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A finiteness theorem for holomorphic Banach bundles

JÜRGEN LEITERER

Abstract. Let E be a holomorphic Banach bundle over a compact complex
manifold, which can be defined by a cocycle of holomorphic transition functions
with values of the form id + K where K is compact. Assume that the character-
istic fiber of E has the compact approximation property. Let n be the complex
dimension of X and 0 ≤ q ≤ n. Then: If V → X is a holomorphic vector bundle
(of finite rank) with Hq (X, V ) = 0, then dim Hq (X, V ⊗ E) < ∞. In particular,
if dim Hq (X,O) = 0, then dim Hq (X, E) < ∞.

Mathematics Subject Classification (2000): 32F10 (primary); 32C37 (sec-
ondary).

1. Introduction

By a holomorphic Banach bundle we mean a topological vector bundle E whose
characteristic fiber is a complex Banach space B and whose structure is defined
by a cocycle of holomorphic transition functions with values in the automorphism
group of B. Set rankE = dim B.

Many of the results on holomorphic vector bundles on Stein spaces are valid
also for Banach bundles, as it was proved by L. Bungart [1] (1968). This is no more
true on non-Stein spaces. For example, it is clear that there is no Kodaira finiteness
theorem for holomorphic Banach bundles on compact spaces. Moreover, already on
the Riemann sphere P1, there exist holomorphic Banach bundles E with a Hilbert
space as characteristic fiber such that H1(P1, E) is even not Hausdorff [3]. Hence,
to get finiteness theorems for holomorphic Banach bundles, we have to impose
additional conditions.

We shall say that a holomorphic Banach bundle with characteristic fiber B is of
compact type if it can be defined by a cocycle of holomorphic transition functions
with values of the form id + K where K is compact. For such bundles, on the
Riemann sphere P1, we have the Gohberg splitting theorem [4] (1964), which is a
generalization of the Grothendieck splitting theorem and plays an important role in
operator theory:
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Gohberg splitting theorem [4, 5, 2]. Any holomorphic Banach bundle of compact
type over P1 splits into a finite sum of line bundles and a trivial Banach bundle.1

From the Gohberg splitting theorem it follows that, for any holomorphic Banach
bundle E of compact type over P1,

dim Hq(P1, E)

{
< ∞ if q ≥ 1
= ∞ if q = 0 and rankE = ∞.

So, on the Riemann sphere, for holomorphic Banach bundles of compact type, the
Kodaira finiteness theorem is true if q ≥ 1 and it is not true if q = 0. The reason is
that Hq(P1,O) = 0 if q ≥ 1 whereas H0(P1,O) �= 0.

Now let X be an arbitrary compact complex manifold. If, for some q ∈ N,
Hq(X,O) �= 0, then it is clear that, for any product bundle of the form E = X × B
where B is an infinite dimensional Banach space,

dim Hq(X, E) = ∞.

Hence there is no Kodaira finiteness theorem also for holomorphic Banach bundle
of compact type. However one may expect that the following conjecture ist true:

Conjecture 1.1. If X is a compact complex manifold and q ∈ N such that dim Hq

(X,O) = 0, then, for any holomorphic Banach bundle of compact type, dim Hq

(X, E) < ∞.

In the present paper we prove this conjecture under the additional hypothesis that
the characteristic fiber of E has the compact approximation property (see, e.g.,
[9]).2 Actually we prove the following more general theorem (the conjecture is the
special case when V is the trivial line bundle):

Theorem 1.2. Let X be an n-dimensional compact complex manifold, V → X a
holomorphic vector bundle (of finite rank) and 0 ≤ q ≤ n such that

dim Hq(X, V ) = 0. (1.1)

1 In [4, 5, 2] this result appears in the language of Riemann-Hilbert factorization. This is equiv-
alent to the formulation given here, because holomorphic Banach bundles over C are trivial, as it
was proved by Bungart [1]. Note also that the first proof of this theorem, given in [4] (1964), uses
the additional condition that the bundle can be defined by a cocycle of holomorphic transition
functions with values of the form id + K where K can be approximated be finite dimensional
operators. (By Enflow’s example, found later (1972), there exist Banach spaces such that not
any compact operator can be approximated by finite dimensional operators (see, e.g., [9])). This
additional condition then was removed in [5].
2 A Banach space B has the compact approximation property if for each compact set � ⊆ B
and each ε > 0, there is a compact endomorphism K of B such that

‖x − K x‖ ≤ ε for all x ∈ �.

Note that there exist Banach spaces without approximation property but with compact approxi-
mation property (see, e.g., [9]).
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Then, for each holomorphic Banach bundle of compact type E → X whose char-
acteristic fiber has the compact approximation property,

dim Hq(X, V ⊗ E) < ∞, (1.2)

and
dim Hq(X, V ⊗ E) = 0 if E is trivial. (1.3)

Now some remarks about the proof of this theorem. The first ingredient is a gen-
eral local-global construction of [8]. Under the hypothesis (1.1) this construction
gives a global homotopy representation for V -valued (0, q)-forms. By a general
principle (Proposition 2.2), this yields a homotopy representation for (0, q)-forms
with values in holomorphic Banach bundles of the form V ⊗ E where E is a trivial
Banach bundle (which completes the proof in this case). The second ingredient is
the following observation (Proposition 2.5): let B be a Banach space, X a com-
pact metric space, C0(X, B) the Banach space of continuous B-valued maps on X
and Cα(X, B) the Banach space of Hölder-α-continuous B-valued functions on X ,
0 < α < 1. Further, let A be a bounded linear map from C0(X, B) to Cα(X, B),
and let K be a compact linear endomorphism of B. Although then neither A nor
the operator of multiplication by K need to be compact as an endomorphism of
C0(X, B), the composition K A is a compact endomorphism of C0(X, B). It is not
clear whether the same is true also for AK , but under certain extra conditions, ful-
filled in our situation, this is the case (Proposition 2.8).

ACKNOWLEDGEMENTS. I thank Matjaz Erat and Laszlo Lempert for reading the
manuscript and many suggestions improving the text.

2. Preliminaries

By a Banach space we always mean a complex linear space endowed with a Ba-
nach space topology (a norm need not be fixed). The Banach space of bounded
linear operators from a Banach space A to a Banach space B will be denoted by
Hom(A, B) and considered as Banach space endowed with the operator norm topol-
ogy. The subset of isomorphisms of Hom(A, B) will be denoted by Iso(A, B) (pos-
sibly, it is empty). We set End (B) := Hom(B, B), and AutB = Iso(B, B).

Let E be a C∞ Banach bundle over a C∞ manifold X , i.e. a locally trivial
bundle whose characteristic fiber is a Banach space B and which can be defined by
a cocycle of (AutB)-valued C∞ transition functions. If x ∈ X , then the fiber of
E over x will be denoted by Ex . By a fiber norm on E we mean a C∞ function
‖ · ‖ on E such that the restriction to each fiber Ex is a norm defining the topology
of Ex .

Let E , F be two C∞ Banach bundles over a C∞ manifold X . Then we denote
by Hom(E, F) the Banach bundle with (Hom(E, F))x = Hom(Ex , Fx ), x ∈ X .
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The subbundle of isomorphisms in Hom(E, F) will be denoted by Iso(E, F). Set
End E = Hom(E, E) and AutE = Iso(E, E).

By a vector bundle (C∞ or holomorphic) we always mean a usual complex
vector bundle of finite rank.

Let E be a C∞ Banach bundle over a C∞ manifold X , and k ∈ N ∪ {∞}
(N = {0, 1, . . .}). Then we denote by Ck(X, E) the Fréchet space of global Ck

sections of E , and, if k < ∞ and 0 < α < 1, then we denote by Ck+α(X, E) the
Fréchet space of global Ck sections of E whose derivatives of order k are Hölder
continuous with exponent α.

