
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. V (2006), 611-638

Doubling constant mean curvature tori in S3

ADRIAN BUTSCHER AND FRANK PACARD

Abstract. The Clifford tori in S3 constitute a one-parameter family of flat, two-
dimensional, constant mean curvature (CMC) submanifolds. This paper demon-
strates that new, topologically non-trivial CMC surfaces resembling a pair of
neighbouring Clifford tori connected at a sub-lattice consisting of at least two
points by small catenoidal bridges can be constructed by perturbative PDE meth-
ods. That is, one can create a submanifold that has almost everywhere constant
mean curvature by gluing a re-scaled catenoid into the neighbourhood of each
point of a sub-lattice of the Clifford torus; and then one can show that a constant
mean curvature perturbation of this submanifold does exist.

Mathematics Subject Classification (2000): 53A10 (primary); 58J10 (second-
ary).

1. Introduction and statement of results

CMC surfaces. A constant mean curvature (CMC) surface � contained in an am-
bient Riemannian manifold X has the property that its mean curvature with respect
to the induced metric is constant. This property ensures that the surface area of �

is a critical value of the area functional for surfaces of X subject to an enclosed-
volume constraint. Constant mean curvature surfaces have been objects of great
interest since the beginnings of modern differential geometry. Classical examples
of non-trivial CMC surfaces in R3 are the sphere, the cylinder and the Delaunay
surfaces, and for a long while these were the only known CMC surfaces. In fact, a
result of Alexandrov [2] states that the only compact, connected, embedded CMC
surfaces in R3 are spheres.

In recent decades, the theory of CMC surfaces in R3 has progressed consid-
erably. In 1986, Wente discovered a family of compact, immersed CMC tori [20];
these have been thoroughly studied also in [17]. Since then, several parallel se-
quences of ideas have led to a profusion of new CMC surfaces. First, the techniques
used by Wente have culminated in a representation for CMC surfaces in R3 akin
to the classically-known Weierstraß representation of minimal surfaces in which a
harmonic but not anti-conformal map from a Riemann surface to the unit sphere
becomes the Gauß map of a CMC immersion into R3 from which the immersion

Received April 26, 2006; accepted in revised form November 14, 2006.



612 ADRIAN BUTSCHER AND FRANK PACARD

can be determined [3, 10]. Amongst the many examples of its use are the peri-
odic CMC surfaces of R3 constructed by Ritoré [19]. Second, Kapouleas pioneered
the use of geometric partial differential equations to construct many new CMC sur-
faces: e.g. compact genus 2 surfaces by fusing Wente tori [7]; and compact surfaces
of higher genus and non-compact surfaces with arbitrary numbers of ends by gluing
together spheres and Delaunay surfaces [6, 8]. Kapouleas’ discoveries have since
been complemented by much research into gluing and other analysis-based con-
structions that can be performed in the class of CMC surfaces, most notably in the
work of Mazzeo, Pacard and others [5, 13, 14, 15, 16]. Finally, an idea of Lawson
[12] coupled with a Schwartz reflection principle allows CMC surfaces of R3 to
be constructed via an associated minimal surface of the 3-sphere. A great many
CMC surfaces containing periodic regions have been constructed by Karcher and
Große-Brauckmann in this way [4, 9].

The corresponding picture amongst CMC surfaces of the sphere S3 is not as
rich. The classically known examples are the spheres obtained from intersecting S3

with hyperplanes, and the so-called Clifford tori Ca , given by

Ca :=
{

(z1, z2) ∈ C
2 : |z1| =

√
1 + a

2
|z2| =

√
1 − a

2

}

for a real parameter a ∈ (−1, 1). This is an embedded surface in S3 with mean
curvature constant equal to

Ha := 2 a√
1 − a2

.

There are few other examples, and no general methods for the construction of CMC
surfaces in S3. The local operations involved in a gluing construction (such as form-
ing connected sums using small bridging surfaces near a point of mutual tangency
of two surfaces) have straightforward generalizations and gluing constructions can
be carried out in S3. However, the global aspects of the gluing construction are
more complicated and restrictive since the examples one wishes to construct in this
way are compact.

Doubling the Clifford torus. The construction that will be carried out in this paper
produces new examples of embedded, higher-genus CMC surfaces of S3, with small
but non-zero mean curvature, by doubling the unique minimal Clifford torus C0.
This construction begins with the observation that the Clifford tori form a parallel
foliation of a tubular neighbourhood of C0 that is parameterized symmetrically on
either side of C0 by the mean curvature. The doubling construction consists in
connecting together two Clifford tori Ca and C−a that have opposite, small mean
curvature and are symmetrically located on either side of C0 at each point of a sub-
lattice of C0. This gluing is performed using small bridging surfaces shaped like
properly re-scaled catenoids whose axes are perpendicular to the two initial tori and
pass through the points of the sub-lattice. The resulting surface (henceforth called
S̃a) is topologically non-trivial, with genus 1 + m� where m� is the number of
points of the sub-lattice.
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Of course, S̃a does not yet have constant mean curvature: its mean curvature is
constant everywhere except near the gluing points. One now hopes to find the de-
sired CMC surface by perturbing the surface S̃a ; this is done by expressing surfaces
near to S̃a as normal graphs over S̃a and solving the partial differential equation
that determines when a nearby surface has constant mean curvature. The usual ob-
struction, well-known to those who have studied gluing constructions, arises at this
point: in general, it turns out that this partial differential equation at the linearized
level is not bijective with a uniformly bounded inverse due to the existence of a ker-
nel as well as a finite-dimensional approximate kernel constituted of eigenfunctions
associated to zero or small eigenvalues. However, this obstruction can be avoided if
one chooses the gluing points in a sufficiently symmetric way and if one is careful
enough in constructing the approximate solution.

To state the result precisely, let us parameterize the Clifford torus Ca by

φa(µ1, µ2) :=
(√

1 + a

2
ei µ1,

√
1 − a

2
ei µ2

)

where (µ1, µ2) = R2. We will often identify R4 with C2. We consider � a lattice
of the plane � := {n1 τ1 + n2 τ2 : n1, n2 ∈ Z} that is generated by τ1 := (α1, β1)

and τ2 := (α2, β2) We assume that � contains 2 π Z2 so that φa(�) is a sub-lattice
of Ca and we denote by m� the number of points of φa(�) (which is also equal to
the number of points of � in [0, 2π)2).

We denote by G ⊂ SO(4), the group generated by

σ j (z1, z2) = (eiα j z1, eiβ j z2)

for j = 1, 2 and
ρ(z1, z2) = (z̄1, z̄2).

The theorem that this paper proves is the following.

Theorem 1.1. Assume that � is not contained in the curve {(µ1, µ2) : µ1 +µ2 ≡
0 [2 π ]} or in the curve {(µ1, µ2) : µ1−µ2 ≡ 0 [2 π ]}. Then for all sufficiently
small a > 0, there exists a smooth, embedded surface Sa ⊂ S3 with the following
properties.

1. The surface Sa is invariant under the action of G.
2. The surface Sa has genus m� + 1.
3. The mean curvature of Sa is constant equal to Ha := 2 a√

1−a2
.

4. The surface Sa is a small (normal) perturbation of the surface consisting of the
connected sum of the two Clifford tori Ca and C−a at the points of φa(�) and
φ−a(�) using small catenoids centered at the points of φ0(�).

5. As a approaches zero, Sa converges in C∞
loc topology to two copies of C0 away

from the points of φ0(�).
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Constant mean curvature surfaces of R3 analogous to the ones proposed above
have been shown to exist by Ritoré in [19], in which he constructs unbranched CMC
immersions from a Riemann surface to R3/
, where 
 is a discrete group of trans-
lations of rank g = 1, 2 or 3 generated by orthogonal vectors. These immersions
can often be lifted to periodic CMC immersions into R3. In the rank 2 case, these
immersions are two-periodic and have a reflection symmetry with respect to the
plane containing the generating vectors of the translations. Furthermore, the fun-
damental domain of each immersed surface (i.e. the smallest domain which can be
extended by periodicity to cover the entire surface) can be parametrized over a tubu-
lar neighbourhood around the “+”-shaped one-dimensional variety formed by the
union of two orthogonal orbits of the translations, and in some cases the upper and
lower parts of the immersed surfaces are graphical over these tubular neighbour-
hoods. Ritoré does not use gluing techniques to construct these surfaces; rather he
uses the Weierstraß-type representation of CMC surfaces. Moreover, the Karcher
and Große-Brauckmann examples, constructed by Schwartz reflection, duplicate
some of Ritoré’s examples and generate other examples that can also be considered
analogous to those of the Theorem 1.1.

