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Laplace type operators: Dirichlet problem

WOJCIECH KOZL.OWSKI

Abstract. We investigate Laplace type operators in the Euclidean space. We
give a purely algebraic proof of the theorem on existence and uniqueness (in the
space of polynomial forms) of the Dirichlet boundary problem for a Laplace type
operator and give a method of determining the exact solution to that problem.
Moreover, we give a decomposition of the kernel of a Laplace type operator into
SO(n)-irreducible subspaces.

Mathematics Subject Classification (2000): 35J25 (primary); 34K10, 35J67
(secondary).

1. Introduction

In geometric and analytic investigations there appears, in a natural way, a whole
class of elliptic self-adjoint operators of form

L=L,p=ads+béd, a,b>0,

called Laplace type operators. If a = b = 1then L = A = d§ + d is sim-
ply the Laplace-Beltrami operator. Another example is the Laplace-Ahlfors op-
erator S*S. Originally, the Laplace-Ahlfors operator was defined as an operator
acting on the space of smooth vector fields in R": $*S = %A + % graddiv . If
n = 3, $*S = 0 reduces to the elasticity equation considered by H. Weyl ([14]).
(For more details we refer to [1] or [11]). Because of the natural duality between
the space of vector fields and 1-forms in ]R” the operator S*S can be identified
with the operator L = L1 1l = o= ld(S + (Sd acting on the space of 1-forms

in R". A generalization of the Ahlfors Laplace operator to Riemannian mani-
folds was done by A. Pierzchalski (see [9, 10]). It is worth to note that if a Rie-
mannian manifold is Ricci flat then the Ahlfors-Laplace operator has exactly the
form L. 1

Laplace type operators have some properties similar to A. For example L, , =
(Vas + ~/bd)*(\Jas + /bd), where the star denotes the operator adjoint with
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respect to the inner product given by an integral. Despite similarities, some of the
important features of L may be quite different than those of A. The reason lies in
a shape of the leading symbol of L. By contrast to A, L is not of metric symbol, if
a #b.

In this paper we investigate Laplace type operators in the Euclidian space R”.
Since partial derivation of a polynomial is an algebraic operation, both the dif-
ferential d and co-differential § in the space A? of polynomial p-forms in R”
can be defined in a pure algebraic way. In particular, any Laplace type operator
L = L, = ad$ 4 bdd may be defined in this manner. There appears a natural
question, whether one can investigate the operator L using pure algebraic meth-
ods. In particular, whether one can obtain the theorem on existence and uniqueness
purely algebraically for such operators. In this paper we give an affirmative answer.

The main results are: Theorem 4.5 on existence and uniqueness of solutions
to the Dirichlet boundary problem for L and the unit sphere in R”, and Section 4.4
where we give an algorithm for solving Dirichlet boundary problem explicitly. The
algorithm involves pure algebraic operations only.

In the whole paper (except Section 5 which is a complement to theory devel-
oped in Section 2.1-3.3) we do not use any analysis, at all. Surprisingly enough,
to the best of the author’s knowledge, no book on differential equations or spheri-
cal harmonic, contains an algebraic proof on existence and uniqueness of solutions
to the Dirichlet boundary problem, even in the simplest case Ap = 0, ¢|s = f,
where f is a polynomial O-form, i.e., polynomial in R”. The most algebraic proof
we found is contained in the Krylov’s book [7], nevertheless the author applies the
Maximum Principle which is proved analytically.

The main tool we construct is the decomposition (3.16) of the 2,’; = ker(L :
A]’: — Alf ) into four mutually orthogonal (with respect to some special inner prod-
uct (2.3)) subspaces. This decomposition seems to be of independent interest. Here
A,f denotes the space of polynomial p-forms that coefficients are homogeneous of
degree k. The important tool in getting the decomposition is Theorem 2.7 which
asserts that d* = 1, and §* = —e,. This fact was observed by Antoni Pierzchalski.

In the special case L = S*S and p = 1 the decomposition (3.16) reduces
to the decomposition of ker $*S obtained by H. M. Reimann in [11]. It was later
used by A. Lipowski in [8], where the author considered Neumann type boundary
conditions for S*S.