Let V be a C∞ vector bundle over a C∞ manifold X and B a Banach space. The
fiberwise defined tensor product V ⊗ (X × B) will be simply denoted by V ⊗ B.
For ψ ∈ Ck(X, V ) and b ∈ B, then we have the element ψ ⊗ b of the tensor
product Ck(X, V ) ⊗ B of the spaces Ck(X, V ) and B. On the other hand, we have
the fiberwise defined tensor product ψ ⊗ (X × b) ∈ Ck(X, V ⊗ B) of ψ and the
constant section X × b of X × B. It is easy to see that the linear map

Ck(X, V ) ⊗ B −→ Ck(X, V ⊗ B)

defined by

ψ ⊗ b −→ ψ ⊗ (X × b), ψ ∈ Ck(X, V ), b ∈ B,

is injective, for each k ∈ N ∪ {∞}. Therefore the subspace of Ck(X, V ⊗ B) which
consists of the sums of the form

N∑
j=1

ψ j ⊗ (X × b j ), ψ j ∈ Ck(X, V ), b j ∈ B, (2.1)

can be identified with the tensor product Ck(X, V )⊗ B. We will do this, and for the
now identified products ψ ⊗ b and ψ ⊗ (X × b) we will use the simpler notation
ψ⊗b. Clearly, for dim B = ∞, Ck(X, V )⊗B is strictly smaller than Ck(X, V ⊗B),
but we have

Proposition 2.1. Let V be a C∞ vector bundle over a C∞ manifold X, B a Banach
space and k ∈ N ∪ {∞}. Then the space C∞(X, V ) ⊗ B is dense in Ck(X, V ⊗ B)

with respect to the Ck topology.

Proof. It is sufficient (by partition of unity) to prove the following local result:

Lemma. Let U ⊆ Rn be an open set and Dk(U, B) the space of B-valued Ck

maps with compact support in U, k ∈ N ∪ {∞}. Denote by Dk(U, C) ⊗ B the
subspace of Dk(U, B) which consists of the finite sums of the form

∑
ψ j b j where

ψ j ∈ Dk(U, C) and b j ∈ B. Then D∞(U, C) ⊗ B is dense in Dk(U, B) with
respect to the Ck topology.

To prove the lemma we fix some norm ‖ · ‖B on B defining the topology of B.
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First consider the case k = 0. Let f ∈ D0(U, B) and ε > 0 be given. Since
f is continuous and has compact support in U , we can find a finite open covering
U1, . . . , UN of U such that ‖ f (x) − f (y)‖ ≤ ε whenever x and y belong to the
same U j . Fix some point u j in each U j such that f (u j ) = 0 if U j ∩ supp f = ∅.
Take a continuous partition of unity {χ j } subordinated to the covering {U j } and set

f̃ (x) :=
N∑

j=0

χ j (x) f (u j ) for x ∈ U.

Then it is clear that f̃ ∈ D0(U, C) ⊗ B and ‖ f̃ (x) − f (x)‖B ≤ ε for all x ∈ U .
To prove the lemma for 1 ≤ k ≤ ∞, it is sufficiet to do this for 1 ≤ k < ∞.

Let such k be given. Let dλ be the Euclidean volume form on Rn . Fix a non-
negative C∞-function ϕ on Rn with

∫
Rn ϕ dλ = 1 and ϕ(x) = 0 if |x | ≥ 1. Set

ϕε(x) = ε−nϕ(x/ε) for x ∈ Rn and ε > 0. If u : Rn → B is continuous and ε > 0,
then we define

(Tεu)(x) =
∫
Rn

ϕε(x − y) u(y) dλ(y) =
∫
Rn

ϕε(y) u(x − y) dλ(y). (2.2)

Now let f ∈ Dk(U, B) and δ > 0 be given. Take ε0 > 0 so small that the distance
between supp f and the boundary of U is bigger than 2ε0, and let U ′ be the open
ε0-neighborhood of supp f . Then, for ε < ε0, Tε f belongs to D∞(U ′, B). (To
see this one has to differentiate under the sign of integration in the first integral
of (2.2).) Moreover, for ε → 0, Tε f tends to f in the Ck topology. (To see this
one has to differentiate under the sign of integration in the second integral of (2.2).)
Therefore, we can find 0 < ε < ε0 with∥∥ f − Tε f

∥∥
k <

δ

2
(2.3)

where ‖ · ‖k denotes the Ck-norm with respect to ‖ · ‖B . As the lemma is already
proved for k = 0, moreover we can find a sequence g j ∈ D0(U ′, C) ⊗ B such that

lim
j→∞ max

x∈U ′ ‖ f (x) − g j (x)‖B = 0. (2.4)

Set f j = Tεg j . Then f j ∈ D∞(U, C) ⊗ B for all j , and it follows from (2.3)∥∥ f − f j
∥∥

k <
∥∥Tε f − f j

∥∥
k + δ

2
= ∥∥Tε

(
f − g j

)∥∥
k + δ

2
.

By differentiation under the sign of integration in the first integral of (2.2) and
by (2.4) it follows that

lim
j→∞

∥∥Tε( f − g j )
∥∥

k = 0.

Hence, we can choose j so large that ‖ f − f j‖k < δ.
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Proposition 2.2. Let V and V ′ be C∞ vector bundles over C∞ manifolds X and X ′
respectively. Let k, k′ ∈ N, 0 ≤ α < 1, and let

A : Ck(X, V ) −→ Ck′+α(X ′, V ′)

be a continuous linear operator. Then, for each Banach space B, there exists a
uniquely determined continuous linear operator

AB : Ck(X, V ⊗ B) −→ Ck′+α(X ′, V ′ ⊗ B)

such that
AB = A ⊗ id on Ck(X, V ) ⊗ B (2.5)

where
A ⊗ id : Ck(X, V ) ⊗ B −→ Ck+α(X ′, V ′) ⊗ B

is the algebraic tensor product of A and the identical endomorphism of B.

Proof. Since, by Proposition 2.1, Ck(X, V ) ⊗ B is dense in Ck(X, V ⊗ B), it is
sufficient to prove that A ⊗ id is continuous with respect to the Ck topology in the
source space and the Ck′+α topology in the target space.

Let n = dim X , n′ = dim X ′, r = rankV , r ′ = rankV ′. Fix some norm ‖ · ‖
defining the topology of B. Denote by B∗ the space of continuous linear functionals
	 : B → C endowed with the norm ‖	‖ := supx∈B , ‖x‖=1 |	(x)|.

Let l, m ∈ N, ω ⊂⊂ Rm a compact set and f a B-valued Cl map in a neigh-
borhood of ω. Then we set (using the usual notations for partial derivatives)

ρω,l( f ) = max
0≤|β|≤l

max
ζ∈ω

∥∥Dβ f (ζ )
∥∥

and, if α > 0 and f is even of class Cl+α ,

ρω,l+α( f ) = max

(
ρω,l( f ) , max|β|=l

sup
ζ,η∈ω , ζ �=η

∥∥Dβ f (ζ ) − Dβ f (η)
∥∥

|ζ − η|α
)

.

