map ϕ �→ H�

ϕ is a linear isometry of L p(∂�, µ) onto h p(�, µ) (see Theo-
rem 6.5).

Now, some comments are in order. The method of “approximating bound-
aries” in the study of the Dirichlet problem for the classical Laplace operator with
L p boundary data was seemingly introduced by G. Cimmino in two papers dated
1937 and 1940 [16, 17]. Several years later, by using the same method, bound-
ary value problems for second order elliptic operators with L2 boundary data were
studied by many authors. We refer to the monograph [14] by J. Chabrowski for a
comprehensive survey and a wide bibliography on this subject. We want to stress
that the Chabrowski’s monograph places a special emphasis on the global weighted
summability properties of the gradient of the solutions.1 In the sub-Laplacian con-
text, this matter presents great difficulties and seems to require new and ad hoc
approaches. We plan to take into account this problem in a forthcoming paper.

1 The otherwise rather complete list of references in [14] does not include Cimmino’s works. We
should say, however, that Cimmino did not prove any summability of the gradient of the solutions.
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The Dirichlet problem for L could also be attacked with variational techniques,
since the L-harmonic functions are the critical points of the functional

J (u) :=
∫

�

|∇Lu|2 dx, ∇Lu = (X1u, . . . , Xmu).

However, this approach requires a characterization of the trace spaces of the func-
tions with finite G-Dirichlet Integral, i.e., of the functions u such that J (u) < ∞.
Once again, this problem presents very high difficulties, it requires striking proper-
ties of the boundary of � (see e.g., [24, 38]) and does not allow to consider general
L p boundary data. Indeed, in general, the PWB function H�

ϕ does not have finite
G-Dirichlet integral.2

A yet different approach to the Dirichlet problem is the one presented in the
survey [33] for the classical elliptic operators, which is based on powerful and deep
Harmonic Analysis techniques. This approach takes into account the pointwise
boundary behavior of the solution, then it is essentially different in spirit to the
present one. Moreover, once again, these techniques may hardly be extended to
the sub-elliptic contexts. Some results in this direction are contained in the papers
[3, 11, 12, 13, 20].

To end the introduction, we give a detailed plan of the paper. In Section 2, we
fix the main notation and we recall some prerequisites of potential theory, namely
Theorems A to D. In Section 3, we prove some new potential-theoretic results in
the framework of Carnot groups. In Section 4, we introduce the notion of δλ-
contractible domain and we prove the basic geometric and analytic properties of
such domains (some of which have an interest in their own; see e.g., Theorem 4.4).
In Section 5, we introduce the notion of Dirichlet problem (DP)ϕ with L p boundary
data ϕ’s on δλ-contractible domains. We provide existence and uniqueness theo-
rems for this problem (Theorems 5.2 and 5.3).

In Section 6.1, we define the Hardy-space h p(�) related to a sub-Laplacian
L and a δλ-contractible domain �. The main result is Theorem 6.5, which, when
1 < p < ∞, identifies h p(�) with the space L p(∂�, µ). In Section 6.2, we show
our solvability result for the non-homogeneous Dirichlet problem (Theorem 6.6).
Finally, for the sake of completeness, in the Appendix, we give the proof of the
main geometric and analytic properties of δλ-contractible domains.

ACKNOWLEDGEMENT. This paper originates from a lecture given by the second
author at the Accademia delle Scienze dell’Istituto di Bologna, on October 26,
2004, during a commemoration of Gianfranco Cimmino in occasion of the 15th
anniversary of his death. The lecture focused on the contribution by Cimmino to
the theory of the Dirichlet problem for the Laplace equation.

2 This is well known since the celebrated Hadamard counterexample related to the classical
Laplace operator. We would like to mention that the first example of a harmonic function on
the unit disc in the plane, continuous up to the boundary and with non-finite Dirichlet Integral
was given by F. Prym thirty years before the re-discovery by Hadamard, see the historical paper
by M. von Rentlen [40].
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2. Notation and basic potential theory

In this section, we collect the notation used throughout the paper and some basic
potential-theoretic results on Carnot groups.

We begin with the relevant definition. A Carnot (or stratified) group is a con-
nected and simply connected Lie group G whose Lie algebra g admits a stratifica-
tion, i.e., a direct sum decomposition g = g1 ⊕ · · · ⊕ gr with

[g1, gi ] = gi+1 (for i ≤ r − 1), [g1, gr ] = {0}. (2.1)

Let X1, . . . , Xm be a basis for g1. The operator

L =
m∑

i=1

X2
i

is called a sub-Laplacian on G. By means of the natural identification of G with its
Lie algebra via the exponential map, it is non restrictive to suppose that G = RN is
equipped with a family of group-morphisms (called dilations) {δλ}λ>0, of the form

δλ(x1, . . . , xN ) = (λα1 x1, . . . , λ
αN xN ), (2.2)

where 1 = α1 ≤ · · · ≤ αN = r . Moreover, X1, . . . , Xm are δλ-homogeneous of
degree one so that L is δλ-homogeneous of degree two, i.e.,

L(u ◦ δλ) = λ2 (Lu) ◦ δλ for every u ∈ C∞(G, R). (2.3)

The integer Q = ∑r
i=1 i dim(gi ) (see (2.1)) is called the homogeneous dimension

of G. We shall always assume that Q ≥ 3 (the case Q = 2 gives back the well-
known case G = (R2, +), L = elliptic constant-coefficient second order operator).

The stratification condition (2.1) ensures that the Lie algebra generated by the
vector fields X1, . . . , Xm coincides with g and is therefore everywhere of rank N .
Consequently, by a well known theorem of Hörmander [29], L is hypoelliptic, i.e.,
any distributional solution u to Lu = f ∈ C∞(�) in any open set � ⊆ RN

is actually a C∞(�) function. We call L-harmonic in � every smooth function
u : � → R such that Lu = 0. We shall denote by H(�) the space of the L-
harmonic functions in �.

Furthermore (with respect to the cited logarithmic coordinates on G) L can be
written as

L = div
(

A(x) ∇)
, (here ∇ = (∂x1, . . . , ∂xN )),

where A(x) is a positive semi-definite matrix and its (1, 1)-entry is a non-vanishing
constant. This ensures that the weak maximum principle for L holds, i.e., if � ⊂
RN is a bounded open set, and u ∈ C2(�) satisfies Lu ≥ 0 in � and lim sup u ≤ 0
on ∂�, then u ≤ 0 in �.

A consequence of the weak maximum principle is that the Dirichlet problem

(DP): Lu = 0 in �, u|∂� = ϕ
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has at most one solution u ∈ C∞(�) ∩ C(�), for every bounded open set � ⊂ G
and every ϕ ∈ C(∂�). Moreover u ≥ 0 in � whenever ϕ ≥ 0 on ∂�. A bounded
open set � ⊂ G is said to be L-regular if (DP) admits a solution for every ϕ ∈
C(∂�). We denote by H�

ϕ ∈ H(�) ∩ C(�) such (unique) solution. Hence, if �

is L-regular, for every fixed x ∈ � the map ϕ �→ H�
ϕ (x) defines a positive linear

functional on C(∂�). Hence, there exists a Radon measure µ�
x supported in ∂�,

such that

H�
ϕ (x) =

∫
∂�

ϕ(y) dµ�
x (y), for every ϕ ∈ C(∂�). (2.4)

We call µ�
x the L-harmonic measure related to (the L-regular set) � and x .

If � is an open subset of G, we say that an upper semi-continuous function
u : � → [−∞, ∞) is L-subharmonic in �, if u > −∞ in a dense subset of � and
for every open L-regular set V ⊂ V ⊂ � and for every x ∈ V , it holds u(x) ≤∫
∂V u(y) dµV

x (y). The set of L-subharmonic functions on � will be denoted by
S(�). We call the functions in −S(�) =: S(�), the L-superharmonic functions
in �. A set Z ⊂ RN is said L-polar if there exists u ∈ S(RN ) such that u ≡ ∞
in Z . The following Ascoli-Phragmén-Lindelöf type maximum principle holds (see
[4, Corollary 4.3]):

(Maximum Principle). Let � ⊂ G be open and bounded and let P ⊂ ∂� be a
L-polar set. If u ∈ S(�) is bounded above and satisfies

lim sup
x→y

u(x) ≤ 0 for every y ∈ ∂� \ P,

then u ≤ 0 in �.
We now recall a noteworthy result on the fundamental solution for L. Indeed,

there exists a homogeneous norm d on G such that

�(x, y) = d2−Q(y−1 ◦ x), x, y ∈ G (2.5)

is a fundamental solution for L (see [21, Theorem 2.1] and [23]; see also [8, The-
orem 2.2]). We call homogeneous norm on G any function d : G → [0, ∞) such
that: d ∈ C∞(G \ {0}) ∩ C(G), d(δλ(x)) = λ d(x), d(x−1) = d(x), d(x) = 0 iff
x = 0. It can be easily seen that the map (x, y) �→ d(y−1 ◦ x) is a quasi-distance
on G. Throughout the paper, we shall denote by Bd(x, r) the d-ball of center x and
radius r , i.e., the set

Bd(x, r) = {y ∈ G | d(x−1 ◦ y) < r}.
The map G ⊇ � �→ H(�) is a sheaf of functions endowing G with a structure of
B-harmonic elliptic space in the sense of [19]. Indeed, we have:

– The L-regular sets form a basis for the Euclidean topology, see [10, Corollaire
5.2].
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– the sheaf H satisfies the Brelot convergence property, i.e., the pointwise limit
of any increasing sequence of L-harmonic functions on a open connected set is
L-harmonic whenever it is finite at a point (see [10, Théorème 8.2]).