In Section 4.3 the projections formulae onto the four subspaces from (3.16) are
given. Applying this formulae together with the method from the proof of theorem
on existence solution to the Dirichlet boundary problem we build an algorithm of
solving Dirichlet problem Ly = 0, ¢|s = wls, explicitly. Moreover, we give an
example (see Example 4.12) of direct application of the method. This algorithm
could be applied for solving the Dirichlet problem by computers.

In Section 5 we investigate the decomposition of 2,‘? from the representation
theory point of view. It turns out that (3.16) may be reducible in general. The main
result of this section - Theorem 5.5 - contains the decomposition Slf into SO(n)-
irreducible subspaces. In the special case p = 1 and L = A the decomposition
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from Theorem 5.5 reduces to those from [11] and [6]. In Section 5 we use algebraic
tools constructed in Section 2.1-3.3 only with the one exception, namely, we apply
Theorem A from [4].

This paper was inspired by the articles [11] of H. M. Reimann and [4] of G. B.
Folland.

ACKNOWLEDGEMENTS. The author would like to thank very much to Professor
Antoni Pierzchalski for helpful discussions.

2. Preliminaries

2.1. Polynomial forms

Suppose 7 is non-negative integer and n > 2. If x = (x',...,x") e R" and « =
(a1, ..., 0t) is a multi-index then x® = (x)* ... ()% and |a| = o] + - - - + ay.
Putd; = 5%, 97; = 9 0 9; and D¥ = (3)* o --- 0 (3,).

Recall first the basic properties of homogeneous polynomials. For more details
we refer to [3, 12, 2]. Let Py denote the space of all (real-valued) homogeneous
polynomials in R” of degree k. As a consequence of homogeneity we obtain, so
called, Euler property: kf(x) = > |, x'3; f(x). If f € Py has a form f(x) =
> jaj=k Gax* we define differential operator f(D) = ), _ da D%. Obviously,
f(D) : Py — Pr—.

Define the inner product (-, ) = (-, -)x in Py as follows; (f, g) = f(D)g,
for f,g € Py. Clearly, for any f € Py, g € Prand h € Pryy, (gf, Wi+ =
(f, g(D)h)y. In particular, (x/ f, h) = (f, djh). It means that multiplication by g
and operator g(D) are formally adjoint each to the other.

For any x € R” let |x| denote Euclidean norm in R”. The polynomial r?
defined by r2(x) = |x|? is a member of P,. Differential operator A = —r2(D) is
nothing but the classical Laplace operator. Let Hy = {h € Pr : Ah = 0} be the
space of all harmonic homogeneous polynomials of degree k. Clearly, Hy = {h €
Py : r>(D)h = 0}. By Euler property it follows easily that for any f € P,

A2 f) = =2(n+2k) f + r*Af. 2.1)
Since multiplication by —r2 and A are formally adjoint, we obtain
Pr = Hi @ r’Pia, (2.2)

where @+ denotes orthogonal direct sum. In particular, dimH; = dim 7P —
dim Py_>. Thus dimim (A|p,) = dim Py — dim Hy = dim Py_».
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As a direct consequence of the formula (2.2) we obtain:

Proposition 2.1. For each f € Py there exist unique polynomials hj € Hy_2j,
0 < j <my = [k/2] such that f = ho+r’*hy + -+ ()™ hy,.

Consider any p-form w in R”, p > 0. If p = 0 we identify w with a function
on R". Assume that any p-form, p < 0, is the zero form. If p > 1 then w has
unique expression

.....

1 n . .
w=— Z (o l-pdx” Ao Adxt'P,

where the functions w;, . i, = IOY CTRN. 8l~p), called coefficients, are skew-sym-
metric with respect to indices. A p-form w is called polynomial p-formif w;, .. i,’s
are polynomials. Denote by A vector space of all polynomial p-forms in R". Al-
though, in this paper, we consider only polynomial forms, some properties, formu-
lae, theorems etc. hold for forms with differentiable (or even arbitrary) coefficients.
For this reason designation “polynomial form” will be used only if a property, for-
mula, theorem etc. holds only for forms with polynomial coefficients.