In the same way we define ρω,l( f ) and ρω,l+α( f ) if f is a scalar function, using
the modulus | · | of complex numbers instead of the norm ‖ ·‖. By the Hahn-Banach
theorem,

‖Dβ f (ζ )‖ = max
	∈B∗ , ‖	‖=1

∣∣	(
Dβ f (ζ )

)∣∣ = max
	∈B∗ , ‖	‖=1

∣∣Dβ(	 ◦ f )(ζ )
∣∣

for all ζ ∈ ω and all multi-indices β with 0 ≤ |β| ≤ l. Hence

ρω,l( f ) = max
	∈B∗ , ‖	‖=1

ρω,l(	 ◦ f ). (2.6)
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If α > 0 and f is even of class Cl+α , then moreover

sup
ζ,η∈ω , ζ �=η

∥∥Dβ f (ζ ) − Dβ f (η)
∥∥

|ζ − η|α

= sup
ζ,η∈ω , ζ �=η

max
	∈B∗ , ‖	‖=1

∥∥Dβ(	 ◦ f ) (ζ ) − Dβ(	 ◦ f ) (η)
∥∥

|ζ − η|α

= sup
	∈B∗ , ‖	‖=1

sup
ζ,η∈ω , ζ �=η

∥∥Dβ(	 ◦ f ) (ζ ) − Dβ(	 ◦ f ) (η)
∥∥

|ζ − η|α

and therefore
ρω,l+α( f ) = sup

	∈B∗ , ‖	‖=1
ρω,l+α(	 ◦ f ). (2.7)

Fix a family
{
(U j , ω j , ϕ j , e j )

}
j∈I such that

• {
U j } j∈I is a locally finite open covering of X ;

• each ω j is a compact subset of U j , and X = ⋃
j∈I ω j ;

• each ϕ j is a system ϕ j = (ϕ j1, . . . , ϕ jn) of real C∞ coordinates on U j ;
• each e j is a C∞ frame e j = (e j1, . . . , e jr ) of V over U j (r is the rank of V ).

For X ′ and V ′ we fix a corresponding family
{
(U ′

j , ω
′
j , ϕ

′
j , e′

j )
}

j∈I ′ .
If f is a section of V over some � ⊆ X , then, over each U j ∩ �, it can be

written in the form f = ∑r
ν=1 f jν e jν where f j1, . . . , f jr are uniquely determined

scalar functions on U j ∩�. These functions f jν , will be called the coefficients of f .
Similarly, if f is a section of V ⊗ B over some � ⊆ X , then by the coefficients of f
we mean the uniquely determined maps f jν : U j ∩ � → B with f = ∑r

ν=1 e jν ⊗
f jν . If f belongs to one of the spaces Ck(X, V ) or Ck(X, V ⊗ B), then we define

ρ j ( f ) = max
ν=1,...,r

ρω j ,k

(
f jν ◦ ϕ−1

j

)
for all j ∈ I

where f jν are the coefficients of f . The so defined family of semi norms {ρ j } j∈I

defines the topologies of Ck(X, V ) and Ck(X, V ⊗ B).
Similarly, using the family {(U ′

j , ω
′
j , ϕ

′
j , e′

j )} j∈I ′ , we define a family of semi

norms {ρ′
j } j∈I ′ defining the topologies of Ck′+α(X ′, V ′) and Ck′+α(X ′, V ′ ⊗ B).

Let 	 ∈ B∗. Then we denote by 	V the global section of Hom(V ⊗ B , V )

which is the fiberwise tensor product of the identity section of End V and 	, i.e. if
a section f of V ⊗ B is written as a finite sum f = ∑

µ ψµ ⊗ bµ where the ψµ are
sections of V and the bµ are B-valued maps, then

	V f =
∑
µ

(	 ◦ bµ) ψµ. (2.8)

In the same way, we define a global section 	V ′ of Hom(V ′ ⊗ B , V ′).
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Let f ∈ Ck(X, V ⊗ B) and let f jν be the coefficients of f . Then, by (2.8),
	 ◦ f jν are the coefficients of 	V f . By (2.6) this implies, for all j ∈ I ,

ρ j ( f ) = max
ν=1,...,r

sup
	∈B∗ , ‖	‖=1

ρω j ,k
(
	◦ f jν◦ϕ−1

j

) = sup
	∈B∗ , ‖	‖=1

ρ j
(
	V f

)
. (2.9)

Similarly, if f ∈ Ck′+α(X ′, V ′ ⊗ B) and j ∈ I ′, then, by (2.8) and (2.7),

ρ′
j ( f ) = sup

	∈B∗ , ‖	‖=1
ρ′

j

(
	V ′ f

)
. (2.10)

Let f ∈ Ck(X, V ) ⊗ B and 	 ∈ B∗. Then f can be written as a finite sum

f =
∑
µ

ψµ ⊗ bµ with ψµ ∈ Ck(X, V ) and bµ ∈ B,

and, by (2.8) and the corresponding relation for 	V ′ , it follows that

	V f =
∑
µ

(
	bµ

)
ψµ and 	V ′(A ⊗ id) f =

∑
µ

(
	bµ

)(
Aψµ

)
.

Since the 	bµ are numbers and A is linear, this implies that

	V ′(A ⊗ id) f = A

(∑
µ

(	bµ)ψµ

)
= A	V f. (2.11)

Now, to prove the continuity of A ⊗ id, consider an arbitrary κ ∈ I ′. We have to
find a finite number of indices j1, . . . , jN ∈ I and a constant C < ∞ such that

ρ′
κ

(
(A ⊗ id) f

) ≤ C max
ν=1,...,N

ρ jν ( f ) (2.12)

for all f ∈ Ck(X, V ) ⊗ B. Since A is continuous, there exist a finite number of
indices j1, . . . , jN ∈ I and a constant C < ∞ such that

ρ′
κ

(
Av

) ≤ C max
ν=1,...,N

ρ jν (v) (2.13)

for v ∈ Ck(X, V ). Now let f ∈ Ck(X, V ) ⊗ B. Then, by (2.11) and (2.13),

ρ′
κ

(
	V ′(A ⊗ id) f

) = ρ′
κ

(
A	V f

) ≤ C max
ν=1,...,N

ρ jν (	V f ) for all 	 ∈ B∗,

and the required estimate (2.12) now follows by (2.9) and (2.10).

Definition 2.3. Let E and F be C∞ Banach bundles over a C∞ manifold X . A
section K : X → Hom(E, F) will be called fiber compact if, for each ζ ∈ X , the
value K (ζ ) is a compact operator between the fibers Eζ and Fζ .
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Lemma 2.4. Let E and E ′ be C∞ Banach bundles over a C∞ manifold X, and let
K : X → Hom(E, E ′) be a section which is fiber compact and continuous with
respect to the operator norm topology. Further, let ‖ · ‖ be a fiber norm on E. Then,
for each compact set ω ⊂⊂ X, the set{

K (ζ ) v
∣∣ ζ ∈ ω , v ∈ Eζ , ‖v‖ ≤ 1

}
(2.14)

is precompact in E ′.

Proof. Since ω is compact, after passing to local trivializations, we may assume
that X is an open subset of Rn and the bundles E and F are trivial, i.e. E = X × B
and E ′ = X × B ′ for some Banach spaces B and B ′, and K can be considered as
a continuous map K : X → Hom(B, B ′). Assume that some norms are fixed on
B and B ′ which we both denote by ‖ · ‖. Also the corresponding operator norm on
Hom(B, B ′) will be denoted by ‖ · ‖. Then we have to prove that the set{

K (ζ ) v
∣∣ ζ ∈ ω , v ∈ B , ‖v‖ ≤ 1

}
(2.15)

is precompact in B ′. Let ε > 0 be given. As the values of K are compact, for each
η ∈ X , there is a finite set �(η) ⊆ B ′ such that{

K (η) v
∣∣ v ∈ B , ‖v‖ ≤ 1

}
is contained in the ε/2-neighborhood of �(η). Since K is continuous, for each
η ∈ X , we can find a neighborhood U (η) of η such that

‖K (ζ ) − K (η)‖ ≤ ε

2
for all ζ ∈ U (η).

Then ‖K (ζ )v − K (η)v‖ ≤ ε/2 for all v ∈ B with ‖v‖ ≤ 1, and, hence, the set{
K (ζ ) v

∣∣ ζ ∈ U (η) , v ∈ B , ‖v‖ ≤ 1
}

is contained in the ε-neighborhood of �(η). Since ω is compact, there is a finite
number of points η1, . . . , ηN ∈ ω such that ω is covered by U (η1), . . . , U (ηN ).
Then the set

N⋃
j=1

{
K (ζ ) v

∣∣ ζ ∈ U (η j ) , v ∈ B , ‖v‖ ≤ 1
}

is contained in the ε-neighborhood of the finite set �(η1) ∪ . . . ∪ �(ηN ). If follows
that the set (2.15) is contained in the ε-neighborhood of this finite set.