– For every x, y ∈ G, x �= y, there exists u ∈ S(�), u ≤ 0 such that u(x) �=
u(y). Indeed, it is enough to choose as u the function defined by z �→ u(z) :=
−�(x−1 ◦ z).

A basic potential theory for a class of operators containing the sub-Laplacians L
can be found in [28].

The following Representation formula for L holds (see e.g., [6, Section 3]): If
� ⊆ G is an open set and u ∈ C2(�, R), then

u(x) = Mr (u)(x) − Nr (Lu)(x), for every Bd(x, r) ⊂ �,

where (with reference to (2.5)) if K = ∑m
i=1(Xi d)2 we have

Mr (u)(x) = Q(Q − 2)

r Q

∫
Bd (x,r)

K (x−1 ◦ y) u(y) dy,

Nr (w)(x) = Q

r Q

∫ r

0
ρQ−1

(∫
Bd (x,ρ)

(
�(x−1 ◦ y) − ρ2−Q)

w(y) dy

)
dρ.

We briefly recall the relevance of the mean-integral operator Mr within the potential
theory for L. If � ⊆ G is an open set, we say that an upper semicontinuous function
u : � → [−∞, ∞) is L-submean (respectively, L-supermean) if for every x ∈ �

there exists rx > 0 such that u(x) ≤ Mr (u)(x) (respectively, u(x) ≥ Mr (u)(x)) for
0 < r < rx . In the following lemma, we collect some results on Mr proved in [7],
which we shall use in the sequel.

Theorem A. Let � ⊆ G be open and u : � → [−∞, ∞) be an upper semicontin-
uous function. Then, we have:

(i) if u ∈ C2(�), then u ∈ S(�) iff Lu ≥ 0 on �.
(ii) u ∈ S(�) iff u is L-submean on � and u is finite at least at a single point in

every connected component of �.
(iii) u ∈ S(�) iff u ∈ L1

loc(�), u(x) = limr→0+ Mr (u)(x) for every x ∈ � and
Lu ≥ 0 in �, in the weak sense of distributions.

Theorem A follows by collecting Theorem 4.1, Corollary 4.1, Theorem 4.3 in [7].
In particular (by Theorem A-(iii)), for every u ∈ S(�) there exists a Radon

measure µu on � such that
∫
�

u Lϕ = ∫
�

ϕ dµu , for every ϕ ∈ C∞
0 (�). We say

that µu is the L-Riesz measure related to u ∈ S(�). Analogously, if u ∈ S(�), we
agree to denote by µu the L-Riesz measure related to the L-subharmonic function
−u.

We end this section by recalling the Poisson-Jensen formula for L, a proof of
which can be found in [4, Theorem 3.5] (see also a weaker version in [7, Theorem
5.1]). We shall make a crucial use of this formula in the proof of Theorem 4.4. First
we need the relevant definitions.
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Throughout the paper, we say that � ⊆ G is a domain if it is an open and
connected set. We then recall the classical notion of (irr-)regular point x ∈ ∂� for
the Dirichlet problem related to L. Let � be a bounded domain and let ϕ : ∂� →
[−∞, ∞]. We let

U(ϕ) = {
u ∈ S(�) ∪ {−∞} : sup

�

u < ∞ and lim sup
x→ζ

u(x) ≤ ϕ(ζ ), ∀ ζ ∈ ∂�
}

and we set
H�

ϕ (x) := sup
u∈U(ϕ)

u(x), for x ∈ �. (2.6)

We say that H�
ϕ is the Perron-Wiener-Brelot (lower-)solution of the generalized

Dirichlet problem (PWB solution, in short) related to the set � and the function ϕ.
Since G is a B-harmonic space, we know that H�

ϕ is L-harmonic in � (unless it is
identically ±∞). A point ζ ∈ ∂� is called regular for the Dirichlet problem related
to L (in short, L-regular point) if, for every bounded ϕ on ∂� continuous at ζ , it
holds limx→ζ H�

ϕ (x) = ϕ(ζ ). We denote by ∂reg� the set of the L-regular points
and we call ∂irr� := ∂� \ ∂reg� the set of the L-irregular points. It is a standard
matter to prove that, if � is L-regular and ϕ ∈ C(∂�), then ∂reg� = ∂� and H�

ϕ

coincides with the function in (2.4). We have the following important result:

Theorem B. Let � ⊂ G be bounded. Then ∂irr� is a L-polar subset of ∂�.

Theorem B follows by combining Theorem 3.1 and Remark 3.2 in [4].
For any fixed x ∈ �, the functional C(∂�) � ϕ �→ H�

ϕ (x) is linear and
positive, so that there exists a measure, still denoted by µ�

x , such that (2.4) holds.
We agree to call µ�

x the L-harmonic measure related to � and x . When � is L-
regular, µ�

x coincides with the formerly defined one. The following crucial result
holds:

Theorem C. (i) Let � ⊂ G be a bounded domain. Let E be a L-polar subset of
∂�. Then, for every x ∈ �, µ�

x (E) = 0. In particular, µ�
x (∂irr�) = 0.

(ii) The representation formula

H�
ϕ (x) =

∫
∂�

ϕ dµ�
x , x ∈ � (2.7)

holds for every upper semicontinuous or lower semi-continuous boundary functions
ϕ and for any ϕ which is µ�

x -integrable on ∂� for at least one x ∈ � (or, equiva-
lently, for every x ∈ �). In particular, (2.7) holds for any ϕ ∈ L p(∂�, µ�

x ), for all
p ∈ [1, ∞] and all x ∈ �.

The first part of Theorem C is contained in [4, Theorem 3.3]; the second one
follows from [19] (for the classical setting, see [1, Chapter 6] and [27, Chapter 8]).

Our last needed prerequisite is the Poisson-Jensen formula for L. Let � ⊆ G
be open. We define the L-Green’s function of � as:

G�(x, y) = �(x−1 ◦ y) − hx (y), x, y ∈ �, (2.8)
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where, for any fixed x ∈ �, hx is the greatest L-harmonic minorant of the function
y �→ �(x−1 ◦ y) on �. The existence of hx is ensured by the positivity of � and by
general results on B-harmonic elliptic spaces. Other characterizations of G� are
recalled in Section 3.

Let now � ⊂ G be a bounded domain and let x ∈ � be fixed. We define the
extended L-Green’s function G�(x, ·) for �. For y ∈ G, G�(x, y) is given by:

G�(x, y) if y ∈ �, 0 if y ∈ G \ �, lim sup
��z→y

G�(x, z) if y ∈ ∂�. (2.9)

We then have the following remarkable result (see [4, Theorem 3.5]):

Theorem D (Extended formula of Poisson-Jensen). Let � be a bounded domain
in RN . Suppose u is L-subharmonic on a neighborhood of �. Then, for all x ∈ �,

u(x) =
∫

∂reg�

u(y) dµ�
x (y) −

∫
�∪∂irr�

G�(x, y) dµu(y). (2.10)

µu is the L-Riesz measure of u and G� is the extended L-Green’s function for �.

We shall make a crucial use of Theorem D in the proof of Theorem 4.4.

3. Potential theory results for sub-Laplacians: further results

In this section, we develop some new aspects of potential theory for sub-Laplacians
on stratified groups. The relevant counterparts in the classical Laplace’s operator
are well known, but in the setting of Carnot groups, they are not explicitly present
in literature.

To begin with, we collect some results on the L-Green’s function. We recall
that the homogeneous dimension of RN , as a Carnot group, is strictly greater than 2.

Proposition 3.1. Let � ⊆ RN be open and let x ∈ � be fixed. Let us denote by hx
the greatest L-harmonic minorant of �(x−1 ◦ ·). Then the following facts hold:

(i) The L-Green’s function G�(x, y) = �(x−1 ◦ y) − hx (y) is a symmetric func-
tion, i.e., G�(x, y) = G�(y, x) for all x, y ∈ �. Moreover, G� is continuous
(in the extended sense) on � × � and the greatest L-harmonic minorant of
G(x, ·) is the null function.