If w and 75 are any p-forms defined on a subset Z C R” then wn will denote

point-wise inner product of that forms, i.e., wn is a function Z — R defined by

A polynomial p-form w is called homogeneous if all coefficients are from Py, for
some k. Such a form will be called (p/k)-form. Denote by Af the vector space
of all (p/k)-forms. Clearly, A,f is a finite dimensional vector space and dim A! =
(Z) dim P*. Manifestly, Ag = Pk, and A7 is, in a natural way, isomorphic to Pk,
Moreover, it is convenient to put A” = {0} if either p < O or k < 0.

Equip the space A,f with the inner product (:|-) = (-|-) p.x as follows; for any
(p/k)-forms w and 1 we put

1
@i = D @iy Moy (2.3)

where w;, ;i S and n;, ip’s denote coefficients of w and n, respectively. Notice
that (-|-)o.x and (-, -)x coincide.

Consider the vector field v, = x!8; + --- + x"3, and the (1/1)-form v} =
xldx' 4.4+ x"dx". One sees that v*v = r2. Let &, denote exterior multiplication
by v*, i.e., eyw = V' A w. Its adjoint with respect to the pointwise inner product
is denoted by ¢,, i.e., (e,w)n = w(yn). If wis a p-form then t,w is (p — 1)-form
defined by o0 = w(v, -, ..., )if p>Tland,w =0, if p =0, and e, = V* A w.

.....
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It is clear that for any (p/k)-form w, 1,0 € A,f;ll and e, € A,f:ll. Mani-

festly, t,% =t(,0t, =0and 85 = g, o &, = 0. Moreover, ([5, page 63]) ¢, is graded
derivation of degree —1. As an easy consequence of the definitions we obtain that
for any p-form w,

. L 0. . . i,y . . ip,y. . .
(ng)l() ..... ip = X " Wiin,.ip =X WDigiy,.ip — X Pwi, in,...ig»
n
)i R i, .
(o i2,.ip = X Wiy, ip-
i=1

Let x denote Hodge star operator. Recall that for any p-form 7, xn is the unique
(n — p)-form such that for any p-form w,

o A*n = (@n)dx' A Adx".
This operator is an isometry, i.e, (*w)(*n) = wn and satisfies the identity *2 =
** = (—1)P"=P) on the space of p-forms.

Let xo € R". We say that w is tangential (respectively normal) at xq if
(tvw)x, = 0 (respectively (&,w)y, = 0). Clearly, each form is tangential and normal
at 0 € R". Take now any subset Z C R". We say that w is tangential (respectively
normal) on Z if o is tangential (respectively normal) at each point z € Z.

Take any p-form w. Since 1, is graded derivation of degree —1 and v*v = r2,
we have 1,6,0 = r’w — &,1,w. Hence we obtain

(ty&y + Epty)w = rw. 2.4)
It follows that each w may be uniquely written as
w=w' + a)N,

where ! are N tangential and normal, respectively. Outside 0 € R”, we have

o = (1/rH)e,wand 0N = (1/r)e 0.

Corollary 2.2. Let w be a p-form. Take any xo # 0, xo € R". If w is both
tangential and normal at xq , then wy, = 0. In particular, if the polynomial form w
is both tangential and normal on R" then w = 0.

Proof. We have (1,w),, = (¢y®)x, = 0. Thus (g,1,w)y, = (tLveéyw)y, = 0. Hence
the formula (2.4) implies that (r?w), = |xo|>wy, = 0. Since xo # 0, wy, = 0. O

For any a,b € R define the linear operator [, by [, = agyt, + biye,.

Clearly, l, 5 : AP — AP and [, : A]f — A,f+2.

Proposition 2.3. Ifa,b # Othen l,p : AP — AP is one-to-one.