Proposition 2.5. Let E, E ′, E ′′ be C∞ Banach bundles over a compact C∞ man-
ifold X and 0 < α < 1. Let K : X → Hom(E ′, E ′′) be a section which is fiber
compact and Hölder continuous with exponent α with respect to the operator norm
topology. Further let

A : C0(X, E) −→ Cα(X, E ′)
be a continuous linear operator. Then K A is compact as an operator between
C0(X, E) and C0(X, E ′′).
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Proof. Let a bounded sequence ( f j ) j∈N in C0(X, E) be given. Then (A f j ) j∈N is a
bounded sequence in Cα(X, E ′). In particular, (A f j ) j∈N is bounded in C0(X, E ′).
As X is compact, it follows, by Lemma 2.4, that

� :=
{(

K A f j
)
(ζ )

∣∣∣ ζ ∈ X , j ∈ N

}
is precompact in E ′′. Since K is Hölder continuous with exponent α and (A f j ) j∈N

is a bounded sequence in Cα(X, E ′), now we see that (K A f j ) j∈N is a bounded
sequence in Cα(X, E ′′) all values of which belong to the precompact set �. By
Ascoli’s theorem this sequence has a uniformly convergent subsequence.

Lemma 2.6. Let V be a C∞ vector bundle over a C∞ manifold X, B a Banach
space and F a linear subspace of B. Let ‖ · ‖ be a fiber norm on V ⊗ B, ε > 0 and
f : X → V ⊗ B a continuous section such that

inf
v∈(V ⊗F)ζ

‖ f (ζ ) − v‖ < ε for all ζ ∈ X.

Then there exists a continuous section fε : X → V ⊗ F such that

‖ f (ζ ) − fε(ζ )‖ < ε for all ζ ∈ X.

Proof. By hypothesis, for each ζ ∈ X , we can fix a vector vζ ∈ (V ⊗ F)ζ such
that ‖ f (ζ ) − vζ‖ < ε. Further, for each such vector, we can find a continuous
section fζ : X → V ⊗ F with fζ (ζ ) = vζ . Then, for each ζ ∈ X , we choose a
neighborhood Uζ of ζ so small that ‖ f (η) − fζ (η)‖ < ε for all η ∈ Uζ . Finally,
take a continuous partition of unity {χζ }ζ∈X subordinated to the covering {Uζ }ζ∈X ,
and set fε(η) = ∑

ζ∈X χζ (η) fζ (η) for η ∈ X .

Lemma 2.7. Let V be a C∞ vector bundle over a compact C∞ manifold X, B a
Banach space, ‖ · ‖ a fiber norm on V ⊗ B, and ω a compact subset of the total
space of the bundle V ⊗ B. Then, for each ε > 0, there exists a finite dimensional
subspace F of B such that

inf
w∈(V ⊗F)ζ

‖v − w‖ < ε for all ζ ∈ X and v ∈ ω ∩ (V ⊗ B)ζ . (2.16)

Proof. Let r be the rank of V and Br the direct sum of r copies of B. Fix some
norm ‖ · ‖Br of Br . Take a Riemann metric on X and let dX be the corresponding
distance function. Setting

d
(
(ζ, v), (η, w)

) = dX (ζ, η) + ‖v − w‖Br for ζ, η ∈ X and v, w ∈ Br ,

we choose a metric d on X × Br . Since X is compact, we can find a finite open
covering Ũ1, . . . , ŨN of X and local C∞ trivializations θ j : V

∣∣
Ũ j

→ Ũ j × Cr of

V . Setting � j = θ j ⊗ id we get trivializations

� j : (V ⊗ B)
∣∣
Ũ j

→ Ũ j × Br .
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Take relatively compact open subsets U j ⊂⊂ Ũ j such that U1, . . . , UN is still an
open covering of X . Set

ω j = � j

(
ω ∩ (V ⊗ B)

∣∣
U j

)
.

Then each ω j is a compact subset of U j × Br . Now we consider an arbitrary δ > 0.
As ω̃ := ω1 ∪ . . . ∪ ωN is compact, then we can choose a finite number of points
(ζν, bν) ∈ X × Br , ν = 1, . . . , m, such that, for each (ζ, b) ∈ ω̃, there exists an
index ν ∈ {1, . . . , m} with d

(
(ζ, b), (ζν, bν)

)
< δ and therefore, by definition of

d, ‖b − bν‖Br < δ. Let F be the subspace of B spanned by the components of
the vectors bν (the dimension of F is ≤ mr ). Then Fr contains the vectors bν and,
hence, for each (ζ, b) ∈ ω̃, we get

inf
v∈Fr

‖b − v‖Br < δ.

Since � j
(
(V ⊗ F)ζ

) = {ζ } × Fr for ζ ∈ U j , this implies (2.16) if δ is chosen
sufficiently small.

Proposition 2.8. Let V , V ′ and V ′′ be C∞ vector bundles over a compact C∞
manifold X, B a Banach space and 0 < α < 1. Let K : X → Hom(V ⊗ B, V ′⊗ B)

be a section which is fiber compact and continuous with respect to the operator
norm topology. Let A : C0(X, V ′) → Cα(X, V ′′) be a bounded linear operator,
and let

AB : C0(X, V ′ ⊗ B) −→ Cα(X, V ′′ ⊗ B)

be the bounded linear operator with AB = A ⊗ id on C0(X, V ′) ⊗ B (Proposition
2.2). Then AB K is compact as operator between C0(X, V ⊗B) and C0(X, V ′′⊗B).

Proof. Fix some fiber norms on V ⊗ B, V ′ ⊗ B and V ′′ ⊗ B which we all denote
by ‖ · ‖. Consider an arbitrary sequence ( f j ) j∈N in C0(X, V ⊗ B) with

C := sup
j∈N , ζ∈X

∥∥ f j (ζ )
∥∥ < ∞, (2.17)

as well as an arbitrary ε > 0. It is sufficient to find a sequence ( f ′′
j ) j∈N in

C0(X, V ′′ ⊗ B) with

max
ζ∈X

∥∥AB K f j (ζ ) − f ′′
j (ζ )

∥∥ ≤ ε for all j ∈ N (2.18)

such that ( f ′′
j ) j∈N has a uniformly convergent subsequence.
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Let ‖AB‖ be the operator norm of AB as an operator between the spaces
C0(X, V ′ ⊗ B) and C0(X, V ′′ ⊗ B) endowed with the maximum norms with re-
spect to the fiber norms fixed in the beginning of the proof. By Lemma 2.4, the
set

ω :=
{

K (ζ ) f j (ζ )

∣∣∣ ζ ∈ X , j ∈ N

}
(2.19)

is precompact in V ′ ⊗ B. Hence, by Lemma 2.7, there is a finite dimensional
subspace F of B such that

inf
w∈(V ′⊗F)ζ

‖K (ζ ) f j (ζ ) − w‖ <
ε

‖AB‖ for all ζ ∈ X and j ∈ N. (2.20)

Therefore, by lemma 2.6, we can find a sequence ( f ′
j ) j∈N in C0(X, V ′ ⊗ F) such

that
max
ζ∈X

‖K (ζ ) f j (ζ ) − f ′
j (ζ )‖ <

ε

‖AB‖ for all j ∈ N. (2.21)

Set f ′′
j = AB f ′

j . Then (2.18) is clear, by (2.21) and the definition of ‖AB‖. More-

over, as AB is the tensor product of A and the identical map of B, AB
(
C0(X, V ′ ⊗

F)
)

is contained in Cα(X, V ′′ ⊗ F). Hence AB is a bounded linear operator from
C0(X, V ′⊗F) to Cα(X, V ′′⊗F), and from (2.17) and the continuity of K it follows
that the sequence ( f ′

j ) j∈N is bounded in C0(X, V ′ ⊗ F). Therefore, the sequence
( f ′′

j ) j∈N is bounded in Cα(X, V ′′ ⊗ F). Since V ′′ ⊗ F has finite rank, this implies,
by Ascoli’s theorem, that ( f ′′

j ) j∈N has a uniformly convergent subsequence.