(ii) It holds
hx = sup

{
u ∈ S(�) : u ≤ �(x−1 ◦ ·) on �

}
.

(iii) If � is a bounded domain, then hx = H�
�(x−1◦·), in the sense of (2.6), or

equivalently

hx = sup
{
u ∈ S(�) : lim sup

z→ζ

u(z) ≤ �(x−1 ◦ ζ ) for all ζ ∈ ∂�
}
.
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(iv) If � is a L-regular domain, then hx is the solution (in the classical sense) to

Lu = 0 in � and u = �(x−1 ◦ ·) on ∂�. (3.1)

(v) An equivalent definition of L-Green’s function is the following one: G� is a
nonnegative function on � × � such that (for every x ∈ �) G�(x, ·) is the
sum of �(x−1 ◦ ·) plus a L-harmonic function on � and, moreover, G�(x, ·)
does not exceed any other nonnegative L-superharmonic function on � which
is the sum of �(x−1 ◦ ·) plus a L-superharmonic function on �.

(vi) For any Radon measure µ on �, let us set

(G� ∗ µ)(x) :=
∫

�

G�(x, y) dµ(y), x ∈ �.

Then the greatest L-harmonic minorant of G�∗µ is the null function (provided
G� ∗ µ is not identically ∞ on any component of �).

We do not give a complete proof of Proposition 3.1 (which, indeed, follows classical
ideas), but we limit ourselves to outlining some references for it in the Appendix.

With these results in hands, we can give the proof of the following:

Theorem 3.2 (Riesz-Representation). Let � ⊆ RN be open and let w ∈ S(�) be
equipped with a L-harmonic minorant on �. Then, if µw is the L-Riesz measure of
w on �, we have

w = G� ∗ µw + h on �,

where h is the greatest L-harmonic minorant of w on �.

Proof. Let h be the greatest L-harmonic minorant of w on � (the existence of
h follows from general facts in abstract harmonic spaces, see e.g., [19, Theorem
2.2.1]). Let us denote by �n a sequence of bounded open sets such that �n ⊂ �n+1
and ∪n�n = �. For every n ∈ N, we denote by µ(n) the measure on RN defined
by µ(n)(A) := µw(A ∩�n). By Riesz’s Representation Theorem [4, Theorem 2.4],
there exists h(n)

1 ∈ H(�) such that w = � ∗ µ(n) + h(n)
1 on �n .

Since �(x−1 ◦ ·) and G�(x, ·) differ by a L-harmonic function, differentiation
under the integral sign shows that there exists h(n)

2 ∈ H(�n) such that w = G� ∗
µ(n)+h(n)

2 on �n . Letting n go to infinity, standard arguments show that this implies
the existence of h2 ∈ H(�) such that w = G� ∗ µ + h2 on �.

In particular, h2 is a L-harmonic minorant of w on �, so that h2 ≤ h. On the
other hand, G� ∗ µw + h2 − h = w − h ≥ 0 on �, i.e., h − h2 is a L-harmonic
minorant of G� ∗ µw. Since the greatest L-harmonic minorant of G� ∗ µw is
the null function (see Proposition 3.1-(vi)), this gives h − h2 ≤ 0. Consequently,
h ≡ h2.

In the proof of our monotonicity theorem (see Theorem 4.4 in Section 4), we shall
make use of the following proposition, concerning with the negligeability of L-
polar sets with respect to the L-harmonic measures (in the classical context of
Laplace’s operator, see [1, Theorem 5.1.9]):
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Proposition 3.3. Let O ⊆ RN be an open set and let u ∈ S(O) be locally bounded.
If µu denotes the L-Riesz measure of u on O, then µu(Z) = 0 for every Borel L-
polar set Z ⊆ O.

Proof. We only need to show that µu(Z ∩ B) = 0 for every d-ball B with B ⊂ O .
First, we claim that there exists a compactly supported Radon measure ν on RN

such that G B ∗ν = ∞ on Z ∩ B. Indeed, let w ∈ S(RN ) be such that w|Z∩B ≡ ∞.
The lower semi-continuity of w proves that w is lower bounded on B. Hence, by
Theorem 3.2, we have w = G B ∗ µw + h on B, for a suitable h ∈ H(B). Since h
is finite-valued, this proves the claim.

Let α = infB u (α ∈ R since u is lower semi-continuous). From Theorem 3.2
applied to the function w = u −α (which is nonnegative on B, hence endowed with
a L-harmonic minorant on B), we infer the existence of h ∈ H(B) such that

u(x) − α = (G B ∗ µu)(x) + h(x), for every x ∈ B. (3.2)

(We used µw = µu .) Since h is the greatest L-harmonic minorant of w ≥ 0 on B,
it holds h ≥ 0, so that (3.2) gives

(G B ∗ µu)(x) ≤ u(x) − α, for every x ∈ B. (3.3)

As a consequence, we have

∞ · µu(Z ∩ B) ≤
∫

B
(G B ∗ ν)(y) dµu(y) =

∫
B
(G B ∗ µu)(y) dν(y)

(see (3.3)) ≤ (sup
B

u − α) · ν(RN ) < ∞ (by the local boundedness of u)

(in the equality, we used Fubini-Tonelli’s Theorem jointly with the symmetry of
G B). This gives µu(Z ∩ B) = 0, ending the proof.

Proposition 3.4. Let � ⊆ RN be open and u ∈ H(�). Then, for every convex
function g : R → R, we have g ◦ u ∈ S(�). In particular, this holds for g = | · |p

(where p ∈ [1, ∞[).

Proof. We prove the assertion by making use of the L-subharmonicity test in The-
orem A-(ii). Since g ◦ u is continuous on �, we only have to show that g ◦ u is
L-submean. Since u ∈ H(�), by Theorem A-(ii) we infer that for every x ∈ �,
there exists rx > 0 such that

u(x) = Mr (u)(x) =
∫

Bd (x,r)

u(y)
Q(Q − 2)

r Q
K (x−1 ◦ y) dy

for every 0 < r < rx . Now, since Mr (1) ≡ 1, the density

dν(y) := Q(Q − 2)

r Q
K (x−1 ◦ y) dy
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defines on Bd(x, r) a probability measure, whence (by Jensen’s inequality) we de-
rive

g(u(x)) ≤
∫

Bd (x,r)

g(u(y))
Q(Q − 2)

r Q
K (x−1 ◦ y) dy = Mr (g ◦ u)(x),

for every 0 < r < rx , i.e., g ◦ u is L-submean.

We shall make a crucial use of the following theorem (a simple consequence of Har-
nack’s Theorem for sub-Laplacians) in the proof of our uniqueness Theorem 5.2.

Proposition 3.5. Let �⊆RN be open. For all x ∈�, there exists hx ∈ L1(∂�, µ�
0 )

such that
dµ�

x (ξ) = hx (ξ) dµ�
0 (ξ).

Moreover, if K is a compact subset of �, there exists a positive constant c(K ) only
depending on K , such that

c(K )−1 ≤ ‖ hx ; L∞(∂�, µ�
0 ) ‖ ≤ c(K ), for every x ∈ K . (3.4)

Here and henceforth, ‖ u; L p(∂�, µ�
0 ) ‖, p ∈ [1, ∞], will denote the usual L p-

norm of a function u ∈ L p(∂�, µ�
0 ).

Proof. In this proof, for brevity, for any given x ∈ � we agree to set µx := µ�
x .

Let E ⊆ ∂� be closed. Then χE is upper semicontinuous, and we have (by
Theorem C-(ii))

µx (E) =
∫

∂�

χE dµx = H�
χE

(x). (3.5)

Now, H�
χE

is a non-negative L-harmonic function on the connected open set �, so
that we can apply Harnack inequality for L (see, e.g., [10]). In particular, for every
compact set K ⊂ � there exists c = c(K ) > 0 such that

H�
χE

(x) ≤ c H�
χE

(y), for every x, y ∈ K .

Hence, (3.5) gives µx (E) ≤ c µy(E), for every closed E ⊆ ∂�. Consequently,
since the µx ’s are regular measures, we obtain (also reversing the rôles of x and y)

c−1µy(E) ≤ µx (E) ≤ c µy(E), for every Borel set E ⊆ ∂�. (3.6)

This proves that µy � µx � µy for every couple of points x, y ∈ �. Hence,
by Lebesgue decomposition theorem, we infer the existence of hx,y ∈ L1(∂�, µy)

with
dµx (ξ) = hx,y(ξ) dµy(ξ). (3.7)

We claim that
c−1 ≤ ‖ hx,y(·); L∞(∂�, µy) ‖ ≤ c.
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Indeed, suppose first to the contrary there exists a Borel set E ⊆ ∂� such that
µy(E) > 0 and hx,y(ξ) > c, µy-almost-everywhere on E . This would give the
following contradiction (using (3.6) and (3.7))

c ≥ µx (E)

µy(E)
= 1

µy(E)

∫
E

hx,y(ξ) dµy(ξ) � c

∫
E dµy(ξ)

µy(E)
= c.