A further analogous construction has been achieved by Kapouleas and Yang
in [21], in which they construct a minimal surface (i.e. a surface with constant zero
mean curvature) by doubling the minimal Clifford torus in a similar manner as in
Theorem 1.1, except that they use an extremely large number of small bridging sur-
faces centered on a sub-lattice of very high order for the gluing. (This result can
be subsumed into the work of Pitts and Rubinstein in [18] for constructing equiv-
ariant minimal surfaces in space forms using symmetry and minimax methods.)
Kapouleas and Yang have discovered that it is possible to perturb the approximate
surface to have exactly zero mean curvature when a particular relation between the
number of catenoidal bridges and the size of the perturbation parameter is satisfied
— which can occur only for large numbers of catenoids and small perturbation pa-
rameter. Thus in this framework, the obstructions to the perturbation can be avoided
without the extra flexibility provided by allowing the mean curvature to vary, but
the analysis is in this case much more delicate.

Outline of the proof. Theorem 1.1 will be proved in the following way. One first
expresses a small perturbation of the approximately CMC surface described above
as a normal graph over S̃a whose graphing function f belongs to a suitable Banach
space. Such a surface has the form exp( f N )(S̃a) where N is a smooth choice
of unit normal vector field for S̃a and exp is the exponential map of the ambient
S3. One then hopes to select a function fa which solves the partial differential
equation H

(
exp( f N )(S̃a)

) = Ha , where H(·) is the mean curvature function (with
respect to N ), so that exp( fa N )(S̃a) is the desired CMC perturbation. One would
accomplish this by applying the inverse function theorem to the non-linear partial
differential operator �a( f ) := H

(
exp( f N )(S̃a)

) − Ha near f = 0, which states
that if the linearization of �a at f = 0 is bijective with uniformly bounded inverse,
then �a can be inverted on a small neighbourhood of �a(0). Thus if �a(0) is
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sufficiently small — i.e. that the mean curvature of S̃a deviates very little from Ha
— then there exists fa so that �a( fa) = 0.

Unfortunately, D�a(0) is not bijective with uniformly bounded inverse on an
arbitrary Banach space and so the inverse function theorem does not apply in gen-
eral, for two reasons. First, the isometries of the ambient S3 preserve mean curva-
ture and thus all infinitesimal isometries are in the kernel of D�a(0). Second, when
the surface consists of several constituent pieces separated by small necks, as in the
present case, then those motions of the surface corresponding to an infinitesimal
isometry on one of the constituents and keeping the others fixed (with transition in
the neck regions), generate for D�a(0) small eigenvalues tending to zero as a → 0.
These two phenomena ensure that D�a(0) fails to be bounded below by a constant
that does not tend to zero as a → 0 on any Banach space that is not transverse to the
kernel and approximate kernel of D�a(0). The name Jacobi field has been given
to elements of the kernel or approximate kernel of D�a(0) arising from geometric
motions as described above.

If additional assumptions are made about the placement of the gluing points,
then the obstructions to controllable invertibility can be avoided. Indeed, if the glu-
ing points are located with sufficient symmetry and S̃a is deformed equivariantly
(i.e. deformations of S̃a are forced to preserve all symmetries), then the controllable
invertibility of D�a(0) is contingent on whether the Jacobi fields — both the global
ones and those on the individual constituents of S̃a — possess these additional sym-
metries or not. If, on each summand of S̃a , there are no Jacobi fields possessing the
symmetries, then the space of equivariant deformations of S̃a is transverse to the
kernel and approximate kernel associated to small eigenvalues, and thus D�a(0) is
controllably invertible.

2. The approximate solution

The purpose of this section of the paper is to construct the approximate solution S̃a
and derive its relevant geometric properties. This begins with a careful description
of the building blocks that will be assembled to construct S̃a : the Clifford tori in S3

and the catenoid in R3. Since the proof of Theorem 1.1 hinges on being able to rule
out the existence of Jacobi fields and the approximate Jacobi fields of S̃a , careful
attention will be paid to understanding the Jacobi fields in each case.

2.1. The mean curvature operator and Jacobi fields

The reader should be reminded of the linearized mean curvature operator of an ar-
bitrary surface and of the origin of its ‘geometric’ Jacobi fields. Let � be a closed
hypersurface in a Riemannian manifold X with mean curvature H� , second fun-
damental form B� and unit normal vector field N� . The linearization of the mean
curvature operator on the space of normal graphs over � is usually referred to as
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the Jacobi operator about � and is given by

L� := �� + (‖B�‖2 + Ric (N�, N�)
)

where �� is the Laplace operator of � and Ric is the Ricci tensor of X . If Rt
is a one-parameter family of isometries of X with deformation vector field V =
d
dt

∣∣
t=0 Rt then the function 〈V, N 〉 is a solution of L�〈V, N 〉 = 0. The function

〈V, N 〉 is a Jacobi field of �.
When X = S3, the linearized mean curvature reads

L� = �� + (‖B�‖2 + 2
)

and the isometries of S3 are simply the SO(4)-rotations of the ambient R4. Thus
there is at most a 6-dimensional space of ‘geometric’ Jacobi fields of � arising
from isometries. Since one expects in general that hypersurfaces with fixed constant
mean curvature are isolated up to isometries, one expects no other Jacobi fields than
these ‘geometric’ ones.

2.2. The Clifford tori in S3

The sphere S3 contains a family of constant mean curvature surfaces known as the
Clifford tori Ca given by

Ca :=
{

(z1, z2) ∈ C
2 : |z1| =

√
1 + a

2
, |z2| =

√
1 − a

2

}
,

for a real parameter a ∈ (−1, 1). We now list the facts about the intrinsic and extrin-
sic geometry of the Clifford tori that will be needed in this paper. To parameterize
Ca we define φa : S1 × S1 → S3 by

φa(µ1, µ2) :=
(√

1 + a

2
eiµ1,

√
1 − a

2
eiµ2

)
.

Then with respect to the coordinates induced by φa , the induced metric of Ca is

ga := φ∗
a

(
(dz1)

2 + (dz2)
2
)

= 1 + a

2
(dµ1)

2 + 1 − a

2
(dµ2)

2

so that Ca is flat. If the unit normal vector field of Ca is chosen to be

Na :=
√

1 − a

2
eiµ1 ∂z1 −

√
1 + a

2
eiµ2 ∂z2,

then the second fundamental form of Ca is

Ba :=
√

1 − a2

2

(
(dµ2)

2 − (dµ1)
2
)
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and the mean curvature of Ca is the constant equal to

Ha := 2a√
1 − a2

.

Note that the Clifford torus corresponding to a = 0 is the unique minimal subman-
ifold in the family Ca .

Jacobi fields. The linearization of the mean curvature operator on the space of
normal graphs over Ca is given by

LCa := 2

1 + a
∂2
µ1

+ 2

1 − a
∂2
µ2

+ 4

1 − a2
.

Two results concerning the Jacobi fields of the operator LC0 will be needed in the
sequel. Henceforth we identify f ◦ φ0(µ) with f (µ).

Lemma 2.1. The Jacobi fields of C0 are linear combinations of functions of the
form (µ1, µ2) �−→ cos(µ1 ± µ2) and (µ1, µ2) �−→ sin(µ1 ± µ2).

Proof. This result follows at once from Fourier analysis in both the µ1 and µ2 vari-
ables. Observe that any of these these Jacobi fields is associated to a one parameter
family of isometries of S3.

We now consider � a sub-lattice of the plane � := {n1 τ1+n2 τ2 : n1, n2 ∈ Z}
generated by τ1 := (α1, β1) and τ2 := (α2, β2). We assume that � contains 2 π Z2.

Corollary 2.2. Assume that � is not contained in

{(µ1, µ2) : µ1 + µ2 ≡ 0 [2π ]} or {(µ1, µ2) : µ1 − µ2 ≡ 0 [2π ]} .

Then there is no non-trivial function f that solves the equation LC0 f = 0 and that
satisfies for j = 1, 2

f (µ + τ j ) = f (µ) and f (−µ) = f (µ)

for all µ := (µ1, µ2) ∈ R2.

Proof. Using the previous lemma we know that f is a linear combination of the
functions (µ1, µ2) �−→ cos(µ1 ± µ2) and (µ1, µ2) �−→ sin(µ1 ± µ2). But since
we assume that f (−µ) = f (µ) for all µ, then we conclude that f is a linear
combination of (µ1, µ2) �−→ cos(µ1 ± µ2).