Proof. Take any p-form w and suppose that [, o0 = 0, i.e., agyty0 = —biye . It
means that polynomial forms ae i, and —bt, &, w are both tangential and normal
on R". Since a,b # 0, eytyw = 0 tye,w = 0. Formula (2.4) now implies that
w=0. ]
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2.2. Relations between d, §, ¢, and ¢,

Let d and é denote the (exterior) differential and codifferential, respectively. Recall
that for any p-form w, dw (respectively dw) is (p + 1)-form (respectively (p — 1)-
form) which coefficients are given by ([15, pages 9-10])

(dw)io ,,,,, ip = 81'0“)!'1,1'2,...,1',; - ailwio,iz ,,,,, ip T T 8ipwi|,i2,...,io’

n
Biy..iy = = Y i, iy
i=1

Manifestly, d : A,f — A,fjll and § : A,f — A,f__ll . It is very-well known that d

is graded derivation, d> =dod = 0and 8% = § 08 = 0. Moreover, on AP,
§=(=1)"PtD+ ygwandd = (—=1)""P) x5 «.
Observe that

de, = —&,d and 61, = —1,8. (2.5)

Indeed. Since d is graded derivation and v* is closed, the first formula of (2.5) fol-
lows. To prove the second one it suffices to take p-form w and compute coefficients
of 8¢, and ¢,,6.

Proposition 2.4. Suppose w is a (p/k)-form. We have the following identities

deyw = —&,8w — (n — p+ ko,

diyw = —do+ (p + kow.
Proof. Let 8; denote Kronecker symbol. Compute coefficients of ¢, 5w and e, w.

(evdw)iy...i, = X" (8W)iy.i5...i,, — X2y i5..iy — =+ — X7 (80)iy iy

nip
n
_§ g, . . . . o yl2g. 0
- (x 81060[0712’13“-»[17 X al()wl()slhl&n;lp
ip=1
i
T X paiowio,iz,iy--,il)
n
_2 iy, . . .. g, . . ..
- (x a106‘)10,12,13---,117 +x 810w11,10,13...,ll,+"'
ip=1

i
c X0 Wiy g3 -
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On the other hand
n
.._E:.io... i, .. ip . . .
(58110))11,...,1,, = - al()(x Wiy,in,.ip =X Wigiy,.ip — "= X pwll,lz,...,l(])
io=1
n . . .
_ (5100)' . s N T )
= io @itsiz,.ip io @i0,i2,. 50 p io @itsi2,..500
io=1
n
09, .. . . g, . .. ipa. . . .
- § :(x Aig®iy iy, ....i,, — X 0igWig i, ....i, — =+ —X P Big Wiy iy, ....ip)
io=1
=—(n—-p+hw,..i,
n
iy, .. .. g, .. .. ipa. . . .
+§ :(x alOwLOleV--slp +x 3!()‘”!1,10,...,!1; + o+ X0 Wiy iy, .. g ) -
io=1

In the last equality the Euler property was used to the homogeneous polynomial
a),'l,._,,[p € ’Pk.

Making similar computations one can obtain the second formula. One can also
use the well-known identity (see [5, Theorem 7.9(2)]) : dt, + t,d = L,, where L,
is Lie derivative in the direction of v. O

As a consequence of (2.5), (2.4) and Proposition 2.4 we obtain:
Proposition 2.5. For any polynomial form w we have

d(rza)) = rldw + 2&,0

8(r2a)) = r’w — 21,w.
Remark 2.6. Proposition 2.5 holds for any differential form w, not necessary poly-
nomial.

Consider now d and § as operators d : A} — A,firll and § : A} — A,f:ll. Let
d* and &* denote adjoint operator, respectively. One of the most important tool, we
will use is:

Theorem 2.7. For any (p/k)-form o, §*w = —e,w and d*w = 1, w.

Proof. We will prove only the first formula of our assertion. The second one can be
obtained in a similar way.
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Fix p, k > 0. To prove the first formula take w € A,’: andn € A,f__ll . We have

1 n
Goln) = 73 D (i Mis...oiy)
ig,oip=1
1 n n
Y Z Z i1 Wiy,in,....ips Miy,ia,...ip
(p=Dt, Z i
1 1 .
= - Z (@i ig.ins X Ny i)
(p _ 1)' 11502550 p> 12,--50p
Ciiip=1
On the other hand
1 n
@levm) = = Y @iy Eiyiy)
Py =1
1 “ i
= Z ((wil,iz,i3,...,ipax Mig,i3.enip)
Cilenip=1
— (@i iy.izsips X P Nigiseiy) = 0 = (i) in iz, iy x”’niz,i3,...,il))
_ 1 - i1
= ? Z (wil~i27i3;~~,ip’x niz,is,...,ip)
: i150nip=1

n
i
+ E (@i ig,iz,.nips X ' Mig,in, i)

i],enip=1

n

Lo ; i1, . .
+ E : Wiy ,in,i3,.ips X ”lz,ls,...,lp)

i1,12,i3,....,ip=1

1 n
_ § . . i, .
= p! (a)ll,lz,...,lpvx Thz,...,z,])

i1,02, i p=1

1 “ )
p Cip,ig,.nip=1

Therefore, the first formula follows. O
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3. Laplace type operators