Analogously, suppose to the contrary there exists a Borel set E ⊆ ∂� such that
µy(E) > 0 and hx,y(ξ) < c−1, µy-almost-everywhere on E . This would give
another contradiction (using (3.6) and (3.7)):

c−1 ≤ µx (E)

µy(E)
= 1

µy(E)

∫
E

hx,y(ξ) dµy(ξ) � c−1

∫
E dµy(ξ)

µy(E)
= c−1.

Our lemma follows by taking y = 0 and setting hx := hx,0.

The following proposition will be crucial in proving some “smallness” property of
L-polar sets in connection with the dilations δλ of the group G (see Proposition 4.5
in Section 4).

Proposition 3.6. If A ⊆ RN is an open connected set and E ⊂ A is L-polar and
relatively closed in A, then A \ E is connected.

Proof. With the notation of the assertion, let A0 be a connected component of A\E .
We are done if we show that A0 = A \ E . Note that, since E is relatively closed
in A, then A \ E is open, whence A0 is open too. Since E is L-polar, there exists
u ∈ S(RN ) such that u ≡ ∞ on E . Set

v : A → (−∞, ∞], v(x) =
{

u(x) if x ∈ A0,

∞ if x ∈ A \ A0.

Note that Ã := (A \ E) \ A0 is an open set since it coincides with the union of
the connected components of the open set A \ E , except for A0. It is easily seen
that v is lower semi-continuous, not identically ∞ and L-supermean on A, since
u|A0 is L-superharmonic. Then by Theorem A-(ii), v ∈ S(A). But v ≡ ∞ on the
open set Ã and this can happen only if Ã = ∅, for L-superharmonic functions are
locally integrable by Theorem A-(iii). This proves that A contains no connected
components other than A0, thus completing the proof.

4. δλ-contractible domains

In this section, we collect some preliminary results on the geometry of the domains
we are interested in. Throughout the paper, G will be a fixed Carnot group on RN

with dilation group as in (2.2) and L will denote a fixed sub-Laplacian on G.
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Definition 4.1 (δλ-contractible domain). We say that � is a δλ-contractible do-
main if � ⊂ RN is a bounded open set such that

δλ(∂�) ⊂ � for every λ ∈ [0, 1[. (4.1)

By Proposition 4.6 at the end of this section (which collects basic geometric prop-
erties of δλ-contractible domains �), it follows that � is a connected neighborhood
of 0. The d-balls are examples of L-regular δλ-contractible domains. However,
we explicitly stress that a general δλ-contractible domain may possess L-irregular
boundary points, even in the classical case L = 
. Indeed, it is not difficult to con-
struct suitable Lebesgue’s spines star-shaped with respect to the origin. This makes
the Hardy-space theory on such domains more involved than in the classical case of
the unit ball.

Throughout the paper, we shall use the following notation: if A is any subset
of G, we let

Aλ := δλ(A) = {δλ(x) | x ∈ A}.
It is easy to see that ∂(Aλ) = (∂ A)λ, so that we shall simply write ∂ Aλ.

When this does not lead to confusion, µ (or µ0) will denote the L-harmonic
measure for � at 0 (see Section 2) i.e.,

µ := µ�
0 .

Accordingly, for every p ∈ [1, ∞], we set

L p(∂�, µ) := L p(∂�, µ�
0 ).

We shall write ‖ u; L p(∂�, µ) ‖ to denote the usual L p-norm of a function u ∈
L p(∂�, µ�

0 ). Unless otherwise stated, if u is any function on the δλ-contractible
domain � and 0 < λ < 1, the function u ◦ δλ will be considered as a function
defined on ∂�.

We now collect some Lemmata on δλ-contractible domains which we shall use
in the next sections.

Lemma 4.2. Let � be a δλ-contractible domain. If ψ ∈ C(�, R) and 0 < λ < 1
we have

H�λ

ψ (δλ(x)) = H�
ψ◦δλ

(x) for every x ∈ �. (4.2)

Proof. In the left-hand side of (4.2), ψ is meant as ψ |∂�λ . We explicitly note that
both sides of (4.2) make sense, for ψ ∈ C(∂�λ, R) and ψ ◦ δλ ∈ C(∂�, R).

We need only check that H�λ

ψ ◦ δλ defines on � a bounded L-harmonic func-
tion, converging to ψ ◦ δλ on the L-regular points of ∂�, i.e.,

lim
��x→ξ

H�λ

ψ (δλ(x)) = ψ(δλ(x)), for all ξ ∈ ∂reg�. (4.3)
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These facts can be proved as follows:

(i) H�λ

ψ ◦ δλ is L-harmonic in �, since L(H�λ

ψ ◦ δλ) = λ2 (LH�λ

ψ ) ◦ δλ = 0 on

�, for H�λ

ψ ∈ H(�λ);

(ii) the boundedness of H�λ

ψ ◦ δλ on � is equivalent to that of H�λ

ψ on �λ, which
follows since ψ is bounded on ∂�λ);

(iii) finally, (4.3) follows at once from the fact that (see also Theorem B)

lim
�λ�x ′→ξ ′ H�λ

ψ (x ′) = ψ(x ′), for all ξ ′ ∈ ∂reg(�λ)

jointly with
(∂reg�)λ = ∂reg(�λ),

which follows by standard arguments (using again the δλ-homogeneity of L).

This ends the proof of the lemma.

Corollary 4.3. In the hypotheses of the previous lemma, we have∫
∂�λ

ψ dµ
�λ

0 =
∫

∂�

ψ ◦ δλ dµ�
0 , for every λ ∈ ]0, 1[.

In particular, for every 1 ≤ p < ∞,(∫
∂�λ

|ψ |p dµ
�λ

0

)1/p

=
(∫

∂�

|ψ ◦ δλ|p dµ�
0

)1/p

, (4.4)

so that, letting p → ∞,

‖ ψ; L p(∂(�λ), µ
�λ

0 ) ‖=‖ ψ ◦ δλ; L p(∂�, µ�
0 ) ‖, for every 1 ≤ p ≤ ∞.

(4.5)

Proof. The corollary follows by taking x = 0 in (4.2) and by using the integral
representations (2.7) of H�λ

ψ and H�
ψ◦δλ

.

The following important result will play a central rôle in this paper.

Theorem 4.4 (Monotonicity). Let � be a δλ-contractible domain of RN . Let u be
a L-harmonic function on �. Then the following map

]0, 1[ � λ �→
∫

∂�

|u ◦ δλ|p dµ�
0 (4.6)

is monotone increasing, for every fixed p ∈ [1, ∞[. As a consequence, the map

]0, 1[ � λ �→‖ u ◦ δλ; L p(∂�, µ�
0 ) ‖

is monotone increasing for every p ∈ [1, ∞].
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Proof. For any p ∈ [1, ∞], let us denote by f p(λ) the function in (4.6). It is enough
to prove the monotonicity of f p for 1 ≤ p < ∞, for this implies the monotonicity

of f 1/p
p and of f∞ = limp→∞ f 1/p

p , which is the second part of the assertion.
Let u ∈ H(�), p ∈ [1, ∞[ and λ > 0 be fixed. Since |u|p is L-subharmonic

on � (see Proposition 3.4), and since �λ ⊂ � (see Proposition 4.6-(ii)), we can
apply Poisson-Jensen formula (2.10) for |u|p on �λ at the point 0:

|u|p(0) =
∫

∂reg(�λ)

|u|p(ξ) dµ
�λ

0 (ξ) −
∫

�λ∪∂irr(�λ)

G�λ(0, y) dµ|u|p (y). (4.7)

Now, since |u|p is continuous (whence locally bounded) on � and ∂irr(�λ) is a
L-polar set (see Theorem B) in ∂(�λ) = δλ(∂�) ⊂ �, by Proposition 3.3 we infer

µ|u|p (∂irr(�λ)) = 0. (4.8)

Moreover, from the L-polarity of ∂irr(�λ) and Theorem C-(i), we deduce also

µ
�λ

0 (∂irr(�λ)) = 0. (4.9)

Hence, combining (4.8) and (4.9), (4.7) becomes

|u|p(0) +
∫

�λ

G�λ(0, y) dµ|u|p (y) =
∫

∂(�λ)

|u|p(ξ) dµ
�λ

0 (ξ). (4.10)

Since the y dummy-variable appearing in the left-hand of (4.10) belongs to �λ, we
have G�λ(0, y) = G�λ(0, y) by the definition (2.9). Now, the left-hand side of
(4.10) is monotone increasing with respect to λ ∈]0, 1[ since, for every 0 < λ1 <

λ2 < 1 we have �λ1 ⊆ �λ2 (see Proposition 4.6-(v)), so that

G�λ1
(0, y) ≤ G�λ2

(0, y).