3. ∂ for continuous Banach-valued functions

Let E be a holomorphic Banach bundle over a complex manifold X . Then we
denote by �p,q T ∗

X the complex vector bundle of (p, q)-forms on X . The sec-
tions of �p,q T ∗

X ⊗ E will be called E-valued (p, q)-forms. Set Ck
p,q(X, E) =

Ck
(
X, �p,q T ∗

X ⊗ E
)

for k ∈ N∪{∞} and Ck+α
p,q (X, E) = Ck+α

(
X, �p,q T ∗

X ⊗ E
)

if
k ∈ N and 0 < α < 1. If B is a Banach space, then we write �p,q T ∗

X ⊗ B instead
of �p,q T ∗

X ⊗ (X × B) and Cλ
p,q(X, B) instead of Cλ

p,q(X, X × B), 0 ≤ λ ≤ ∞.
Now let X be an open subset of Cn . Denote by Ip the set of strictly increasing

p-tuples of length p in {1, . . . , n}. Let B be a Banach space and f a B-valued
(p, q)-form on X . Then by the coefficients of f we mean the maps f I J : X → B,
I ∈ Ip, J ∈ Iq , with f = ∑

I∈Ip,J∈Iq
f I J dzI ∧ dz J . If H is an End B-valued

map on X , then we denote by H f the form with coefficients H ◦ f I J .

Definition 3.1. Let X be an open subset of Cn and B a Banach space. For f ∈
C0

p,q(X, B), we say that ∂ f is continuous if there exists g ∈ C0
p,q+1(X, B) with∫

X
∂ψ ∧ f = (−1)p+q

∫
X

ψ ∧ g (3.1)
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for all scalar ψ ∈ C∞
n−p,n−q−1(X, C) with compact support. Then g is uniquely

determined and will be denoted by ∂ f . If ∂ f = 0, then f will be called ∂-closed.
Set C̃0

p,q(X, B) = {
f ∈ C0

p,q(X, B)
∣∣ ∂ f is continuous

}
and Z0

p,q(X, B) = {
f ∈

C̃0
p,q(X, B)

∣∣ ∂ f = 0
}
.

Note that ∂ is closed as operator between the Fréchet spaces C0
p,q(X, B) and

C0
p,q+1(X, B) if we take C̃0

p,q(X, B) as domain of definition.

Proposition 3.2. Let X be an open subset of Cn, B a Banach space and f ∈
C̃0

p,q(X, B). Then:

(i) For each complex valued C∞-function χ on X, χ f belongs to C̃0
p,q(X, B) and

∂(χ f ) = ∂χ ∧ f + χ ∂ f .
(ii) For each holomorphic map H : X → End B, H f belongs to C̃0

p,q(X, B) and

∂ H f = H∂ f .

Proof. To prove (i), for ψ ∈ C∞
n−p,n−q−1(X, C) with compact support, we compute:∫

X
∂ψ ∧ χ f =

∫
X

χ∂ψ ∧ f =
∫

X
∂(χψ) ∧ f −

∫
X

∂χ ∧ ψ ∧ f

= (−1)p+q

∫
X
χψ ∧ ∂ f +

∫
X

ψ ∧ ∂χ ∧ f


=(−1)p+q

∫
X
ψ ∧ (

χ∂ f + ∂χ ∧ f
)
.

Now we prove (ii). Let g = ∂ f . First consider the case when H is a constant map.
Then, for each ψ ∈ C∞

n−p,n−q−1(X, C) with compact support,∫
X

∂ψ∧H f = H

(∫
X

∂ψ ∧ f

)
= H

(
(−1)p+q

∫
X

ψ ∧ g

)
=(−1)p+q

∫
X

ψ∧Hg.

Now consider the general case. Since the assertion is local, we may assume that H
is given by an uniformly convergent power series H(z) = ∑

z I HI . Since the asser-
tion is already proved for constant maps and by part (i), it follows that each z I HI f
belongs to C̃0

p,q(X, B) and ∂(z I HI f ) = z I HI g. Since both the series
∑

z I HI f

and the series
∑

z I HI g converge uniformly on the compact subsets of X and ∂ is
closed, this implies the assertion.

Definition 3.3. Let E be a holomorphic Banach bundle over a complex manifold
X . If f ∈ C0

p,q(X, E), then we say that ∂ f is continuous if there exists a form

g ∈ C0
p,q+1(X, E) such that ∂� f = �g for any local holomorphic trivialization

� : E |U → U × B of E . We set ∂ f = g in this case. Denote by C̃0
p,q(X, E)
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the space of all f ∈ C0
p,q(X, E) with continuous ∂ f . Set Z0

p,q(X, E) = { f ∈
C̃0

p,q(X, E) | ∂ f = 0}. Further, we denote by O(X, E) the space of global holo-
morphic sections of E .

Remark 3.4. By Proposition 3.2 (ii) it is not necessary to verify ∂� f = �g for
any local holomorphic trivialization over any coordinate chart but it suffices to do
this for at least one local holomorphic trivialization over at least one coordinate
neighborhood of any given point of X .

Proposition 3.5. Let E be a holomorphic Banach bundle over an n-dimensional
complex manifold X. Then O(X, E) = Z0

0,0(X, E).

Proof. Since the assertion is local, it is sufficient to consider an open set X ⊆ Cn , a
Banach space B and a continuous map f : X → B with ∂ f = 0, and to prove that
f is holomorphic. Since ∂ f = 0, we have

∫
X (∂ψ) f = 0 for all ψ ∈ C∞

n,n−1(X, C)

with compact support. Let B∗ be the dual space of B. Then this implies that∫
X (	 ◦ f ) ∂ψ = 0 for each 	 ∈ B∗ and all ψ ∈ C∞

n,n−1(X, C) with compact

support. Therefore ∂(	 ◦ f ) = 0 in the sense of distributions for each 	 ∈ B∗.
Hence (since the assertion of the proposition is well-known for B = C) 	 ◦ f is
holomorphic for all 	 ∈ B∗. As f is continuous, this completes the proof.

Proposition 3.6. Let E be a holomorphic Banach bundle over an n-dimensional
complex manifold X and 0 ≤ p, q ≤ n. Then, for each f ∈ C̃0

p,q(X, E), there
exists a sequence ( fν)ν∈N

in C∞
p,q(X, E) such that, uniformly on the compact sets

in X, both ( fν)ν∈N
converges to f and (∂ fν)ν∈N

converges to ∂ f .

Proof. By Proposition 3.2 (i), each form in f ∈ C̃0
p,q(X, E) can be written as a

locally finite sum f = ∑
j f j of forms f j ∈ C̃0

p,q(X, E) such that the support of
each f j is compact and contained in a coordinate neighborhood where E is trivial.
Therefore we may assume that f ∈ C̃0

p,q(X, B) for some Banach space B.
Let dλ be the Euclidean volume form on Cn . Fix a non-negative C∞-function

ϕ on Cn with
∫

Cn ϕ dλ = 1 and ϕ(ζ ) = 0 if |ζ | ≥ 1. Set ϕε(ζ ) = ε−2nϕ(ζ/ε) for
ζ ∈ Cn and ε > 0. Let for ζ ∈ Cn define

tζ : C
n � z → z − ζ ∈ C

n

and for any B-valued continuous form u on Cn

Tεu =
∫

Cn
ϕε(ζ )t∗ζ u dλ(ζ ).