3.1. Definition and basic properties of Laplace type operator

Let a, b > 0. Differential operator

L=L,p=adé+bsd
is called the Laplace type operator. In particular, L 1 is just the Laplace-Beltrami
operator A = dé + 8d. Moreover, S*S = (n — 1)/nd§ + 1/28d, considered as an

operator A — A, is called the Ahlfors-Laplace operator (cf. [10]).
Take any p-form w and compute coefficients the of ddw and §dw. We have

n
2 2 2
(ddw)iy,....i, = — E (87,1 Wiini3..ipy 05 i Wiy iiiziy T 0 Wiy is.eei)s
i=1
n
Gdw)i, i) = — Y 0o i
I1yeees lp — 1,07 ey lp
i=1
n
Z 2 2 2
+ (8i|,iwisi27i3,---,ip + aiz,iwil,i,im---,ip +oet aip,iwisi27i3,---,i)a
i=1

Therefore, for any f € Py, (d8 + 8d) f = 8df = —r?(D) f. It means that, in the
case of O-forms, the Laplace-Beltrami operator L 1 and classical Laplace operator
coincide. Moreover, for any p-form w,

(Aw)i,....i, = Awiy,.i,- (3.1)
Because of this and (2.1) we obtain that for any w € A,f ,
A(FPw) = —2(n + 2k)w + r* Aw. (3.2)

It is clear that L maps A,f into A,f_z. Let denote

£7 = kernel of (L : A} — A} ),
9, = kernel of (A : A} — AL _,).

In particular, (3.1) implies that (p/k)-form w is harmonic, i.e, Aw = 0, if and only

if each coefficient w;,.__i, of w is a member of . Thus, dim 9y = (Z) dimHy =

dim A,f —dim A ,f_z. As adirect consequence of (3.1) and Proposition 2.1 we obtain:

Corollary 3.1. For each w € A} there exist unique polynomial forms 1; € 5’_)5_2 T
0 < j <my = [k/2] such that ® = no + r’ny + - + ()™ ny,,.
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Using (2.5) and Proposition 2.4 we get, that for any polynomial form o
wAw = Aty — 26w. 3.3)

Consider L = L, as an operator L : AY — AP .. Clearly, if k = 0, 1 then
7[_\; = £ = 9. Moreover, Sg = Hy and £] is in a natural way isomorphic to
k
Let [ = 1,5 = agyt, + biye, and let L) , denote the adjoint operator to L p.
As a direct consequence of Theorem 2.7 we get that for any (p/k)-form o,

L;’b(w) = —lyp(w). (3.4)
In particular, A*w = —r2a), forlj j0 = r2w. From (3.4) we have
=2’ ot iml. 3.5)

Since a, b > 0, Proposition 2.3 implies that [, ; is one-to-one. Therefore, dim £/ =
dim AI7 dim A,f , = dim j"jk

The next part of this section has pure technical character. We will introduce
some special linear operator /. and derive the compositions L o I, and A o I.. This
knowledge became useful in the Section 3.3, where we decompose Qf onto direct
sum of four mutually orthogonal subspaces. One of them will be described as an
image on /., going one step future.

Take any n € A? then dn € A?jll. Using Proposition 2.5 and 2.4 one can
easily obtain

ds(r’dn) = —2(q + )dn + 2&,8(dn) + r*ds(dn),
8d(r’dn) = —2(n —q +1 —2)dn — 2¢,8(dn).