Then, also the right-hand side of (4.10) is monotone increasing with respect to
λ ∈]0, 1[. On the other hand, by Lemma 4.3, the right-hand side of (4.10) equals∫

∂�

|u(δλ(ξ))|p dµ�
0 (ξ),

so that our monotonicity theorem follows.

The following proposition (besides having an interest in its own), concerns with the
“smallness” of L-polar sets. Its proof is unexpectedly delicate.

Proposition 4.5. Let � be δλ-contractible and P ⊂ ∂� a L-polar set. Then⋃
0<λ<1

δλ(P)

has empty interior.
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Proof. We argue by contradiction, supposing that there exists an open d-ball, say
B = Bd(x0, r), such that

B ⊆
⋃

0<λ<1

δλ(P). (4.11)

It is non-restrictive to suppose that x0 �= 0. We explicitly remark that the δλ-
contractibility of �, the hypothesis P ⊂ ∂� and (4.11) imply that B ⊆ �. Set

A :=
⋃
λ>0

δλ(B) and E := A ∩ ∂�.

We claim that the following facts hold:

(i) A is an open connected set;
(ii) E is relatively closed in A and E is a subset of P , hence L-polar.

(iii) E disconnects A;

Clearly, Proposition 3.6 is in contradiction with (i)-(ii)-(iii), so that the proof is
complete if we demonstrate the above three claimed statements.

(i): Since δλ(B) = δλ(Bd(x0, r)) = Bd(δλ(x0), λ r), A is open; this also
proves

A =
⋃
λ>0

Bd(δλ(x0), λ r),

so that A is connected since the d-balls δλ(B)’s are connected open sets joined
together by the connected path {δλ(x0) : λ > 0}.

(ii): E is trivially relatively closed in A by its very definition. We show that
the δλ-contractibility of � ensures that E ⊆ P . Suppose by contradiction that there
exists a point ξ0 ∈ E \ P . Consequently, there exist λ0 > 0 and b0 ∈ B such
that ξ0 = δλ0(b0) and ξ0 ∈ ∂� \ P . Thanks to (4.11), there also exist λ1 ∈]0, 1[
and z1 ∈ P such that b0 = δλ1(z1), so that we infer z1 = δ1/λ1(b0) but this is
absurd, for this would imply that b0 ∈ B ⊆ � is a point of � such that the “δλ-ray”
{δλ(b0) : λ > 0} contains two distinct points of ∂�, namely z1 and ξ0 (which are
distinct for ξ0 ∈ ∂� \ P , whereas z1 ∈ P). But we know from Proposition 4.6-
(i) that a δλ-ray passing through a point of a δλ-contractible open set � contains
exactly one point of ∂�. We reached a contradiction supposing that E � P .

(iii): A \ E is disconnected for, by the very definition of E , it holds

A \ E = A \ ∂� = (A ∩ �) ∪ (A \ �) =: A1 ∪ A2,

and A1, A2 are non-empty open sets in A. Indeed, A ∩ � ⊇ B and A \ � contains
δλ(x0) for a suitable λ � 1, � being bounded. This ends the proof.

To end with the preliminaries, we state the basic geometric properties of δλ-
contractible domains in the following proposition, whose proof we postpone to the
Appendix.
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Proposition 4.6. Let � be a δλ-contractible domain. Then, the following state-
ments hold:

(i) for every x ∈ �, x �= 0, the set {δλ(x) : λ > 0} ∩ ∂� is a singleton. The same
is true of {δλ(x) : λ ≥ 1} ∩ ∂�;

(ii) for every 0 ≤ λ < 1, we have δλ(�) ⊆ �;
(iii) we have � = ⋃

0≤λ<1 δλ(∂�) = ⋃
0≤λ<1 δλ(�);

(iv) � is connected;
(v) for every 0 ≤ λ1 ≤ λ2 ≤ 1, we have δλ1(�) ⊆ δλ2(�).

5. The L p-Dirichlet problem

We use the same notation as in Section 4. We begin with the relevant definition.

Definition 5.1. Let � be a δλ-contractible domain of RN . Let ϕ ∈ L p(∂�, µ) be
fixed. We say that u is a L p-solution of the Dirichlet-problem (DP)ϕ

(DP)ϕ : Lu = 0 in �, u = ϕ in ∂�

if the following conditions hold:

(DP1) u ∈ C∞(�, R) and Lu = 0 in �;
(DP2) u ◦ δλ → ϕ in L p(∂�, µ), as λ → 1−.

Condition (DP2) is well-posed, thanks to the δλ-contractibility (4.1) of �. It means
that

lim
λ→1−

∫
∂�

∣∣u(δλ(ξ)) − ϕ(ξ)
∣∣p dµ�

0 (ξ) = 0, if 1 ≤ p < ∞,

lim
λ→1− ‖ u ◦ δλ − ϕ; L∞(∂�, µ�

0 ) ‖= 0, if p = ∞.
(5.1)

We would like to stress that the study of the Dirichlet problem (DP)ϕ is (not unex-
pectedly) complicated by the presence of L-irregular points on ∂�.

We begin by establishing a uniqueness result for (DP)ϕ :

Theorem 5.2 (Uniqueness of the L p-solution). Let � be a δλ-contractible domain
of RN . Let p ∈ [1, ∞]. For every ϕ ∈ L p(∂�, µ), there exists at most one L p-
solution of (DP)ϕ .

Proof. Let p ∈ [1, ∞]. By linearity, the uniqueness will follow if we show that the
L p-solution u to (DP)0 (i.e., with vanishing boundary datum) is identically zero.

To this purpose, let u be a L p-solution to (DP)0. If p = ∞, the uniqueness
directly follows from the maximum principle (see also Remark 5.5). Then we sup-
pose p < ∞. From (5.1), we see that∫

∂�

|u(δλ(ξ))|p dµ0(ξ) −→ 0 as λ → 1−.
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Let now ρ ∈]0, 1[ be fixed. By the monotonicity theorem 4.4, for every λ such that
ρ < λ < 1 we have

0 ≤
∫

∂�

|u(δρ(ξ))|p dµ0(ξ) ≤
∫

∂�

|u(δλ(ξ))|p dµ0(ξ) −→ 0 as λ → 1−.

This gives ∫
∂�

|u(δρ(ξ))|p dµ�
0 (ξ) = 0 for every 0 < ρ < 1. (5.2)

This implies that u is everywhere null in �. Indeed, set for brevity

v(ξ) := |u(δρ(ξ))|p.

Note that v ∈ C(∂�, R). Then, for every fixed x ∈ � (by Theorem C-(ii) and
Proposition 3.5) we have

H�
v (x) =

∫
∂�

v(ξ) dµ�
x (ξ) =

∫
∂�

v(ξ) hx (ξ) dµ�
0 (ξ)

≤ c({x})
∫

∂�

v(ξ) dµ�
0 (ξ) = 0 (by (5.2)).

(5.3)

On the other hand H�
v ≥ 0, since v ≥ 0 on ∂�. This gives

H�
v ≡ 0 in �. (5.4)

Let P ⊂ ∂� be the set of the L-irregular points of ∂�. We recall that (Theorem B)
P is a L-polar set and

H�
v (x) −→ v(ξ) as � � x → ξ

for every ξ ∈ ∂� \ P . This fact, jointly with (5.4), gives v = 0 in ∂� \ P . Hence,
by the very definition of v,

u(x) = 0 for every x ∈ δρ(∂� \ P) = δρ(∂�) \ δρ(P), for every 0 < ρ < 1.
(5.5)

Since � \ {0} = ∪0<ρ<1δρ(∂�) (see Proposition 4.6-(iii)) (5.5) implies that

u(x) = 0 for every x ∈ � \ Z , x �= 0, (5.6)

where Z := ∪0<ρ<1δρ(P). Proposition 4.5 ensures that Z has empty interior, so
that (5.6) and the continuity of u on � imply that u ≡ 0 on �.

Our next task is to establish the following existence result for (DP)ϕ :

Theorem 5.3 (Existence of the L p-solution). Let � be a δλ-contractible domain
of RN . Let p ∈ [1, ∞[. For every ϕ ∈ L p(∂�, µ), the Perron-Wiener-Brelot
function H�

ϕ is a L p-solution of (DP)ϕ .
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The hypothesis p < ∞ cannot be removed in Theorem 5.3 (neither in Lemma
5.4 below). To see this, see Remark 5.5 below. As for the existence theorem, we
need some preliminary results. The following lemma is a version of Theorem 5.3
for continuous boundary data.

Lemma 5.4. Let � be a δλ-contractible domain of RN , p ∈ [1, ∞[ and ϕ ∈
C(∂�, R) be fixed. Then, the Perron-Wiener-Brelot function H�

ϕ is a L p-solution
of (DP)ϕ .