We write

f (µ1, µ2) = a+ cos(µ1 + µ2) + a− cos(µ1 − µ2)

Let us assume that a+ 
= 0 and a− 
= 0. Observe that (0, 0) is a critical point of f
and the second variation of f at (0, 0) is given by

D2 f(0,0)(µ1, µ2) = −
(

a+ (µ1 + µ2)
2 + a−(µ1 − µ2)

2
)

.
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The only other critical points of f are of the form ((n1 +n2)
π
2 , (n1 −n2)

π
2 ), where

n1, n2 ∈ Z. However among them, the only critical point that has the same second
variation are the points ((n1 + n2) π, (n1 − n2) π), where n1, n2 ∈ Z. Now, if we
use the fact that f satisfies f (µ + τ j ) = f (µ), for j = 1, 2, we find that the lattice
� has to be included in π Z2. This contradicts the hypothesis that the lattice � is
not included in {(µ1, µ2) : µ1 + µ2 ≡ 0 [2π ]}.

We now assume that a+ = 1 and a− = 0. Then, the set of points where f = 1
is precisely equal to {(µ1, µ2) : µ1 + µ2 ≡ 0 [2π ]}. Again, if we use the fact that
f satisfies f (µ + τ j ) = f (µ), for j = 1, 2, this contradicts the hypothesis that
the lattice � is not included in {(µ1, µ2) : µ1 + µ2 ≡ 0 [2π ]}. Finally assume
that a+ = 0 and a− = 1. Then the set of points where f = 1 is precisely equal
to {(µ1, µ2) : µ1 − µ2 ≡ 0 [2π ]}. Again this contradicts the hypothesis that the
lattice � is not included in {(µ1, µ2) : µ1 − µ2 ≡ 0 [2π ]}. This implies that
a+ = a− = 0 and hence f ≡ 0.

2.3. The catenoid in R3

The catenoid K is the unique, complete, two-ended and cylindrically symmetric
embedded minimal surface in R3. Re-scalings of K are also minimal surfaces. The
ε-scaled catenoid is the image of R × S1 by

ψε(s, θ) := (ε cosh s cos θ, ε cosh s sin θ, ε s) .

In this parametrization the induced metric of εK is

gεK := ψ∗
ε

(
dx2 + dy2 + dz2) = ε2 cosh2 s

(
ds2 + dθ2) .

If the unit normal vector field of εK is chosen to be

NεK := 1

cosh s

(− cos θ ∂x − sin θ ∂y + sinh s ∂z
)

,

then the second fundamental form of εK is given by

BεK = ε
(
dθ2 − ds2) ,

and the mean curvature of εK vanishes.

Jacobi fields. The linearization of the mean curvature operator on the space of
normal graphs over εK is here given by

LεK = 1

ε2 cosh2 s

(
∂2

s + ∂2
θ + 2

cosh2 s

)
.

The Jacobi fields of εK are the solutions of the equation LεK u = 0. Some Jacobi
fields can be explicitly computed since they are associated to one parameter families
of minimal surfaces to which εK belongs. For example, the translations and rota-
tions in R3 generate five linearly independent Jacobi fields and dilation generates a
sixth Jacobi field.
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Lemma 2.3. Assume that δ < 2 is fixed. The subspace of Jacobi fields of εK that
are bounded by a constant times (cosh s)δ and are invariant under the action of
the symmetry (s, θ) �→ (s, θ + π) is two-dimensional spanned by the functions
f (1)
0 (s, θ) := tanh s and f (2)

0 (s, θ) := s tanh s − 1.

Proof. We decompose the Jacobi field f in a Fourier series and write

f (s, θ) =
∞∑
j=0

(
a j (s) cos( jθ) + b j (s) sin( j θ)

)
.

Since we assume that f (s, θ) = f (s, θ + π), we get

f (s, θ) =
∞∑
j=0

(
a2 j (s) cos(2 j θ) + b2 j (s) sin(2 j θ)

)
.

Now, when j ≥ 1 the functions a2 j and b2 j are solutions of the ordinary differential
equation

(
∂2

s − (2 j)2 + 2

cosh2 s

)
a2 j =

(
∂2

s − (2 j)2 + 2

cosh2 s

)
b2 j = 0 .

The study of the possible asymptotics of a2 j and b2 j at ±∞ show that either these
functions blow up like (cosh s)2 j or decay like (cosh s)−2 j . However, since they
are bounded by a constant times (cosh s)δ for some δ < 2, they have to decay
exponentially at ±∞. Then the maximum principle implies that a2 j = b2 j = 0
since, for j ≥ 1, the potential of this ordinary differential equation is negative.

When j = 0, two linearly independent solutions of the homogeneous problem

(
∂2

s + 2

cosh2 s

)
f0 = 0

are known. The Jacobi fields associated to vertical translations of the ambient R3 is
given explicitly as

f (1)
0 (s, θ) := 〈

∂z, NεK
〉 = tanh s

and there is one other Jacobi field coming from the dilations of εK and is given
explicitly by

ε f (2)
0 (s, θ) := 〈

ψεK , NεK
〉 = ε (s tanh s − 1) .

Obviously the function f0 is a linear combination of these two functions since it is
a solution of a linear second order ordinary differential equation. This completes
the proof of the result.
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2.4. Toroidal coordinates for S3

The approximate solution of the torus doubling construction will be formed by tak-
ing two Clifford C±a symmetrically placed on either side of the unique minimal
Clifford torus C0, and connecting them at a sub-lattice of points by bridging sur-
faces consisting of small pieces of re-scaled catenoids, embedded into S3. In order
to perform this construction with as much precision as possible, it is most conve-
nient to use canonical coordinates for a neighbourhood of C0 in S3 which are well-
adapted to the family of Clifford tori and that can be used to embed the catenoids
with the least amount of distortion.

We set S3∗ := S3 \ (
S1 × {0} ∪ {0} × S1

)
. Let I = (− π

2
√

2
, π

2
√

2
). The toroidal

coordinates for S3 are given by the inverse of the mapping � : S1 × S1 × I → S3∗
(written as a subset of C2) which is defined by

�(µ1, µ2, t) :=



√
1 + sin(

√
2t)

2
eiµ1,

√
1 − sin(

√
2t)

2
eiµ2


 .

Lemma 2.4. The standard metric on S3 expressed in toroidal coordinates is

�∗gS3 = 1

2
dt2 + 1 + sin(

√
2t)

2
(dµ1)

2 + 1 − sin(
√

2t)

2
(dµ2)

2 .

Close to C0, t is small and the metric �∗gS3 can be considered a perturbation of the
flat metric

g̊ := 1

2
(dt2 + (dµ1)

2 + (dµ2)
2).

2.5. Construction of the approximate solution

We consider � a lattice of the plane � := {n1 τ1 + n2 τ2 : n1, n2 ∈ Z} that is
generated by τ1 := (α1, β1) and τ2 := (α2, β2). We assume that � contains 2 π Z2,
and further, that the lattice � is not contained in {(µ1, µ2) : µ1 + µ2 ≡ 0 [2π ]} or
{(µ1, µ2) : µ1 − µ2 ≡ 0 [2π ]}. According to the result of Corollary 2.2 there is
no non-trivial solution of LC0 u = 0 that satisfies

u(µ + τ j ) = u(µ) for j = 1, 2 and u(−µ) = u(µ). (2.1)

This means that, when restricted to the set of functions satisfying (2.1), the operator
LC0 : C2,α(C0) −→ C0,α(C0) is an isomorphism.

The construction of the approximate solution begins with the definition of a
function 
� that is the unique solution of the equation

LC0 
� = −4π
∑

p∈φ0(�)

δp
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satisfying (2.1). Here, δp is the Dirac δ-mass at the point p ∈ C0. With slight
abuse of notations, we will write 
�(µ) instead of 
� ◦ φ0(µ). Observe that, near
µ = (0, 0) the function 
� can be expanded as


�(µ) = − log |µ| + γ� + O(|µ|2 log 1/|µ|)
where γ� ∈ R is a constant that depends on the lattice �. Here we have implicitly
used the fact that 
�(−µ) = 
�(µ) so that the usual remainder term O(|µ|) that
appears in the Taylor expansion of 
� can be improved into O(|µ|2 log 1/|µ|).