Therefore,
L(r*dn) = =2(a(q + 1) + b(n — g +1 — 2))dn + 2(a — b)e,8(dn) + r*L(dn).
Using (2.5) and Proposition 2.4 one can check that
L(gyn) = (b(n —q +1—=2) —a(n —q+1))dn+e&,(Ln),
In particular, if L = A, i.e.,a=>b=1,forany n € Alq we get

A(r?dn) = —2(n + 21 — 2)dn + r>A(dn),
Alevn) = —2dn + ey (An). (3.6)

For any constant ¢ € R we define a linear operator

Ie=1I(g+ 1,1+ 1) =¢ —cr’d: A] — A?:ll.
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As a straightforward consequence of above considerations we obtain that for any
(g/1)-form n,

L(In) = ((b—a)(n—q+1) (3.7
+2c(a(g +1) +bn—qg+1—2))—2b)dn
—2¢(a — b)eyddn — cr*L(dn) + e, (Ln),

A(In) = Qe(n+ 21 —2) — 2)dn — cr’Adn) + e,(An). (3.8)

3.2. Spaces x,  and )(g’k

Forany 0 < p < n and k > 0 define
Xpk = ﬁ,f Nkerd, and ngk = Xp.k Nker,.

Put x,; = X;)l = {0} if either ¢ < O or/ < 0. Manifestly, 5’)2 = X0k = ng = Hx
and ijg = Ag .

The spaces x‘,}, i S will play a fundamental role in the next part of this paper. In
the next section we will build a whole decomposition of )3,‘? using that spaces. Now
we show some basic properties of XS, « and operators d, ¢,d and I, restricted to it.

Let w € XS o then (,w = 0 and dw = 0. By Proposition 2.4 we obtain
0=duyw=—dw+ (p+0)w. So

Xpo =10} ifp>0. (3.9)

Observe that d x,—1,x+1 C Xp.k- On the other hand, using (2.5) and (3.3) we check
that ¢, xp.x C Xp—1,k+1. Since L% =0 weevenhave(, : xpr — Xg—l -

Theorem 2.7 implies now that x, ; = Xg,k ot dXp—1k+1. Since d* = 0, for
any 0 < p <nand k > 0 we have

Xpk = Xy @ dXp_y g1 (3.10)
Moreover, as a direct consequence of (3.6) we get
evdxp 24 C f- (3.11)
By Proposition 2.4 for n € X2—2,k'
deydn = —m — p+k)dn, (3.12)

Therefore,
S EvdX,(p)—z,k — ng_z,k-
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Summarizing one can prove the following:
Proposition 3.2.

1) If0O<p<nandk > 0thend : Xg—l,k+1 — Xp.k is one-to-one and for any
€ Xy xrr dnldn) = (p + k) (nln).

(1) If0 < p <nandk > 0 then, : dx271’k+1 — ngl,k+l is a bijection and
foranyn € x)_ ;1o (wdnludn) = (p + k) (dnldn).

(i) If2 < p <nandk > 0 then s, : dngz,k — ﬁ,f is one-to-one and for any
N E Xp_pp (Evdnlevdn) = (n — p + k) (dnldn).

v) If2 < p <nandk > 0 thené : 8,,d)(272’k — ngfz,k is a bijection and for
any 1 € xp_, 4 (Seudnldevdn) = (n — p +k)*(dnldn).

For ¢ € R let

I.=1.(p,k)=¢,— cr’d A]f:ll — A,f.

Take any n € x,—1,k—1 then §dn = 0. By Proposition 2.4 and 2.5 we obtain
bIo)n =—m — p+k)n+2c,dn. (3.13)

Remark 3.3. Observe that if n = dn’, n’ € x,—2x then I.n = &,dn’ and (3.13)
reduces to (3.12).

Since A = A4, (3.8) implies that §1:(xp—1,k—1) C f),f:ll. Since 82 = 0, we
conclude that
St Xp—1.k—1 = Xp—1k—1-

1 n—p+k
2 p+k=2-

Ifk =1,0ork >2andc # co then I. : xp_1 k-1 — A,f is one-to-one, whereas

Lemma 3.4. Suppose that 1 < p <nandk > 1. Let c € R and ¢y =

8 Ie(Xp—1,k—1) —> Xp—1,k—1 IS a surjective. Moreover, for any n € Xg—lkfl’
(Ienllen) = p(c)(nln), where

pe) =2 +2k —4)(p+k—2)c* —4(p +k —2)c+ (n — p +k).