Proof. We know that H�
ϕ is L-harmonic in �. According to Definition 5.1, we are

left with showing that (DP2) holds, i.e.,

H�
ϕ ◦ δλ −→ ϕ in L p(∂�, µ), as λ → 1−.

This follows by dominated convergence in

lim
λ→1−

∫
∂�

|H�
ϕ (δλ(ξ)) − ϕ(ξ)|p dµ�

0 (ξ) = 0.

Indeed, if M = max∂� |ϕ|, we have sup� |H�
ϕ | ≤ M by the maximum principle.

Moreover,

lim
λ→1− |H�

ϕ (δλ(ξ)) − ϕ(ξ)| = 0 for µ�
0 -almost every ξ ∈ ∂�.

This follows since for every ξ ∈ � we have � � δλ(ξ) −→ ξ as λ → 1− (recall
that � is δλ-contractible) and (see Theorem B)

H�
ϕ (x) −→ ϕ(ξ) as � � x → ξ

for every ξ ∈ ∂� \ P , where P is the L-polar subset of the L-irregular points of
∂� (so that µ�

0 (P) = 0 by Theorem C-(i)). This ends the proof.

Remark 5.5. The hypothesis p < ∞ in Lemma 5.4 cannot be removed (whence
the same is true for Theorem 5.3). Indeed, a necessary condition for the above
Lemma to hold when p = ∞ is that � is a L-regular set (which may not be true
for an arbitrary δλ-contractible domain).

Indeed, given ϕ ∈ C(∂�, R), if H�
ϕ is a L∞-solution of (DP)ϕ , then

lim
��x→y

H�
ϕ (x) = ϕ(y), for every y ∈ ∂�. (5.7)

To prove this statement, let ε > 0 and y ∈ ∂� be fixed. By the continuity of ϕ,
there exists rε > 0 such that

|ϕ(z) − ϕ(y)| < ε/2, for every z ∈ ∂� ∩ Bd(y, rε). (5.8)
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Moreover, by the definition of L∞-solution (see (5.1)), there exists λε ∈]0, 1[ with

sup
z∈∂�

|H�
ϕ (δλ(z)) − ϕ(z)| < ε/2, for every λ ∈]λε, 1[. (5.9)

Let
Aε :=

⋃
λ>λε

δλ(∂� ∩ Bd(y, rε)).

It can be proved that Aε is a neighborhood of y. We now claim that |H�
ϕ (x) −

ϕ(y)| < ε for every x ∈ Aε ∩ �, so that (5.7) follows. This claim comes from the
following argument. If x ∈ Aε, then there exist λ > λε and z ∈ ∂� ∩ Bd(y, rε)

such that x = δλ(z). Being x ∈ �, it must be λ < 1 (see Proposition 4.6) so that

|H�
ϕ (x) − ϕ(y)|=|H�

ϕ (δλ(z)) − ϕ(y)|≤|H�
ϕ (δλ(z))−ϕ(z)|+|ϕ(z) − ϕ(y)|<ε.

Here we used (5.8) and (5.9).

Next proposition plays the key rôle in the proof of the Existence Theorem.

Proposition 5.6. Let � be a δλ-contractible domain of RN . Let p ∈ [1, ∞]. Let
ϕ, ϕn ∈ L p(∂�, µ), for every n ∈ N, and suppose that ϕn → ϕ (as n → ∞) in
L p(∂�, µ0). Then, H�

ϕn
converges to H�

ϕ uniformly on the compact subsets of �.

Proof. Let K ⊂ � be a compact set. For brevity, we write µx instead of µ�
x . First

we suppose p < ∞. We have (see Theorem C-(ii) and recall that µx (∂�) = 1 for
every x ∈ �)

sup
x∈K

|H�
ϕn

(x) − H�
ϕ (x)| = sup

x∈K

∣∣∣∣∫
∂�

ϕn(ξ) dµx (ξ) −
∫

∂�

ϕ(ξ) dµx (ξ)

∣∣∣∣
≤ sup

x∈K

∫
∂�

|ϕn(ξ) − ϕ(ξ)| dµx (ξ)

≤ sup
x∈K

(∫
∂�

|ϕn(ξ)−ϕ(ξ)|pdµx (ξ)

)1/p

· (
µx (∂�)

)(p−1)/p

(see Proposition 3.5) = sup
x∈K

(∫
∂�

|ϕn(ξ) − ϕ(ξ)|p hx (ξ) dµ0(ξ)

)1/p

(see the estimate (3.4)) ≤
(

c(K )

∫
∂�

|ϕn(ξ) − ϕ(ξ)|p dµ0(ξ)

)1/p

= c(K )1/p ‖ ϕn − ϕ; L p(∂�, µ) ‖−→ 0, as n → ∞.

As for the case p = ∞, we have analogously

sup
x∈K

|H�
ϕn

(x)−H�
ϕ (x)| ≤ sup

x∈K

∫
∂�

|ϕn(ξ) − ϕ(ξ)| hx (ξ) dµ0(ξ)

≤ c(K )µ�
0 (∂�)·‖ ϕn −ϕ; L∞(∂�, µ)‖−→ 0, as n →∞.

This ends the proof.
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Finally, we have the following crucial estimate.

Proposition 5.7. Let � be a δλ-contractible domain of RN . Let ϕ ∈ L p(∂�, µ) be
fixed. Then, if p ∈ [1, ∞[,∫

∂�

|H�
ϕ ◦ δλ|p dµ�

0 ≤
∫

∂�

|ϕ|p dµ�
0 , for all 0 < λ < 1, (5.10)

As a consequence, for every p ∈ [1, ∞] and every ϕ ∈ L p(∂�, µ), we have

‖ H�
ϕ ◦ δλ; L p(∂�, µ�

0 ) ‖ ≤ ‖ ϕ; L p(∂�, µ�
0 ) ‖, for all 0 < λ < 1. (5.11)

By Lemma 4.3, (5.11) can be rewritten as

‖ H�
ϕ ; L p(∂�λ, µ

�λ

0 ) ‖ ≤ ‖ ϕ; L p(∂�, µ�
0 ) ‖, for all 0 < λ < 1.

Proof. It is enough to prove (5.10) when p < ∞. Letting p → ∞ in (5.10), one
then obtains (5.11) for p = ∞.

Let 1 ≤ p < ∞. Let ϕn ∈ C(∂�, R) be such that ϕn → ϕ (as n → ∞) in
L p(∂�, µ). Taking u = H�

ϕn
in the monotonicity theorem 4.4, it follows that

]0, 1[ � λ �→
∫

∂�

|H�
ϕn

(δλ(ξ))|p dµ(ξ)

is monotone increasing. In particular, for every 0 < ρ < λ < 1 we have∫
∂�

|H�
ϕn

(δρ(ξ))|p dµ(ξ) ≤
∫

∂�

|H�
ϕn

(δλ(ξ))|p dµ(ξ).

Now, the right-hand side of this inequality tends to
∫
∂�

|ϕn|p dµ as λ → 1−, for H�
ϕn

is a L p-solution of (DP)ϕn (use Lemma 5.4 and the very definition of L p-solution).
We thus obtain∫

∂�

|H�
ϕn

(δρ(ξ))|p dµ(ξ) ≤
∫

∂�

|ϕn|p dµ, for every 0 < ρ < 1. (5.12)

Moreover, as n → ∞, the left-hand side of (5.12) tends to∫
∂�

|H�
ϕ (δρ(ξ))|2 dµ(ξ),

since H�
ϕn

converges uniformly to H�
ϕ on the compact subsets of � (see Lemma 5.6;

note that here ρ ∈]0, 1[ is fixed and that δρ(∂�) is a compact subset of the δλ-
contractible domain �). Finally, as n → ∞, the right-hand side of (5.12) obviously
tends to

∫
∂�

|ϕ|p dµ. This proves (5.10), ending the proof.
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We are now in the position to give the

Proof of Theorem 5.3. Since H�
ϕ is L-harmonic in �, we only have to show that

(DP2) in Definition 5.1 holds, i.e.,

H�
ϕ ◦ δλ −→ ϕ in L p(∂�, µ), as λ → 1−. (5.13)

Since p < ∞, we can fix a sequence ϕn ∈ C(∂�, R) such that limn→∞ ϕn = ϕ in
L p(∂�, µ). Let us consider the following family of functions in L p(∂�, µ)

H�
ϕn

◦ δλ, λ ∈ ]0, 1[, n ∈ N.

We claim that the following facts hold:

1) uniformly with respect to λ ∈]0, 1[

lim
n→∞ H�

ϕn
◦ δλ = H�

ϕ ◦ δλ in L p(∂�, µ);

2) for every fixed n ∈ N,

lim
λ→1− H�

ϕn
◦ δλ = ϕn in L p(∂�, µ).