Next, we consider the Clifford tori C±a which are the images of S1×S1×{±ta}
under the toroidal coordinate mapping �. Here ta and a are related by

sin(
√

2 ta) = a .

These Clifford tori will be perturbed using a proper multiple of the function 
�. To
this end, we define the parameter εa > 0, for a close enough to 0, to be the unique
positive solution of

ta = −εa log εa + εa (γ� + log 2) .

We define C+
a using the toroidal coordinates to be the image of R2 \⋃

µ∈� B√
εa (µ)

under the mapping
µ �−→ �(µ, ta − εa 
�(µ))

and also C−
a to be the image of R2 \ ∪µ∈�B√

εa (µ) under the mapping

µ �−→ �(µ, −ta + εa 
�(µ)) .

This produces two surfaces that are close to φ0(R
2 \ ⋃

µ∈� B√
εa (µ)), and with mλ

boundaries. We also consider the re-scaled catenoid εa K that we insert in S3 as
follows. Consider the image of {(s, θ) ∈ R × S1 : εa cosh s ≤ √

εa} by

(s, θ) �−→ �(εa cosh s cos θ, εa cosh s sin θ, εas)

as well as the images of this surface with boundaries by the action of the elements
of the group G. This produces m� surfaces with boundaries the union of which
will be denoted by Na . The union of these pieces of surfaces does not produce
a smooth surface but using cut-off functions we can interpolate smoothly between
the different summands C±

a and Na to obtain a smooth surface that will be denoted
by S̃a .

Because of the invariance under the action of G it is enough to explain how
to connect the pieces of surfaces close to the point φ0(0, 0). For example, near
µ = (0, 0), the graph of µ �−→ ta − εa 
�(µ) can be expanded as

ta − εa 
�(µ) = ta + εa

(
log |µ| − γ� + O(|µ|2 log 1/|µ|)

)
.
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While, changing variables |µ| = εa cosh s, with s > 0, we find with little work that

εa s(µ) = εa

(
log |µ| + log(2/εa) + O(ε2

a |µ|−2)
)

= ta + εa

(
log |µ| − γ� + O(ε2

a |µ|−2)
)

.

To obtain a smooth surface it is enough to interpolate between the between these two
functions inside an annulus of radii 2

√
εa and

√
εa/2. For example, to interpolate

smoothly between the graph of ta − εa 
� and the graph of εa s we define the
function

Ta(µ) := η(µ/
√

εa) (ta − εa 
�(µ)) + (1 − η(µ/
√

εa)) εa s(µ)

where η is a cut-off function identically equal to 0 in B1/2(0) and identically equal
to 1 in R2 \ B2(0). A similar analysis can be performed for the lower end of the
re-scaled catenoid. The final step in the assembly of the different summands of
the approximate solution is to extend the above construction so that the resulting
surface is invariant under the action of the elements of G. We will denote by Ta the
transition regions corresponding to the image of B̄2

√
εa (0) \ B√

εa/2(0) by µ �−→
�(µ, Ta(µ)) and extended to all lattice points by symmetry.

This recipe produces a surface S̃a that is a smooth, embedded submanifold
of S3. It is equal to the connected sum of εa-re-scaled catenoids centered at the
points of φ0(�) and small perturbations of the Clifford tori C±a . Recall that, by
construction, these tori have mean curvature equal to Ha := 2a/

√
1 − a2. Finally,

when a approaches zero, then S̃a approaches two copies of the unique minimal
Clifford torus, punctured at the sub-lattice of points φ0(�).

The symmetries of the approximate solution S̃a constructed above will play a
crucial role in the forthcoming analysis where only deformations preserving these
symmetries will be considered as valid. This will have the effect of eliminating
the kernel and approximate kernel of the Jacobi operator, which is the fundamental
obstruction to the invertibility of the linearized deformation operator. Thus one
should observe that the approximate solution S̃a is by construction symmetric with
respect to the rotations σ j defining the sub-lattice as well as the symmetry ρ. Recall
that these rotations are given by

σ j (z1, z2) = (eiα j z1, eiβ j z2),

while in toroidal coordinates of S3 they are given by

σ j ◦ �(µ1, µ2, t) = �(µ1 + α j , µ2 + β j , t) .

The symmetry ρ is given by

ρ(z1, z2) = (z̄1, z̄2),
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while in toroidal coordinates of S3 it is given by

ρ ◦ �(µ1, µ2, t) = �(−µ1, −µ2, t) .

Since all of these symmetries preserve both S̃a and the ambient metric of S3, these
symmetries also preserve the mean curvature of S̃a .

2.6. Estimates for the approximate solution

The remaining task for this section of the paper is to estimate all relevant geometric
quantities on S̃a in terms of the parameter a. By symmetry it is sufficient to estimate
only in the fundamental cell corresponding to the sub-lattice point µ = (0, 0). The
most important of the estimates of S̃a is the pointwise C1 estimate of its mean
curvature.

Proposition 2.5. The mean curvature of the approximate solution S̃a satisfies the
following estimates. If �(µ, t) ∈ C±

a then

|H(S̃a) − Ha| + |µ| ‖∇ H(S̃a)‖ ≤ C (ε2
a (log 1/εa) |µ|−2) , (2.2a)

if �(µ, t) ∈ Ta then

|H(S̃a) − Ha| + |µ| ‖∇ H(S̃a)‖ ≤ C εa (log 1/εa) , (2.2b)

and if �(εa cosh s cos θ, εa cosh s sin θ, εa s) ∈ Na then

|H(S̃a) − Ha| + εa cosh s‖∇ H(S̃a)‖ ≤ C(log 1/εa)(cosh s)−2, (2.2c)

where C > 0 is a constant independent of a, provided a is sufficiently small.

Proof. The calculations can all be done using the toroidal coordinates, for which
the ambient metric will be denoted g. Let us use the abbreviations ∇i = ∇∂µi

and
∇t = ∇∂t and also use a comma to denote partial differentiation, such as u,i = ∂µi u.

To estimate the mean curvature in the regions Ta and C±
a , we first compute

the mean curvature of the graph of a function
√

2u : S1 × S1 → R parametrized
by µ �−→ (µ,

√
2 u(µ)). The tangent vectors of this surface are given by Tj :=

∂µ j + √
2u, j ∂t and it is easy to check that the induced metric is given by

ḡ =
(

1

2
(1 + sin(2u)) + (u,1)

2
)

dµ2
1

+
(

1

2
(1 − sin(2u)) + (u,2)

2
)

dµ2
2 + 2 u,1u,2 dµ1 dµ2 .

The normal vector field N can be written as N := N̄/||N̄ || where N̄ := √
2 ∂t −

a j Tj and the coefficients a j are determined so that N̄ is normal to the surface. One
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finds the explicit expressions a j = ḡ jku,k and ||N̄ ||2 = 1 + ḡ jku, j u,k . We now
compute

g(∇Ti Tj , N̄ ) = √
2g(∇Ti Tj , ∂t ) − ak g(∇Ti Tj , Tk)

= √
2g(∇Ti Tj , ∂t ) − 
̄k

i j u,k

where the 
̄-terms are the Christoffel symbols of the induced metric ḡ. We evaluate
the first term as

g(∇Ti Tj , ∂t ) = g
(
(∇i + √

2u,i∇t )(∂ j + √
2u, j∂t ), ∂t

)
= 
i j t + 1√

2
u,i j + √

2u, j
i t t + √
2u,i
t j t + 2u,i u, j
t t t

where the 
-terms are the Christoffel symbols of the ambient metric g, so that

11t = − 1

2
√

2
cos(

√
2t) and 
22t = 1

2
√

2
cos(

√
2t), and all other 
-terms vanish.

We thus obtain the second fundamental form

B̄ = 1

||N̄ ||
(

1

2
cos(2u) (dµ2

2 − dµ2
1) + u,i j dµi dµ j − 
̄k

i j u,k dµi dµ j

)
.

Finally, by taking the trace of ḡ−1 B̄ we get the mean curvature

H = 1

2det(ḡ)||N̄ ||
[
u,11

(
1 − sin(2u) + 2(u,2)

2)
− 4u,1u,2u,12 + u,22

(
1 + sin(2u) + 2(u,1)

2)
+ sin(2u) cos(2u) + cos(2u)

(
(u,1)

2 − (u,2)
2)]

+ 1

||N̄ || ḡi j 
̄k
i j u,k

(2.3)

where det(ḡ) = 1
4

(
cos2(2u) + 2(1 − sin(2u))(u,1)

2 + 2(1 + sin(2u))(u,2)
2
)
.