Then Tεu is C∞, since its coefficients are obtained from those of u by a convolution
with ϕε; and Tεu → u, uniformly on the compact sets, when ε → 0, by the same
reason. As Tε commutes with ∂ on C̃p,q(X, B), one takes fν = Tεν f , with a
sequence εν → 0.
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Proposition 3.7. Let X be a convex open subset of Cn, U a relatively compact open
subset of X, B a complex Banach space and 0 ≤ p ≤ n. Then there exist linear
operators

Ar : C0
p,r (X, B) −→ C0

p,r−1(U, B) , 1 ≤ r ≤ n,

with Ar
(
C̃0

p,r (X, B)
) ⊆ C̃0

p,r−1(U, B) such that (setting An+1 = 0)

∂ Ar f + Ar+1∂ f = f
∣∣
U for all f ∈ C̃0

p,r (X, B). (3.2)

Moreover, if k ∈ N ∪ {∞}, 0 ≤ α < 1 and 1 ≤ r ≤ n, then Ar (Ck
p,r (X, B)) ⊆

Ck+α
p,r−1(X, B) and Ar is continuous as an operator from Ck

p,r (X, B) to Ck+α
p,r−1(U,B).

Proof. If B = C, then the assertion is well known,3 i.e. we have linear operators
AC

r : C0
p,r (X, C) → ⋂

0<α<1 Cα
p,r−1(U, C), which are Ck-Ck+α-continuous for

0 < α < 1 and each k ∈ N ∪ {∞}, such that

∂ AC
r ϕ + AC

r+1∂ϕ = ϕ for all ϕ ∈ C̃0
p,r (X, C). (3.3)

Then, by Proposition 2.2, there are linear operators Ar : C0
p,r (X, B) → ⋂

0<α<1

Cα
p,r−1(U, B), which are Ck-Ck+α-continuous for 0 < α < 1 and each k ∈ N, such

that

Ar

N∑
j=1

ϕ j b j =
N∑

j=1

AC
r (ϕ j )b j if ϕ j ∈ C0

p,r (X, C), b j ∈ B, N < ∞. (3.4)

It remains to prove (3.2). Let f ∈ C̃0
p,r (X, B) be given. By Propositions 3.6 and 2.1

there exists a sequence fν ∈ C∞
p,r (X, C)⊗ B such that, in the C0 topology, lim fν =

f and lim ∂ fν = ∂ f . From (3.4) and (3.3) it follows ∂ Ar fν + Ar+1∂ fν = fν for
all ν. Passing to the limit we obtain (3.2).

Theorem 3.8. Let X be an n-dimensional complex manifold, E → X a holomor-
phic Banach bundle. Then, for 0 ≤ r ≤ n, there are isomorphisms

Hr (X, E) ∼= Z∞
0,r (X, E)

∂C∞
0,r−1(X, E)

∼= Z0
0,r (X, E)

∂C̃0
0,r−1(X, E)

,

where the second isomorphism is induced by the identity map Z∞
0,r (X, E) → Z0

0,r

(X, E) and C∞
0,−1(X, E) := C̃0

0,−1(X, E) := 0.

3 Indeed, we may assume that also U is convex. Moreover, we may assume that the boundary of
U is smooth. Then, for example, we can take the Henkin operators (see, e.g., Corollary 1.12.2
in [6] and, for the existence of the holomorphic “Leray map” required there, Corollary 2.1.4 in
[6].)
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Proof. By Propositions 3.2 (i), 3.5 and 3.7, the sequences of sheaves

0 −→ OE −→ C̃0
0,1(·, E)

∂−→ C̃0
0,1(·, E)

∂−→ . . .
∂−→ C̃0

0,n(·, E) −→ 0

and

0 −→ OE −→ C∞
0,1(·, E)

∂−→ C∞
0,1(·, E)

∂−→ . . .
∂−→ C∞

0,n(·, E) −→ 0

are fine resolutions of OE . Therefore the assertion follows from the de Rham-Weil
isomorphism.

4. A global homotopy formula

Theorem 4.1. Let X be an n-dimensional compact complex manifold, V → X a
holomorphic vector bundle and 0 ≤ q ≤ n such that

H0,q(X, V ) = 0. (4.1)

Further let 0<α<1. Then there exist continuous linear operators Ar :C0
0,r (X,V )→

Cα
0,r−1(X, V ), r = q, q + 1, (A0 := An+1 := 0) with

∂ Aq f + Aq+1∂ f = f (4.2)

for all f ∈ C0
0,q(X, V ) such that ∂ f is also continuous.

This section is devoted to the proof of this theorem. We will deduce it from
the Koppelman formula by means of a general functional analytic local-global con-
struction described in [8]. For convenience of the reader we repeat this construction
adapted to the situation considered here.

Let C̃0
0,r (X, V ) be the space of all f ∈ C0

0,r (X, V ) with continuous ∂ f , 0 ≤
r ≤ n.

By means of the Koppelman formula and a partition of unity (see [7], Theo-
rem 1.17, for the details), we obtain continuous linear operators Tr : C0

0,r (X, V ) →
Cα

0,r−1(X, V ) and Kr : C0
0,r (X, V ) → Cα

0,r (X, V ) such that (with Tn+1 := 0)

f + Kr f = ∂Tr f + Tr+1∂ f for all f ∈ C̃0
0,r (X, V ) and 1 ≤ r ≤ n. (4.3)

Applying ∂ to (4.3), we get ∂ f + ∂Kr f = ∂Tr+1∂ f , and replacing f by ∂ f and r
by r + 1 in (4.3), we obtain (setting also Kn+1 := 0) ∂ f + Kr+1∂ f = ∂Tr+1∂ f .
Together this implies

∂Kr f = Kr+1∂ f for all f ∈ C̃0
0,r (X, V ) and 1 ≤ r ≤ n. (4.4)
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Let 1 ≤ r ≤ n. Set Br = ∂C̃0
0,r−1(X, V ). Note that Br is a closed subspace of

Z0
0,r (X, V ) (with respect to the max-norm), because it is of finite codimension and

the image of a closed linear operator. Set Nr := id + Kr
∣∣
Br

. Since Kr (Br ) ⊆
Br (as it follows from (4.3)), Nr is an endomorphism of Br . Let KerNr be the
kernel, and ImNr the image of Nr . Nr − id = Kr

∣∣
Br

is continuous as an operator
between Br and Cα

0,r (X, V ) and, therefore, by Ascoli’s theorem, compact as an
endomorphism of Br . Hence Nr is a Fredholm endomorphism of Br with index
zero. Let mr := dim KerNr = dimBr/ImNr . Take a basis br

1, . . . , br
mr

of KerNr
and forms gr

1, . . . , gr
mr

∈ Br such that Br is spanned by ImNr ∪ {gr
1, . . . , gr

mr
}. As

C∞
0,r−1(X, V ) is dense in C̃0

0,r−1(X, V ) with respect to the graph norm of ∂ , we may

assume that gr
ν ∈ ∂C∞

0,r−1(X, V ). Choose ur−1
ν ∈ C∞

0,r−1(X, V ) with

∂ur−1
ν = gr

ν , 1 ≤ ν ≤ mr . (4.5)

Let V ∗ be the dual bundle of V . Take forms ϕr
1, . . . , ϕ

r
mr

∈ C∞
n,n−r (X, V ∗) with∫

X
br
ν ∧ ϕr

µ = δνµ (Kronecker symbol), 1 ≤ ν, µ ≤ mr . (4.6)

Define continuous linear operators of finite rank Sr : C0
0,r (X, V ) → C∞

0,r−1(X, V )

and K ′
r , K ′′

r : C0
0,r (X, V ) → C∞

0,r (X, V ) by

Sr f =
mr∑
ν=1

(∫
X

f ∧ ϕr
ν

)
ur−1

ν , K ′
r f =

mr∑
ν=1

(∫
X

f ∧ ϕr
ν

)
gr
ν

and

K ′′
r f = (−1)p+r+1

mr∑
ν=1

(∫
X

f ∧ ∂ϕr
ν

)
ur

ν .

Then, by (4.5),

K ′
r f = ∂Sr f for all f ∈ C0

0,r (X, V ) and 1 ≤ r ≤ n, (4.7)

and, by Stokes’ theorem, we obtain (setting Sn+1 := 0)

K ′′
r f = Sr+1∂ f for all f ∈ C̃0

0,r (X, V ) and 1 ≤ r ≤ n. (4.8)

Set

Ãr = Tr + Sr and Mr = id + Kr + K ′
r + K ′′

r for 1 ≤ r ≤ n.