These results allow to inter-change the two limits with respect to n and λ, so that
(5.13) follows. Indeed

lim
λ→1− H�

ϕ ◦ δλ = lim
λ→1− lim

n→∞ H�
ϕn

◦ δλ

= lim
n→∞ lim

λ→1− H�
ϕn

◦ δλ = lim
n→∞ ϕn = ϕ, in L p(∂�, µ).

The theorem is proved if we demonstrate the claimed (1) and (2). First of all, (2)
follows from Lemma 5.4 and the very definition of L p-solution. We next prove (1).
By (5.10) in Proposition 5.7, noticing that H�

ϕ − H�
ϕn

= H�
ϕ−ϕn

,

‖ H�
ϕ ◦ δλ − H�

ϕn
◦ δλ ‖p

L p(∂�,µ) =
∫

∂�

|H�
ϕ−ϕn

(δλ(ξ))|p dµ�
0 (ξ)

≤
∫

∂�

|ϕ − ϕn|p(ξ) dµ�
0 (ξ)

so that

‖ H�
ϕ ◦ δλ − H�

ϕn
◦ δλ ‖p

L p(∂�,µ)≤ ‖ ϕ − ϕn ‖p
L p(∂�,µ), for every 0 < λ < 1

and the claimed (1) straightforwardly follows. This ends the proof.
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Collecting together Theorems 5.2 and 5.3, we obtain the following result:

Theorem 5.8. Let � ⊂ RN be a δλ-contractible domain. Let also p ∈ [1, ∞[.
Then, the problem (DP)ϕ has one and only one L p-solution, for every boundary
datum ϕ ∈ L p(∂�, µ). This solution is H�

ϕ , the Perron-Wiener-Brelot solution to
the Dirichlet problem related to � and ϕ.

From Theorem 5.8, we readily obtain a L p-maximum principle, new in the
context of Carnot groups. We first fix the following definition: Let u : � → R be a
continuous function and let 1 ≤ p < ∞. We say that

u|∂� ≥ 0 in L p,

if u has a nonnegative L p-trace on ∂�, i.e., there exists a nonnegative function ϕ

such that u ◦ δλ → ϕ in L p(∂�, µ) as λ → 1−. Then, we have the following:

Corollary 5.9 (L p-Maximum Principle). Let � be a δλ-contractible domain and
let 1 ≤ p < ∞. If u is L-harmonic in � and u|∂� ≥ 0 in L p, then u ≥ 0 in �.

Proof. Let ϕ ∈ L p(∂�, µ) be such that such that u ◦ δλ → ϕ in L p(∂�, µ) as
λ → 1−. Then, by Theorem 5.8, u = H�

ϕ , which is nonnegative since ϕ ≥ 0.

6. Some applications

The aim of this section is to provide some applications of the results of the preceding
sections. First, we shall give the notion of L-Hardy space, proving related basic
results. Then, we shall study the non-homogeneous Dirichlet problem related to
(1.7).

6.1. L-Hardy spaces on a homogeneous Carnot group

In this section, we define and study the main properties of L-Hardy spaces on a
homogeneous Carnot group. (For the theory in the classical case of Laplace’s oper-
ator, see e.g., [2]. For stratified groups, see also [22].) We begin with the relevant
definition:

Definition 6.1. Let � ⊂ RN be a δλ-contractible domain. Let also p ∈ [1, ∞].
For any smooth function u on �, we set

‖ u ‖h p := sup
0<λ<1

‖ u ◦ δλ; L p(∂�, µ�
0 ) ‖ .

We define the L-Hardy space h p(�, µ�
0 ) as

h p(�, µ�
0 ) := {u ∈ C∞(�) | Lu = 0 in � and ‖ u ‖h p< ∞ }.

In the sequel, we shall also write h p(�) instead of h p(�, µ�
0 ).
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In the rest of the section, � will always denote a δλ-contractible domain in RN .

Remark 6.2. With the notation of Definition 6.1, it is trivially seen that ‖ · ‖h p

defines a norm on h p(�). After Theorem 6.5, it will be apparent that
(
h p(�), ‖

· ‖h p
)

is a Banach space, whenever p ∈]1, ∞[.

Remark 6.3. Let 1 ≤ p < ∞ and let ϕ ∈ L p(∂�, µ) be fixed. From Theorem
5.8 and Proposition 5.7, we infer that the L p-solution to (DP)ϕ (say, u) belongs
to h p(�). The main task of this section is to prove that, viceversa, when 1 <

p < ∞, every function u in h p(�) is the L p-solution to (DP)ϕ , for a suitable
ϕ ∈ L p(∂�, µ), i.e., the following map

L p(∂�, µ) � ϕ �→ u ∈ h p(�)

(which we shall call the solving map) is onto. This is done in Theorem 6.5 below.
We explicitly remark that, by the Existence Theorem 5.3, the solving map coincides
with

L p(∂�, µ) � ϕ �→ H�
ϕ ∈ h p(�).

First we prove a useful fact on the h p-norm.

Lemma 6.4. Let p ∈ [1, ∞[ and ϕ ∈ L p(�, µ). Then, we have

‖ H�
ϕ ‖h p(�) = ‖ ϕ ‖L p(∂�,µ) . (6.1)

Proof. From the estimate (5.11) in Proposition 5.7 and the very definition of h p-
norm, we infer that “≤” holds in (6.1). Viceversa, writing for brevity L p instead of
L p(∂�, µ) and keeping in mind (5.11), we have

‖ ϕ ‖L p ≤ ‖ ϕ − H�
ϕ ◦ δλ ‖L p + ‖ H�

ϕ ◦ δλ ‖L p

≤ ‖ ϕ − H�
ϕ ◦ δλ ‖L p + ‖ H�

ϕ ‖h p , for every 0 < λ < 1.
(6.2)

Letting λ → 1−, from Theorem 5.3 (see (5.13)) we infer that the far right-hand side
goes to ‖ H�

ϕ ‖h p . Then, “≥” holds in (6.1).

We are now in the position to prove the main result of this section.

Theorem 6.5 (Surjectivity of the solving map). Suppose p ∈]1, ∞[. The map

L p(∂�, µ) � ϕ �→ H�
ϕ ∈ h p(�)

is a linear bijective isometry.

Proof. The linearity of the map ϕ �→ H�
ϕ is a well-known fact. Moreover, in

Lemma 6.4 we have proved that such a map preserves the relevant norms, so that it
is an isometry, whence (by linearity) it is also injective.
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We are thus left with proving that the solving map is surjective. Let u ∈ h p(�).
By the very definition of h p, we have u ∈ H(�) and

‖ u ‖h p= sup
0<λ<1

‖ u ◦ δλ; L p(∂�, µ) ‖< ∞,

i.e., the family {u ◦ δλ}0<λ<1 is bounded in L p(∂�, µ). As a consequence, there
exists ϕ ∈ L p(∂�, µ) and a sequence {λk}k in ]0, 1[, λk → 1− as k → ∞, such
that u ◦ δλk ⇀ ϕ in the weak∗ topology, i.e., letting 1/p + 1/p′ = 1,∫

∂�

g(ξ)(u ◦ δλk )(ξ) dµ0(ξ)
k→∞−→

∫
∂�

g(ξ) ϕ(ξ) dµ0(ξ), ∀ g ∈ L p′
(∂�,µ0). (6.3)

We claim that, if ϕ is as above, then

u = H�
ϕ . (6.4)

To see this, we use Proposition 3.5. With the notation therein, for every x ∈ �, we
know that there exists hx ∈ L∞(∂�, µ0) such that

dµ�
x (ξ) = hx (ξ) dµ�

0 (ξ). (6.5)

Then, we can take g(ξ) := hx (ξ) in (6.3). This gives

lim
k→∞

∫
∂�

(u ◦ δλk )(ξ) hx (ξ) dµ0(ξ) =
∫

∂�

ϕ(ξ) hx (ξ) dµ0(ξ). (6.6)

On the other hand, by (6.5) and Theorem C-(ii), we have∫
∂�

ϕ(ξ) hx (ξ) dµ0(ξ) =
∫

∂�

ϕ(ξ) dµx (ξ) = H�
ϕ (x).

Moreover∫
∂�

(u ◦ δλk )(ξ) hx (ξ) dµ�
0 (ξ) =

∫
∂�

(u ◦ δλk )(ξ) dµ�
x (ξ)

= H�
u◦δλk

(x) = H
δλk (�)
u (δλk (x)) = u(δλk (x)) −→ u(x) as k → ∞.

Here we used (6.5) for the first equality, Theorem C-(ii) for the second equality,
(4.2) for the third one. As for the fourth equality, we observe that

H
δλk (�)
u = u,

for u is L-harmonic on � ⊃ δλk (�) and is continuous through ∂
(
δλk (�)

)
. Then,

(6.4) holds and the proof is complete.
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6.2. Non-homogeneous Dirichlet problem

In this section, we use the results in Section 5, together with some estimates by
Folland of the �-potential in order to prove the following theorem.