Consider now the region C+
a in which case u = ua with

√
2 ua := ta − εa 
�

and |µ| ≥ 1
2
√

εa . First, we can check that ||N̄ || = 1 + O(ε2
a|µ|−2) and ḡi j =

1
2δi j + O(ε2

a|µ|−2), so that ḡi j 
̄k
i j u,k = O(ε2

a|µ|−2) as well, since this quantity

consists of terms of the form u,i u, j or u,i u, j u,kl multiplied by coefficients of ḡ−1.
Now, using the fact that Dua = O(εa|µ|−1) and D2ua = O(εa|µ|−2) we find

H = 2 tan(2ua) + 2 �ua + O(ε2
a|µ|−2).

Finally, we use the fact that (� + 2) 
� = 0 away from the points of � and also
the formula Ha = 2 tan(

√
2 ta) and the estimate ua = O(εa (log 1/εa)) to conclude

H = Ha +O(ε2
a (log 1/εa) |µ|−2) holds in C+

a . The corresponding estimates in C−
a
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and also in Ta are obtained using similar computations, as well as the estimate of
the derivative of H .

It remains to compute the mean curvature of the neck region Na . Since the
center of the neck region is not a graph over the level sets of constant t , the previous
calculation does not help us. Thus we compute directly the mean curvature of the
surface parametrized by

(s, θ) �−→ (εa cosh s cos θ, εa cosh s sin θ, εas)

for s such that εa cosh s ≤ 1
2
√

εa . The tangent vectors of this surface are given by

Tθ := εa cosh s (cos θ ∂µ2 − sin θ ∂µ1)

and
Ts := εa sinh s(cos θ ∂µ1 + sin θ ∂µ2) + εa ∂t .

The induced metric is then given by

ḡ = 1

2
ε2

a cosh2 s (ds2 + dθ2)

+ 1

2
ε2

a sin(
√

2εas) cos(2θ) (sinh2 s ds2 − cosh2 s dθ2)

− ε2
a cosh s sinh s sin(

√
2 εa s) sin(2θ) ds dθ .

The normal vector field N can be written as N := N̄/||N̄ || with N̄ := N0 −as Ts −
aθ Tθ where

N0 := 1

cosh s

(− cos θ ∂µ1 − sin θ ∂µ2 + sinh s ∂t
)

and where the coefficients as , aθ are determined so that N̄ is normal to the surface.
One finds the estimates

as = O
(

log(1/εa)

cosh2 s

)

aθ = O
(

log(1/εa)

cosh2 s

)

||N̄ ||2 = 1

2
+ O

(
εa (log(1/εa))

cosh2 s

)
.

We now compute the coefficients of the second fundamental form. Our calculations
are simplified by considering the local parametrization

ψ : (s,θ, x)

�−→
((

εa cosh s − x

cosh s

)
cos θ,

(
εa cosh s − x

cosh s

)
sin θ, εas+x tanh s

)
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so that N0 = ψ∗ ∂x . Hence,

−2||N̄ ||B(Ti , Tj ) = g(∇Ti N̄ , Tj ) + g(∇Tj N̄ , Ti )

= g(∇Ti N0, Tj ) + g(∇Tj N0, Ti ) − ak
,i ḡ jk − ak

, j ḡik − ak ḡi j,k

= ∂x g(Ti , Tj )|x=0 − ak
,i ḡ jk − ak

, j ḡik − ak ḡi j,k

where i, j, k can be s or θ . It is easy to check that ak
,i ḡ jk + ak

, j ḡik + ak ḡi j,k =
O(ε2

a (log(1/εa)). Finally,

∂x g(Ti , Tj )|x=0 =




εa + 1√
2
ε2

a sinh2 s tanh s cos(
√

2 εas) cos(2θ)

+εa tanh2 s sin(
√

2εas) cos(2θ) when i = j = s,

−εa − 1√
2
ε2

a cosh2 s tanh s cos(
√

2εas) cos(2θ)

+εa sin(
√

2εas) cos(2θ) when i = j = θ,

− 1√
2
ε2

a cosh s sinh s tanh s sin(2θ) cos(
√

2 εa s)

when i 
= j .

For example,

g(Ts, Ts) = 1

2

(
εa + x

cosh s

)2

+ 1

2

(
εa sinh s + x sinh s

cosh s

)2 (
1 + sin

(√
2(εas + x tanh s)

)
cos(2θ)

)
from which the formula for ∂x g(Ts, Ts)|x=0 follows at once.

Collecting these, we obtain the estimate for the mean curvature

H = O
(

log(1/εa)

cosh2 s

)
.

This completes the estimate of the mean curvature. The estimate of its derivative
follows similarly.

3. The analysis

3.1. Deformations of the approximate solution

The approximate solution S̃a constructed in the previous section is such that its
mean curvature is almost equal to Ha everywhere except in a small neighbourhood
of each sub-lattice point, where it is nevertheless controlled by precise estimates.
The next task is to set up a means of finding a small deformation of S̃a whose mean
curvature is exactly constant and equal to Ha .
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To see how this can be done, let f ∈ C2,α(S̃a) be given and let Ña be a choice
of unit normal vector field on S̃a . Then if f and its derivatives are sufficiently small
(in a sense to be made precise in the next section), the neighbouring submanifold
exp( f Ña)(S̃a) is an embedded submanifold of S3 which is a small perturbation of
S̃a . Determining if exp( f Ña)(S̃a) has constant mean curvature is now a matter of
solving a nonlinear partial differential equation.

Definition 3.1. The deformation operator to be the mapping �a : C2,α(S̃a) →
C0,α(S̃a) given by �a( f ) := H

(
exp( f Ña)(S̃a)

)
, where H(·) is the mean curvature

operator.

The deformation operator �a is a non-linear partial, second-order differential
operator acting on functions f in C2,α(S̃a) and so exp( f Ña)(S̃a) has constant mean
curvature Ha ∈ R if and only if f is a solution of the nonlinear partial differential
equation �a( f ) = Ha . The linearization of the deformation operator at 0 will also
be needed. The analysis of Section 2.1 asserts that

d

dt

∣∣∣∣
t=0

�a(tu) = �au + ‖B̃a‖2u + 2u

where �a is the Laplacian of S̃a and B̃a is its second fundamental form.

Definition 3.2. Denote La := D�a(0).

The tool that will be used to find the solution of the equation �a( f ) = Ha is
the inverse function theorem. See [1] for the proof of the version given here.

Theorem 3.3 (IFT). Let � : B → B′ be a smooth map of Banach spaces, set
�(0) = E and the denote the linearized operator D�(0) by L. Suppose that L is
bijective and the estimate ‖LX‖ ≥ C‖X‖ holds for all X ∈ B. Choose R so that
if Y ∈ B is such that ‖Y‖ ≤ R, then ‖LX − D�(Y )X‖ ≤ 1

2 C‖X‖. If Z ∈ B′ is
such that ‖Z − E‖ ≤ 1

2 C R, then there exists a unique X ∈ B with ‖X‖ ≤ R so
that �(X) = Z. Moreover, ‖X‖ ≤ 2

C ‖Z − E‖.

Finding the desired solution of the CMC equation by means of the inverse
function theorem thus necessitates the following tasks. First, appropriate Banach
subspaces of C2,α(S̃a) and C0,α(S̃a) must be found — along with appropriate norms
— so that the estimate of La can be achieved (this also establishes injectivity). It
must then be shown that La is surjective. Next, estimates in these norms of the
non-linear quantities (the size of E := �a(0) − Ha and the size of the parameter R
giving the variation of D�a) must be found. Note that all these quantities depend a
priori on a. Finally, the estimate of E must be compared to the number 1

2 C R and it
must be shown that ‖E‖ ≤ 1

2 C R for all sufficiently small a > 0.

3.2. Function spaces and norms

It is not possible to obtain a ‘good’ linear estimate of the form ‖La u‖ ≥ C‖u‖ with
any straightforward choice of Banach subspaces and norms. There are essentially
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two reasons for this. The first is that the operator La is not injective on C2,α(S̃a) due
to the global Jacobi fields that come from SO(4)-rotations of the ambient S3. Each
one-parameter family of rotations preserves the geometry of the ambient sphere —
and thus preserves the mean curvature of any submanifold of the sphere — and so
their generators are all elements of the kernel of La . The second reason for the
absence of a good linear estimate is that La possesses small eigenvalues so that
even if one were to choose a Banach subspace transverse to the global Jacobi fields,
the constant in the linear estimate would still depend on a in an undesirable manner.