It follows from (4.3), (4.7) and (4.8) that (with Ãn+1 := 0)

∂ Ãr f + Ãr+1∂ f = Mr f for all f ∈ C̃0
0,r (X, V ) and 1 ≤ r ≤ n. (4.9)

It follows (setting also Mn+1 := 0)

∂ Mr f = Mr+1∂ f for all f ∈ C̃0,r (X, V ) and 1 ≤ r ≤ n. (4.10)
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Lemma 4.2. For 1 ≤ r ≤ n we have:

(i) Mr is a Fredholm endomorphism of C0
0,r (X, V ) with index zero;

(ii) Mr
∣∣
Br

is an isomorphism of Br .

Proof. Since Kr +K ′
r +K ′′

r is continuous as operator from C0
0,r (X, V ) to Cα

0,r (X, V ),
it follows from Ascoli’s theorem that Mr − id = Kr + K ′

r + K ′′
r is compact as

endomorphism of C0
0,r (X, V ). This proves part (i). Further, K ′

r is a map of rank
mr = dim KerNr which maps KerNr isomorphically onto a complement of ImNr
in Br (by (4.6)). Hence Nr + K ′

r

∣∣
Br

is an isomorphism of Br . This proves part (ii),

because K ′′
r vanishes on Br and therefore Mr

∣∣
Br

= Nr + K ′
r

∣∣
Br

.

Set hr = dim H0,r (X, V ). Then, by regularity of ∂ , we can find an mr -
dimensional subspace �r of Z∞

0,r (X, V ) such that Z0
0,r (X, V ) = Br ⊕ �r (direct

sum). Choose a basis λr
1, . . . , λ

r
hr

of �r . Moreover, by Serre duality, for each r , we
can find γ r

1 , . . . , γ r
hr

∈ Z∞
n,n−r (X, V ∗) with∫

X
γ r
ν ∧ λr

µ = δνµ for 1 ≤ ν, µ ≤ mr and 1 ≤ r ≤ n.

Define projections Pr from C0
0,r (X, V ) onto �r , 1 ≤ r ≤ n, by

Pr f =
hr∑

ν=1

(∫
X

γ r
ν ∧ f

)
λr

ν. (4.11)

Since the forms γ r
ν and λr

ν are ∂-closed, then

∂ Pr f = 0 for all f ∈ C̃0
0,r (X, V ) and 1 ≤ r ≤ n, (4.12)

and
Pr∂ f = 0 for all f ∈ C̃0

0,r−1(X, V ) and 1 ≤ r ≤ n. (4.13)

Together with (4.10) this implies that (with Pn+1 := 0)

∂(Mr + Pr ) f =(Mr+1 + Pr+1)∂ f for all f ∈ C̃0
0,r (X, V ) and 1 ≤ r ≤ n. (4.14)

Lemma 4.3. (Mr + Pr )
(
C̃0

0,r (X, V )
) = C̃0

0,r (X, V ) for 1 ≤ r ≤ n.

Proof. “⊆” follows from Kr
(
C̃0

r,r (X, V )
) ⊆ C̃0

0,r (X, V ) (true by (4.4)) and the fact
that the values of K ′

r , K ′′
r and Pr are of class C∞. To prove ”⊇”, first note that

Z0
0,r (X, V ) = Br ⊕ �r = Mr (Br ) ⊕ ImPr ⊆ (Mr + Pr )

(
C̃0

0,r (X, V )
)
. (4.15)

Now let f ∈ C̃0
0,r (X, V ). Then ∂ f ∈ Br+1 = Mr+1(Br+1) (with Bn+1 := 0).

Therefore and by (4.10), ∂ f = Mr+1∂u = ∂ Mr u for some u ∈ C̃0
0,r (X, V ). Hence

f −Mr u ∈ Z0
0,r (X, V ) which yields, by (4.15), f −Mr u ∈ (Mr + Pr )

(
C̃0

0,r (X, V )
)
.

Since also Mr u ∈(Mr +Pr )(C̃0
0,r (X, V )), it follows f ∈(Mr +Pr )(C̃0

0,r (X, V )).
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Since Mr is an index zero Fredholm endomorphism of C0
0,r (X, V ), also Mr +

Pr is an index zero Fredholm endomorphism of C0
0,r (X, V ). As C̃0

0,r (X, V ) is dense

in C0
0,r (X, V ), this implies by Lemma 4.3 that Mr + Pr is an isomorphism of

C0
0,r (X, V ). From (4.14) and Lemma 4.3 follows

∂(Mr + Pr )
−1 f = (Mr+1 + Pr+1)

−1∂ f, f ∈ C̃0
0,r (X, V ) , 1 ≤ r ≤ n. (4.16)

Set Ar = Ãr (Mr + Pr )
−1 for 1 ≤ r ≤ n. Then, by (4.9) and (4.16),

∂ Ar f + Ar+1∂ f = f − Pr (Mr + Pr )
−1 f, f ∈ C̃0

0,r (X, V ) , 1 ≤ r ≤ n. (4.17)

If q ≥ 1 and therefore Pq = 0 (by hypothesis (4.1)), this completes the proof of
Theorem 4.1. Now let q = 0 and f ∈ C̃0

0,0(X, V ). We have to prove that

A1∂ f = f. (4.18)

Since (M1 + P1)
∣∣
B1

= M1
∣∣
B1

is an isomorphism of B1, we see in particular that

(M1 + P1)
−1∂ f ∈ B1 and therefore P1(M1 + P1)

−1∂ f = 0. In view of (4.17) (with
r = 1 and ∂ f instead of f ), this implies ∂ A1∂ f = ∂ f − P1(M1 + P1)

−1∂ f =
∂ f, i.e. A1∂ f − f ∈ H0,0(X, V ). Since, by hypthesis, H0,0(X, V ) = 0, this
means (4.18).

5. Proof of Theorem 1.2

Let B be the characteristic fiber of E . Fix 0 < α < 1. In view of Theorem 3.8 we
have to prove that

dim
Z0

0,q(X, V ⊗ E)

∂C̃0
0,q−1(X, V ⊗ E)

< ∞ (5.1)

and
Z0

0,q(X, V ⊗ E) = ∂C̃0
0,q−1(X, V ⊗ E) if E is trivial. (5.2)

Using Propositions 2.2, 3.6 and 2.1 in the same way as in the proof of the local ho-
motopy formula of Proposition 3.7, from Theorem 4.1 we obtain continuous linear
operators Ar : C0

0,r (X, V ⊗ B) → Cα
0,r−1(X, V ⊗ B), r = q, q + 1, (A0 := 0 and

An+1 := 0) such that Ar
(
C̃0

0,r (X, V ⊗ B)
) ⊆ C̃0

0,r−1(X, V ⊗ B) and

∂ Aq f + Aq+1∂ f = f for all f ∈ C̃0
0,q(X, V ⊗ B). (5.3)

First note that this implies (5.2) and that we did not use the compact approximation
property of B for this.