Theorem 6.6. Let � ⊂ G be a δλ-contractible domain and let 1 < p < ∞. For
every ϕ ∈ L p(∂�, µ) and f ∈ Lq(�, dx), q > Q/p, the problem{

Lu = f in �,

u|∂� = ϕ in L p (6.7)

has a unique solution u ∈ S2,q
loc (�), where

S2,q
loc (�) := {u ∈ Lq

loc(�) : Xi X j u ∈ Lq
loc(�) for i, j = 1, . . . , m}.

Proof. The uniqueness of u follows from the one related to the homogeneous equa-
tion Lu = 0. To prove the existence, we first recall some results from [21]. Let �

be the fundamental solution of L in (2.5). Given a function f ∈ Lq(G, dx) with
q > Q/p, the convolution

v(x) := (� ∗ f )(x) :=
∫

G
�(y−1 ◦ x) f (y) dy, x ∈ G (6.8)

is well defined and locally Hölder-continuous on G. Moreover, for every i, j =
1, . . . ,m, Xi X j u exists in the weak sense of distributions and belongs to Lq(G,dx).
Furthermore,

Lv = − f in G, (6.9)

both in the distributional sense and point-wise almost everywhere. Then, since � is
bounded, given f ∈ Lq(�, dx), if we agree to continue f to all G by setting f = 0
in G \ �, the function v in (6.9) is locally Hölder-continuous, belongs to S2,q(�)

and solves the equation
Lv = − f in �

point-wise almost everywhere and in D′(�). We denote by S2,q(�) the space

S2,q(�) := {u ∈ Lq(�) : Xi X j u ∈ Lq(�) for i, j = 1, . . . , m}.
Let us now consider the solution w to the boundary value problem{

Lw = 0 in �,

w|∂� = ϕ − v|∂� in L p.

We know, by Theorem 5.8, that this solution exists. Then, we get the conclusion of
the theorem by setting u := w − v.
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7. Appendix: geometric properties of δλ-contractible domains

The aim of this Appendix is twofold: First, we sketch a proof of Proposition
3.1, collecting the needed properties of the L-Green’s function. Second, we pro-
vide some geometric properties of δλ-contractible domains. In particular, we give
the proof of Proposition 4.6, which collects the basic geometric properties of δλ-
contractible domains that we used throughout the paper.

Proof of Proposition 3.1. We only sketch the proof and give references for it.
(i): The main tool in studying the L-Green’s function is the so-called Perron’s

regularization u B : Let u ∈ S(�) and let B be a d-ball with B ⊂ �. For any x ∈ �,
we define u B(x) as

∫
∂ B u dµB

x if x ∈ B, and u B = u elsewhere. Then, we have
u B ∈ S(�), u ≥ u B and u B is L-harmonic on B. A set F ⊆ S(�) is called a
Perron-family if u, v ∈ F implies min{u, v} ∈ F and u B ∈ F , for every d-ball B
compactly contained in �. If F is a Perron-family, then infu∈F u is L-harmonic or
−∞ on any component of �.

Let � ⊆ RN be open and let x ∈ � be fixed. Let us denote by hx the greatest
L-harmonic minorant of �(x−1 ◦ ·) (note that F = {h ∈ H(�), h ≤ �(x−1 ◦ ·)}
is a Perron-family). We set G�(x, y) = �(x−1 ◦ y) − hx (y). The symmetry
of G� follows by studying the sequence of iterated Perron’s regularized {G j } j ,
where G1 = (G�(x, ·))B1 , G j = (G j−1)B j where {B j } j is a sequence of d-balls
properly chosen (follow the arguments in [27, Theorem 5.24]). The continuity of
G� on � × � is not immediate and it may be seen as a consequence of Harnack’s
inequality (by retracing the arguments in [27, Theorem 5.26]; for Harnack-type
inequalities see, e.g., [6, Theorem 1.1]). The fact that the greatest L-harmonic
minorant of G(x, ·) is the null function follows from infy∈� G�(x, y) = 0.

(ii): We now consider the family F := {w ∈ S(�) : w ≥ −�(x−1 ◦ ·)}. Then
we can see that F is a Perron-family. Hence, if w denotes the inf over F , it is easily
proved that −w coincides with hx .

(iii): This follows from (ii), from definition (2.6) and the maximum principle.
(iv): An application of the maximum principle for L and the symmetry of G�.
(v): G� as defined in (i) fulfills the requisites of the definition in (v) of Propo-

sition 3.1 (to prove this, we need to use similar arguments to those in the above
proof of (ii)). Viceversa, if we define G� according to the definition in (v), it can
be proved that G�(x, y) = �(x−1 ◦ y) − hx (y) by retracing the arguments of
Perron-regularization as in (i) above.

(vi): This follows from the fact that the greatest L-harmonic minorant of
G(x, ·) is the null function and by arguing as in [1, Theorem 4.2.6]; the argument
is not immediate and it requires once again the use of Harnack’s inequality.

Proof of Proposition 4.6. (i): Let x ∈ � \ {0} be fixed. Set D := {δλ(x) : λ > 0}.
Then D is connected, for D = �(]0, ∞[), where �(λ) = δλ(x) is continuous with
respect to λ (see (2.2)). First we note that D ∩ ∂� �= ∅. Otherwise, we would have
D = (D∩�)∪(D∩Est(�)) =: D1∪ D2, with D1, D2 nonempty, disjoint open sets
in D. (Indeed, x ∈ D1 and δρ(x) ∈ D2, for a suitable ρ � 1, being � bounded).
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This would mean that D is disconnected, which is not.
Moreover, we show that D ∩ ∂� cannot contain two distinct points. Indeed,

suppose by contradiction there exist 0 < µ < λ with δλ(x), δµ(x) ∈ ∂�. This
gives

∂� � δµ(x) = δµ/λ

(
δλ(x)

) ∈ �

which is a contradiction (here we used the fact that δλ(x) ∈ ∂�, 0 < µ/λ < 1 and
hypothesis (4.1)). This implies that D ∩ ∂� is a singleton. The same proof works
if we replace D by {δλ(x) : λ ≥ 1} so that (i) is proved.

(ii): From (i) we infer that for every x ∈ �, it holds

{δλ(x) : 0 ≤ λ ≤ 1} ∩ ∂� = ∅. (7.1)

Let us prove δλ(�) ⊆ � for every 0 < λ < 1. Suppose by contradiction there exist
x ∈ � and λ0 ∈]0, 1[ such that δλ0(x) /∈ �. Since δλ0(x) ∈ ∂� cannot hold (by
(7.1)), this would give δλ0(x) ∈ Est(�). As a consequence, set D := {δλ(x) : 0 ≤
λ < 1}, we have D = (D ∩�)∪ (D ∩Est(�)) =: D1 ∪ D2, with D1, D2 nonempty,
disjoint open sets in D. (Indeed, 0 ∈ D1 and δλ0(x) ∈ D2.) This would mean that
D is disconnected, which is not. Finally, δλ(�) ⊆ � follows from δλ(�) ⊆ � and
hypothesis (4.1).

(iii): According to (ii), we need only show that � ⊆ ⋃
0≤λ≤1 δλ(∂�). Suppose

by contradiction there exists x0 ∈ � such that

x0 /∈ δλ(∂�) for any λ ∈ [0, 1[. (7.2)

Clearly, x0 �= 0. Set D := {δλ(x0) : λ ≥ 1}. We have D ∩ ∂� = ∅. (Indeed,
if there existed ξ = δρ(x0) ∈ D ∩ ∂� for some ρ > 1, this would give x0 =
δ1/ρ(ξ) ∈ δ1/ρ(∂�), contradicting (7.2), since 1/ρ ∈]0, 1[.) Consequently, D =
(D ∩ �) ∪ (D ∩ Est(�)) =: D1 ∪ D2, with D1, D2 nonempty, disjoint open sets
in D. (Indeed, x0 ∈ D1 and δλ(x0) ∈ D2, for some λ � 1.) This means that D is
disconnected, which is not.

(iv): We prove that � = �′, where �′ is the connected component of �

containing 0. Let �′′ be a connected component different from �′. Suppose
by contradiction x ∈ �′′. Then x can be joined to 0 by the continuous path
D := {δλ(x) : 0 ≤ λ ≤ 1}, which (from (ii)) is completely contained in �. Hence
x belongs to �′. This gives a contradiction, whence �′′ = ∅.

(v): We may suppose 0 ≤ λ1 < λ2 ≤ 1. Let x ∈ δλ1(�), i.e., x = δλ1(ω) (for
some ω ∈ �) so that x = δλ1(ω) = δλ2(δλ1/λ2(ω)) ∈ δλ2(�), for λ1/λ2 < 1 and
(ii) holds. This ends the proof.
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