The way in which the problems listed above will be dealt with here is twofold.
First, the symmetries σ j and ρ of the approximate solution must be exploited. It
turns out that the Jacobi fields, both approximate and true, do not share these same
symmetries. Thus working in a space of functions possessing these symmetries
will rule out the existence of small eigenvalues. Second, it is necessary to use a
somewhat non-standard norm to measure the ‘size’ of functions in order to properly
determine the dependence of the various estimates needed for the application of the
inverse function theorem on the parameter a. A weighted Hölder norm will be used
for this purpose, where each derivative term will be weighted by appropriate powers
of a weight function that accounts for the ‘natural’ scaling property of the derivative
operator. The weight function is defined as follows. Note that it is necessary only to
precisely define the weight functions near a single sub-lattice point φ0(0, 0) since
the value of the weight function elsewhere can be found by symmetry.

Definition 3.4. Define the weight function ζa : S̃a → (0, ∞) in the fundamental
cell centered at the sub-lattice point φ0(0, 0) by

ζa(x) =




εa cosh s when x = �(εa cosh s cos θ, εa cosh s sin θ, εa s) ∈ Na

Interpolation when x ∈ Ta

|µ| when x = �(µ, t) ∈ C±
a

The required function spaces can now be defined. First, recall the following nota-
tion. If � ⊆ S̃a is any open subset of S̃a and q is any tensor on S̃a , then let

‖q‖0,� = sup
x∈�

‖q(x)‖ and [q]α,� = sup
x,y∈�

‖q(x) − PT(q(y))‖
dist(x, y)α

,

where the norms and the distance function that appear are taken with respect to the
induced metric of S̃a , while PT is the parallel transport operator from x to y with
respect to this metric. Now define the Ck,α

γ norm of a function f defined on � by

| f |Ck,α
γ (�)

:=|ζ−γ
a f |0,�+‖ζ−γ+1

a ∇ f ‖0,�+· · ·
· · · +‖ζ−γ+k

a ∇k f ‖0,�+[ζ−γ+k+α
a ∇k f ]α,�.

(3.1)

Finally, let Ck,α
γ (�) be the Banach space of Ck,α functions on � measured with

respect to the norm (3.1).
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Definition 3.5. The Banach spaces in which a solution of the deformation problem
will be found are the spaces Bk,α,γ

a := { f ∈ Ck,α
γ (S̃a) : f ◦σ j = f ◦ρ = f ∀ j =

1, 2} of functions in Ck,α
γ (S̃a) possessing the symmetries σ j and ρ. The parameter

γ will be chosen appropriately below.

It remains to check that the operator �a is well-behaved when acting on these
Banach spaces. It is straightforward to check that the map �a : C2,α

γ (S̃a) →
C0,α

γ−2(S̃a) is a smooth map in the Banach space sense and for any u ∈ B2,α,γ
a , the

function �a(u) : S̃a → R satisfies �a(u) ◦ σ j = �a(u) ◦ ρ = �a(u). Thus �a is

well-defined as a map from B2,α,γ
a to B0,α,γ−2

a . The equivariance with respect to the
symmetries σ j and ρ is a consequence of the fact that these symmetries derive from
isometries of the ambient Riemannian metric. Finally, it is again straightforward to
check that La is bounded in the operator norm by a constant independent of a.

3.3. The linear estimate

The most important estimate in the solution of �a( f ) = Ha by means of the inverse
function theorem is the estimate of the linearization La from below. The purpose
of this section is to prove this estimate. The method used will be to construct a
solution of the equation La u = f by patching together local solutions on the neck
region and away from the neck region. This amounts to the construction of a right
inverse for La — which implies the surjectivity of La , and by self-adjointness, the
injectivity as well.

Proposition 3.6. Suppose γ ∈ (−1, 0). There exists a∗ > 0 such that, for all
a ∈ (0, a∗), the linearized operator La : B2,α,γ

a → B0,α,γ−2
a satisfies the estimate

|u|C2,α
γ (S̃a)

≤ C ε
γ
a |La u|C0,α

γ−2(S̃a)

where C is a constant independent of a ∈ (0, a∗).

Proof. The patching argument requires a careful subdivision of S̃a into separate
pieces. First, we fix a parameter κ > 0 smaller than 1/8 of the least distance
between two points of � and define C̃±

a (κ) to be the image of R2 \⋃
µ∈� Bκ(µ) by

µ �−→ �(µ, ±(ta − εa 
�(µ))

and we define Ña(κ) to be the complement of C̃+
a (κ) ∪ C̃−

a (κ) in S̃a .
The next requirement is to carefully define two sets of cut-off functions with

respect to these subdividing regions. All the following cut-off functions can be
chosen smooth, as well as bounded by a constant independent of a with respect to
the Ck,α

0 (S̃a) norm. Furthermore, each of these functions can be made symmetrical
with respect to the symmetries σ j and ρ satisfied by S̃a . It is thus necessary to
define them only in a neighbourhood of φ0(0, 0) as follows.
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• χ+
ext,κ (respectively χ−

ext,κ ) equals one in C̃+(2κ) (respectively C̃−(2κ)) and

equals zero in Ña(κ) ∪ C̃−
a (κ) (respectively Ña(κ) ∪ C̃+

a (κ)).
• χneck,κ := 1 − χ+

ext,κ − χ−
ext,κ and hence equals one in Ña(κ) and equals zero in

C̃±
a (2κ).

• η+
ext (respectively η−

ext) equals one in C̃+(2
√

εa) (respectively C̃−(2
√

εa)) and
equals zero in Ña(

√
εa) ∪ C̃−

a (
√

εa) (respectively Ña(
√

εa) ∪ C̃+
a (

√
εa)).

• ηneck := 1 − η+
ext − η−

ext and hence equals one in Ña(
√

εa) and equals zero in
C̃±

a (2
√

εa).

Observe that the cutoff functions η±
ext and ηneck can be chosen to be bounded in

C2,α
0 (S̃a) uniformly in a.

To begin the patching argument, let f ∈ B2,α,γ
a be given. The idea is to con-

struct an approximate solution of the equation Lau = f by patching together a
solution on the neck with a solution everywhere else. This is carried out in the
following two steps.

Step 1. Let | · |Ck,α
δ (εa K )

denote the weighted Ck,α norm on εa K , so that

|u|Ck,α
δ (εa K )

:= |(εa cosh s)−δu|0,εa K + · · · + [(εa cosh s)−δ+k+α∇ku]α,εa K

where the norms and derivatives correspond to the metric on εa K . We are inter-
ested in functions that are invariant under the symmetry u(s, θ +π) = u(s, θ). The
corresponding function spaces will be denoted by Ck,α

δ,sym(εK ). We have the follow-
ing result (whose proof follows from a similar proof that can be found for example
in [11] in the context of constant mean curvature surfaces) and which follows from
the result of Lemma 2.3. The operator

Lεa K : C2,α
δ,sym(εa K ) −→ C0,α

δ−2,sym(εa K )

u �−→ Lεa K u

is injective if δ < 0 and hence it is surjective if δ > 0, δ /∈ N. This latter fact follows
from a duality argument in weighted Lebesgue spaces and elliptic regularity theory
can be used to prove the corresponding result in weighted Hölder spaces.

We define f̃ (1)
0 (s,θ) :=(2χ(s)−1) tanh s and f̃ (2)

0 (s,θ) :=(2χ(s)−1)(s tanh s−
1) where χ is a cut-off function identically equal to 0 for s < −1 and identically
equal to 1 for s > 1 and we recall that we have already defined in Lemma 2.3
f (1)
0 (s, θ) := tanh s and f (2)

0 (s, θ) := s tanh s − 1. The deficiency space D is
defined to be the space of functions

D := Span
{

f (1)
0 , f̃ (1)

0 , f (2)
0 , f̃ (2)

0

}
.
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Then, for all δ ∈ (−2, 0), the operator

L̃εa K : C2,α
δ,sym(εa K ) ⊕ D −→ C0,α

δ−2,sym(εa K )

u �−→ Lεa K u

is surjective and has a two dimensional kernel [11]. This result follows from the
fact that if f ∈ C0,α

δ−2,sym(εa K ) and δ ∈ (−2, 0), then f ∈ C0,α
−δ−2,sym(εa K ) and

hence one can find u ∈ C2,α
−δ,sym(εa K ) solution of Lεa K u = f . Then one checks

that, for s > 0, the function u can be decomposed into

u(s, θ) = v(s, θ) + a f (1)
0 + b f (2)

0

where v is bounded by a constant times (cosh s)δ for s > 0 and a, b ∈ R. A similar
decomposition is available for s < 0, perhaps with different a, b.