Now we prove (5.1). Fix some norm ‖ · ‖ in B. The same notation ‖ · ‖ will be
used for the fiber norm canonically defined by this norm in the trivial bundle X × B.
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Further we fix some fiber norms in each of the bundles V , E and �0,r T ∗
X ⊗ V ⊗ B,

0 ≤ r ≤ n, which will be denoted also by ‖ · ‖. Since E is of compact type, we can
choose finite open coverings U1, . . . , UN and U ′

1, . . . , U ′
j of X with U j ⊂⊂ U ′

N for

j = 1, . . . , N as well as a family of holomorphic sections 	̃ j : U ′
j −→ Iso(E, X ×

B) such that the sections

�̃ jk := 	̃ j 	̃
−1
k − id : U ′

j −→ X × End B , 1 ≤ j, k ≤ N ,

are fiber compact. Then, by Lemma 2.4, the set{
�̃ jk b

∣∣∣ b ∈ (U j ∩ U k) × B , ‖b‖ = 1 , 1 ≤ j, k ≤ N
}

(5.4)

is relatively compact in (U j ∩ U k) × B. Let ε > 0 be a number which will be
chosen below. As B has the compact approximation property and (5.4) is relatively
compact, we can find a compact linear operator Q̃ ∈ End B such that, if we denote
the corresponding constant section of X × End B also by Q̃,∥∥�̃ jkb − Q̃�̃ jkb

∥∥ ≤ ε for all b ∈ (U j ∩ U k) × B with ‖b‖ = 1. (5.5)

Setting Q = idV ⊗ Q̃, P = idV ⊗B − Q, � jk = idV ⊗ �̃ jk , 	 j = idV ⊗ 	̃ j , we get
holomorphic sections P, Q : X → End (V ⊗ B), 	 j : U ′

j → Iso(V ⊗ E, V ⊗ B)

and � jk : U ′
j ∩ U ′

k → End (V ⊗ B). Then

	 j	
−1
k = idV ⊗B + � jk on U ′

j ∩ U ′
k , 1 ≤ j, k ≤ N . (5.6)

Hence 	−1
j P(	 j −	k) = 	−1

j P(	 j	
−1
k −idV ⊗B)	k = 	−1

j P� jk	k on U ′
j ∩U ′

k .

Therefore now we can choose the ε in (5.5) so small that, for each f ∈ C0
0,q(X, V ⊗

E),

∥∥	−1
j P(	 j − 	k) f

∥∥ ≤ 1

2
‖ f ‖ on U j ∩ U k , 1 ≤ j, k ≤ N . (5.7)

Take C∞ functions χ j : X → [0, 1], j =1, . . . , N , such that the family χ2
1 , . . . , χ2

N

forms a partition of unity subordinated to the covering U1, . . . , UN . Set λ j = χ2
j .

Define bounded linear operators

T ′
r , T ′′

r : C0
0,r (X, V ⊗ E) → Cα

0,r−1(X, V ⊗ E) , r = q, q + 1,

(where T ′
0 := T ′′

0 := 0 if q = 0 and T ′
n+1 := T ′′

n+1 := 0 if q = n) and

K ′, L ′, S, K ′′, L ′′ : C0
0,q(X, V ⊗ E) → Cα

0,q(X, V ⊗ E),
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setting

T ′
r f =

N∑
j,k=1

λ j	
−1
j Ar P	kλk f, r =q, q+1, S f =

N∑
j,k=1

λ j	
−1
j P(	k − 	 j )λk f,

K ′ f =
N∑

j,k=1

∂λ j ∧ 	−1
j Aq P	kλk f, L ′ f =−

N∑
j,k=1

λ j	
−1
j Aq+1 P	k(∂λk ∧ f ),

T ′′
r f =

N∑
j=1

χ j	
−1
j Ar Q	 jχ j f, r = q, q + 1,

K ′′ f =
N∑

j=1

∂χ j ∧ 	−1
j Aq Q	 jχ j f, L ′′ f =−

N∑
j=1

χ j	
−1
j Aq+1 Q	 j (∂χ j ∧ f ),

where the notation is simplified: for example, 	k stands for id
�0,q T ∗

X
⊗ 	k . Then it

follows from Proposition 3.2, formula (5.3) and
∑

λk ≡ 1 that

∂T ′
q f + T ′

q+1∂ f = (K ′ + L ′ + S) f +
N∑

j=1

λ j	
−1
j P	 j f

and

∂T ′′
q f + T ′′

q+1∂ f = (K ′′ + L ′′) f +
N∑

j,k=1

λ j	
−1
j Q	 j f.

for all f ∈ C̃0
0,q(X, V ⊗ E). Hence, setting Tr := T ′

r + T ′′
r , we get

∂Tq + Tq+1∂ = id + S + K ′ + L ′ + K ′′ + L ′′ on C̃0
0,q(X, V ⊗ E). (5.8)

Lemma 5.1. The operators id + t S, 0 ≤ t ≤ 1, are isomorphisms of C0
0,q(X, V ⊗

E), and K ′, L ′, K ′′, L ′′ are compact as endomorphisms of C0
0,q(X, V ⊗ E).

Proof. If we introduce in C0
0,q(X, V ⊗ E) the max-norm with respect to the fiber

norm of V ⊗ E chosen above, then, by (5.7), the corresponding operator norm of
t S is ≤ t/2. Hence id + t S is invertible. The compactness of K ′′ follows, because
the section id�0,q T ∗

X
⊗ Q of �0,q T ∗

X ⊗ V ⊗ B is fiber compact, Aq acts continuously

from C0
0,q(X, V ⊗ B) to Cα

0,q−1(X, V ⊗ B) and therefore, by Proposition 2.8, Aq Q

is compact as operator acting between C0
0,q(X, V ⊗ B) and C0

0,q−1(X, V ⊗ B). The

compactness of L ′′ follows in the same way. As
∑

λν ≡ 1,
∑

∂λ j ≡ 0 and, by
(5.6), 	−1

j = 	−1
ν − 	−1

j � jν on Uν ∩ U j , we see that

K ′ f = −
N∑

ν, j,k=1

λν ∂λ j ∧ 	−1
j � jν Aq P	kλk f.
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By means of Lemma 2.5 this shows that K ′ is compact, because Aq acts continu-
ously from C0

0,q(X, V ⊗ B) to Cα
p,q−1(X, V ⊗ B) and each � jν is fiber compact.

Finally, as
∑

λν ≡ 1,
∑

∂λk ≡ 0 and, by (5.6), 	k = 	ν − �νk	k on Uk ∩ Uν ,
we see that

L ′ f =
N∑

ν, j,k=1

λ j	
−1
j Aq+1 P�νk	k(λν ∂λk ∧ f ),

which implies the compactness of each L ′ by means of Proposition 2.8.

Now we set

M(t) = id + t (S + K ′ + L ′ + K ′′ + L ′′) for 0 ≤ t ≤ 1.

By Lemma 5.1, each M(t) is a Fredholm operator in C0
0,q(X, V ⊗ E). It follows

from (5.8) that Z0
0,q(X, V ⊗ E) is an invariant subspace of M(1). This implies that

Z0
0,q(X, V ⊗E) is also an invariant subspace of S+K ′+L ′+K ′′+L ′′ = M(1)−id

and, hence, each of the operators M(t), i.e.

N (t) := M(t)
∣∣∣
Z0

0,q (X,V ⊗E)

is an endomorphism of Z0
0,q(X, V ⊗ E) for all t ∈ [0, 1]. Since M(t) is Fredholm,

the kernel of N (t) is of finite dimension and the image of N (t) is topologically
closed. Since N (t) depends continuously on t , this implies that either, for all t ∈
[0, 1], the image of N (t) has infinite codimension in Z0

0,q(X, V ⊗ E), or, for all t ∈
[0, 1], the image of N (t) has finite codimension in Z0

0,q(X, V ⊗ E). As N (0) = id,
we conclude that the image of N (t) has finite codimension for all t ∈ [0, 1]. In
particular, the space(

id + S + K ′ + L ′ + K ′′ + L ′′)(Z0
0,q(X, V ⊗ E)

)
is of finite codimension in Z0

0,q(X, V ⊗ E). As, by (5.8), this space is zero if q = 0

and contained in ∂C̃0
0,q−1(X, V ⊗ E) if q ≥ 1, this implies (5.1).

References

[1] L. BUNGART, On analytic fiber bundles - I. Holomorphic fiber bundles with infinite dimen-
sional fibers, Topology 7 (1968), 55–68.

[2] K. CLANCEY and I. GOHBERG, “Factorization of Matrix Functions and Singular Integral
Operators”, OT 3, Birkhäuser, 1981.
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