Observe that the kernel of L̃εa K is simply generated by the functions f (1)
0 and

f (2)
0 that are defined in Lemma 2.3. Moreover, it is possible to choose a right inverse

that maps into C2,α
δ,sym(εa K ) ⊕ D0 where D0 := Span { f̃ (1)

0 , f̃ (2)
0 }.

We fix κ0 small enough and define

fneck := χneck,κ0 f

and apply the above result when δ = γ ∈ (−2, 0). Observe that | fneck|C0,α
γ−2(εa K )

≤
C | f |C0,α

γ−2(S̃a)
. Therefore, we can define uneck ∈ C2,α

γ,sym(εa K ) ⊕ D0 solution of

2Lεa K uneck = fneck. It is possible to decompose

uneck = vneck + p1 f̃ (1)
0 + p2 f̃ (2)

0

where vneck ∈ C2,α
γ (εa K ) and p j are constants. Furthermore, one has the estimate

|vneck|C2,α
γ (εa K )

+ ε
−γ
a (|p1| + |p2|) ≤ C | fneck|C0,α

γ−2(εa K )
. (3.2)

We extend this solution to all S̃a as follows

ūneck := χneckvneck + ηneck(p1 f̃ (1)
0 + p2 f̃ (2)

0 + q1 f (1)
0 + q2 f (2)

0 )

+ η+
extr

+
� + η−
extr

−
�

where the coefficients q j and r j are determined to ensure a good matching of the

functions r± 
� and p1 f̃ (1)
0 +p2 f̃ (2)

0 +q1 f (1)
0 +q2 f (2)

0 on the different summands.
Namely, we find that these coefficients must satisfy the system

r+ (γ� − log(εa/2)) − q1 + q2 = p1 − p2

r− (γ� − log(εa/2)) + q1 + q2 = p1 + p2

r+ + q2 = −p2

r− + q2 = p2 .

(3.3)
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For example, when s ∼ 1
2 log 1/εa , we can write

p1 f̃ (1)
0 + p2 f̃ (2)

0 + q1 f (1)
0 + q2 f (2)

0 ∼ (p1 + q1) + (p2 + q2) (s − 1)

while, when r ∼ √
εa we can write

r+ 
� ∼ r+ (− log(εa/2) − s + γ�)

if we change variable |µ| = εa cosh s with s ∼ 1
2 log 1/εa . The first and third

identities in (3.3) are obtained by equating the coefficients of the constant function
and the function s in these two expansions.

Therefore, we have the estimates

(log 1/εa)−1 |q1| + (log 1/εa) |q2| + |r±| ≤ C (|p1| + |p2|) ≤ C ε
γ
a | f |C0,α

γ−2(S̃a)
.

Putting all of this together, we find the estimate

|ūneck|C2,α
γ (S̃a)

≤ C ε
γ
a | f |C0,α

γ−2(S̃a)
.

Now using the fact that the Jacobi operator in Na is close to the Jacobi operator on
εa K , we can evaluate La ūneck − f . For all κ1 ≤ κ0/4, we find

|χneck,κ1 (La ūneck − f )|C0,α
γ−2(S̃a)

≤ C (κ2
1 + ε

1+γ
a (log 1/εa)) | f |C0,α

γ−2(S̃a)
(3.4)

where the constant C > 0 does not depend on κ1. To obtain this estimate, it is
enough to estimate the difference between the Jacobi operators Lεa K and La . For
example, using the analysis of the proof of Proposition 2.5 we find that the metric
of Na is not far from the metric of εa K and indeed

ga = 1

2
ε2

a cosh2 s (ds2 + dθ2) + O(ε3
a (log 1/εa) cosh2 s)

if �(εa cosh s cos θ, εa cosh s cos θ, εas) ∈ Na or in C±
a with the usual change of

variables |µ| = εa cosh s, while

gεa K = 1

2
ε2

a cosh2 s (ds2 + dθ2) .

Similarly, the square of the norm of the second fundamental form of Na is again
not far from the square of the norm of the second fundamental form on on εa K and
indeed

|B̃a|2 = 4

ε2
a cosh4 s

+ O
(

log 1/εa

εa cosh4 s

)
+ O

(
1

εa cosh2 s

)

in Na and

|B̃a|2 = 2 + O(εa (log 1/εa)) + O
(

εa

|µ|2
)
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in C±
a while

|Bεa K |2 = 4

ε2
a cosh4 s

.

It is then enough to use the fact that Lεa K = �gεa K + |Bεa K |2 while La =
�a + |B̃a|2 + 2. The contribution to (3.4) of the difference between Laūneck and
f in Na can be estimated by a constant times ε

1+γ
a log(1/εa) | f |C0,α

γ−2(S̃a)
. Using

the fact that 
� is annihilated by LC0 , we find that the contribution to (3.4) of the
difference between Laūneck and f in C±

a \ C±
a (κ1) can be estimated by a constant

times (κ2
1 + ε

1+γ
a log(1/εa)) | f |C0,α

γ−2(S̃a)
. Finally, the influence of the cutoff func-

tions ηneck and η±
ext in Ta produces a discrepancy that can be evaluated by a constant

times ε
1+ γ

2
a (log 1/εa) | f |C0,α

γ−2(S̃a)
and hence of a much smaller magnitude.

Observe that, when γ ∈ (−1, 0), we have

|La ūneck − f |C0,α
γ−2(S̃a)

≤ C | f |C0,α
γ−2(S̃a)

provided a is small enough. This follows at once from (3.4) together with the fact
that 
� is annihilated by LC0 away from the points of φ0(�).

Finally, we set
f̂ ±
ext := χ±

ext,κ1
( f − La ūneck) .

The functions f̂ ±
ext being supported away from the neck, they can be considered as

functions on S̃a or functions on C±
a or even functions on C0. Observe that

| f̂ ±
ext|C0,α(C0)

≤ Cκ1 | f |C0,α
γ−2(S̃a)

for some constant Cκ1 that depends on κ1 and γ .

Step 2. Let | · |Ck,α
δ (C0\φ0(�))

denote the weighted Ck,α norm on C0 \ φ0(�), so

that
| · |Ck,α

δ (C0\φ0(�))
:= ||µ|−δu|0,� + · · · + [|µ|−δ+k+α∇ku]α,�

where � is a fundamental cell of the lattice φ0(�) centered at φ0(0, 0).
We first find u±

ext the unique C2,α(C0) solution of LC0u±
ext = f̂ ±

ext on C0 satis-
fying the usual invariance property (2.1). Observe that, near µ = (0, 0) the Taylor
expansion of this solution is given by

u±
ext = u±

ext(0) + v±
ext (3.5)

where v±
ext ∈ C2,α

2 (C0 \ φ0(�)). This reflects the fact that u±
ext satisfies (� +

2)u±
ext(0)=0 near (0, 0) and hence u±

ext is smooth there. Moreover, since u±
ext(−µ)=
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u±
ext(µ), then the first partial derivatives of u±

ext vanish at (0, 0). We also have the
estimate

|v±
ext|C2,α

2 (C0\φ0(�))
+ |u±

ext(0)| ≤ C | f̂ ±
ext|C0,α(C0)

≤ Cκ1 | f |C0,α
γ−2(S̃a)

(3.6)

for some constant C independent of f and a (but Cκ1 depends on κ1). As in Step 1,

we extend u±
ext to S̃a using the function 
� and the functions f ( j)

0 . We define

ūext := η+
ext (u

+
ext + r̂+ 
�) + η−

ext (u
−
ext + r̂− 
�) + ηneck(q̂1 f (1)

0 + q̂2 f (2)
0 )

where the coefficients q̂ j and r̂ j are determined to ensure a good matching of the

functions q̂1 f (1)
0 +q̂2 f (2)

0 and u±
ext(0)+r̂± 
� on the different summands. Namely,

we find that these coefficients must satisfy the system

r̂+ (γ� − log(εa/2)) + u+
ext(0) = q̂1 − q̂2

r̂− (γ� − log(εa/2)) + u−
ext(0) = −q̂1 − q̂2

r̂+ = −q̂2

r̂− = −q̂2.

Therefore, we have the estimates

(log 1/εa) (|q̂2| + |r±|) + |q̂1| ≤ C (| f̂ +
ext|C0,α + | f̂ −

ext|C0,α ) ≤ Cκ1 | f |C0,α
γ−2(S̃a)

.

Putting all of this together, we obtain the estimate

|ūext|C2,α
γ (S̃a)

≤ Cκ1 | f |C0,α
γ−2(S̃a)

.

Now using the fact that the Jacobi operator on C0 is close to the Jacobi operator on
C̃±

a , we can evaluate La ūext − f̂ +
ext − f̂ −

ext. With little work, and using the strategy
developed in step 1, we find

|La ūext − f̂ +
ext − f̂ −

ext|C0,α
γ−2(S̃a)

≤ Cκ1 εa (log 1/εa) | f |C0,α
γ−2(S̃a)

. (3.7)

There is no difficulty in obtaining this estimate. Observe that we have used the
fact that 
� is annihilated by LC0 and also the fact that the functions f ( j)

0 are in
the kernel of Lεa K . The contribution to (3.7) of the difference between Laūext

and f̂ +
ext + f̂ −

ext in Na can be estimated by a constant (depending on κ1) times

ε
1− γ

2
a (log 1/εa) | f |C0,α

γ−2(S̃a)
. The contribution to (3.7) of the difference between

Laūext and f̂ +
ext + f̂ −

ext in C±
a \ C̃±

a (κ1) can be estimated by a constant (depending
on κ1) times εa (log 1/εa) | f |C0,α

γ−2(S̃a)
. Finally, the influence of the cutoff functions
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ηneck and η±
ext in Ta produces a discrepancy that can be evaluated by a constant

(depending on κ1) times ε
1− γ

2
a | f |C0,α

γ−2(S̃a)
and hence of a much smaller magnitude.

Collecting the estimates we conclude that

|ūext + ūneck|C2,α
γ (S̃a)

≤ Cκ1 ε
γ
a | f |C0,α

γ−2(S̃a)

and also that

|La (ūext + ūneck) − f |C0,α
γ−2(S̃a)

≤ (C κ2
1 + Cκ1 ε

1+γ
a (log 1/εa)) | f |C0,α

γ−2(S̃a)
.

In other words, for all a small enough, the mapping f �−→ ūext + ūneck is almost a
right inverse for La and the result now follows from a standard perturbation argu-
ment, provided κ1 is fixed small enough and γ ∈ (−1, 0).

3.4. The nonlinear estimates and the conclusion of the proof

Nonlinear estimates. As mentioned earlier, the proof of the Theorem 1.1 requires
two more estimates. First, it is necessary to show that |�a(0) − Ha| is small in the
C0,α

γ−2(S̃a) norm. Second, it is necessary to show that
[
D�a( f ) − La

]
can be made

to have small operator norm (with respect to the Ck,α
γ (S̃a) norms) if f is chosen

sufficiently small in the C2,α
γ (S̃a) norm. Once these estimates are understood, it

will be possible to conclude the proof of the Theorem 1.1 simply by invoking the
inverse function theorem

The following is a simple consequence of the result of Proposition 2.5.

Proposition 3.7. The quantity �a(0), which is the mean curvature of S̃a, satisfies
the following estimate. Assume that γ < 0 is fixed. If a is sufficiently small, then
there exists a constant C∗ independent of a so that∣∣�a(0) − Ha

∣∣
C0,α

γ−2
≤ C∗ ε2

a (log 1/εa). (3.8)

We also need the following.

Proposition 3.8. The differential of the operator �a satisfies the following esti-
mate. Fix κ2 > 0. Assume that γ ∈ (−1/2, 0) is fixed. Then the exists a con-
stant Cκ2 > 0 such that, for all sufficiently small a and all f satisfying | f |C2,α

γ
≤

κ2 ε
2+γ
a (log 1/εa) we have

∣∣D�a( f ) u − La u
∣∣
C0,α

γ−2(S̃a)
≤ Cκ2 ε

1+2γ
a (log 1/εa) |u|C2,α

γ (S̃a)
(3.9)

for any u ∈ C2,α
γ (S̃a).



636 ADRIAN BUTSCHER AND FRANK PACARD

Proof. The derivative of �a at a point different from 0 is a similar calculation as at
the point 0. That is

d�a( f + tu)

dt

∣∣∣∣
t=0

= �a, f u + (‖B̃a, f ‖2 + 2
)
u

where �a, f and B̃a, f are the Laplacian and the second fundamental form, respec-
tively, of the submanifold S̃a, f := exp( f Ña)(S̃a). Consequently, we must estimate
the quantity(

D�a( f ) u − La u
) = (

�a, f − �a
)
u + (‖B̃a, f ‖2 − ‖B̃a‖2) (3.10)

in the | · |C0,α
γ−2(S̃a)

norm. To obtain this estimate, it is sufficient to estimate the

difference between the metrics on S̃a, f and S̃a which will provide the estimates
between the Laplacians and also the difference between the square norms of the
second fundamental forms of these surfaces.

Observe that on the normal graph of f over C̃±
a (2εa), the surface S̃a, f can be

represented as graphs over C0 \ ⋃
p∈φ0(�) B2εa (p) for some functions ±ua + f̃ ±

where f̃ ± satisfies

|χ±
ext,2εa

f̃ ±|C2,α
γ (C0\φ0(�))

≤ Cκ2 ε
2+γ
a (log 1/εa)

where the cutoff functions χ±
ext,2εa

are assumed to be chosen so that their norm

in C2,α
0 (S̃a) are bounded independently of a. It follows at once from the analysis

performed in the proof of Proposition 2.5 that

|χ±
ext,2εa

(�a, f − �a)u|C0,α
γ−2(C0\φ0(�))

≤Cκ2ε
1+2γ
a (log 1/εa)|χ±

ext,2εa
u|C2,α

γ (C0\φ0(�))

and also that

|χ±
ext,2εa

(‖B̃a, f ‖2 − ‖B̃a‖2) u|C0,α
γ−2(C0\φ0(�))

≤ Cκ2 ε
1+2γ
a (log 1/εa) |χ±

ext,2εa
u|C2,α

γ (C0\φ0(�))
.

Let us explain where these estimates come from. The first estimate follows from
the fact that the coefficients of the metric of the graph of a function u contains
terms of the form ∂i u ∂ j u which produce a discrepancy between the coefficients of
the metric of S̃a, f and S̃a that involves terms of the form ∂i ua ∂ j f̃ ±. The second
estimate follows from the fact that the difference between the coefficients of the
square of the fundamental form of the graph of a function u contains terms of the
form ∂i j u ∂klu which produce a discrepancy between the square of the fundamental
forms of S̃a, f and S̃a that involves terms of the form ∂i j ua ∂kl f̃ .

The estimate in Na(2εa) follows easily from the analysis of the second half
of the proof of Proposition 2.5 and does not yield worse estimates than we already
have. We leave the details to the reader.
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Conclusion of the proof. The estimates for the proof of the Theorem 1.1 are now
all in place and the conclusion of the theorem becomes a simple verification of the
conditions of the inverse function theorem. We choose γ ∈ (−1/3, 0). First by
Proposition 3.6, the linearization satisfies the estimate

|La u|C0,α
γ−2(S̃a)

≥ C∗ ε
−γ
a |u|C2,α

γ (S̃a)

where C∗ is a constant independent of a. Therefore by the inverse function theorem
of Section 3.1 along with Proposition 3.8, a solution of the deformation problem
can be found if ∣∣�a(0) − Ha

∣∣
C0,α

γ−2(S̃a)
≤ 1

2
C∗ ε

−γ
a R

where R = κ2 ε
2+γ
a (log 1/εa) and if

∣∣D�a( f ) u − La u
∣∣
C0,α

γ−2(S̃a)
≤ 1

2
C∗ ε

−γ
a |u|C2,α

γ (S̃a)

for all | f |C2,α
γ (S̃a)

≤ k2ε
2+γ
a (log 1/εa). But the above result shows that

∣∣D�a( f ) u − La u
∣∣
C0,α

γ−2(S̃a)
≤ Cκ2 ε

1+2γ
a (log 1/εa) |u|C2,α

γ (S̃a)

and Proposition 3.7 shows that
∣∣�a(0) − Ha

∣∣
C0,α

γ−2(S̃a)
≤ C∗ ε2

a (log 1/εa). Hence

this can always be done if a is sufficiently small and κ2 is large enough to ensure
κ2 C∗ ≥ 2C∗. This concludes the proof of the Theorem 1.1.
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