Proof. 1t suffices to show that 1. : x,—1x-1 — Xp—1,k—1 is a bijection. Take
N € Xp—1,k—1 and suppose that §I.n = 0.

If k = 1,dn = 0. Formula (3.13) implies that 0 = (6I.)n = —(n — p + 1)n.
Since (n —p+1) #0,n=0.

Letk > 2. We have d(61.)n = 0, for §1.n = 0. By (3.13) and Proposition 2.4,
Qe(p+k—2)—(m— p+k))dn = 0. Since ¢ # ¢y, n must be closed. Therefore,
0=(@Il.)n=—m—p+k)n.Sincen—p+k>0,n=0. ]
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Take any o’ = I.(n'), where n’ € Xg—l,k—l and o’ = &,dn”, where " €
X,?_z, &+ Using Theorem 2.7, Proposition 2.4 and (3.11) we get

(@'|0") = (eyn — cr’dn|evdn’)
= (&vdn' + (n — p+ln'ldn") + c(dn'|Ae,dn”)
=m—p+knin”)
= 0.

Therefore, we obtain the following decomposition

Le(Xp—1h-1) = Le(xp_y 4_1) & evdX)_p 4 (3.14)

Remark 3.5. As we will see in the next section spaces x, x and I.(x ) are mu-
tually orthogonal. Therefore, in the light of (3.10) and (3.14), the algebraic sum
VI (©) = xpa + Ie(xpp) splits as VP () = xp) , @ dx) 4y @ evdxy 5, &
1.( X2_1 x—1)» Where only the last component depends on ¢, whereas three remain-

ing components are subspaces of f),’: (even of ker L, p, for any a, b > 0). In the
next section we will show that the kernel of any Laplace type operator is of form
Vkp (c¢) for some c.

3.3. Decomposition of S,’:

Let L = Lyp = adé + béd, a,b > 0. Since for any € xp ddw = 0,
xg,k C Xpk C S,f'. Suppose that Lo = 0, then ddw = —(b/a)ddw, so Adw = 0.
Hence (SEIf C Xp—1,k—1- In particular, 85’_),‘? C Xp—1,k—1-Put
1 2b—(b— —p+k
(b=a)n=ptk) ifk>2, 0<p<n,

cr=cr(p,k)=1{2a(p+k—2)+b(n—p+k—2) (3.15)
0, otherwise.

Notice that our assumption (a, b > 0 and n > 2) ensure that ¢y, is well-defined. In
the particular case,

—, ifk>2,0<p <n,
ca=ca(p,k)y=3 n+2k—4
0, otherwise.

Remark 3.6. Observe that the constant cA do not depend on p.
Let, as in previously,

I.=1.(p,k)=¢,— crd : A]f:ll — A,f.
Put, for simplicity

I =11(p, k) = IcL = CL(p,k)(p‘k)-
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A goal of this section is to prove the following:

Theorem 3.7. Forany0 < p < nandk > 0 the space /Q,f is the direct sum of four
mutually orthogonal subspaces:

L =10 & dxO_ i O edx) & IL(p X0 - (3.16)

0

Moreover, Xp ko

0 0 p
d)(pfl’kJrl and evprfz,k are subspaces of §);..

In the special case we get
DY = xp sk © Ay 1 O EvdXy 5, & I KXY 4y (BT

Remark 3.8. It is worth to say that in (3.16) some subspaces may equals {0} (see
3.9). In particular, if p = 1 then e,dx—1x = {0}, so S}C = X?,k et d)((())’kJrl et
ILXg gy = Xﬁk ®L dHis1 & 1L (Hi—1).

To prove Theorem 3.7 it suffices to apply the following: Lemma 3.9, Corollary
3.13 and Lemma 3.14 below.
Lemma 3.9. [feither p = 0 or k = 0 then the decomposition (3.16) holds.

Proof. If p = 0 our assertion is a direct consequence of the following equalities
552 = X0,k = X(()),k = Hj and 22 = Hx.

Consider the case p >0 and k=0. Then Sf)g =Ag, 8vdxg_2’0 = ILXg—l,—l =
{0}, and X,?,o = {0} (see (3.9)). To prove (3.16) it suffices to show that f)g =
dxg_l’l. To do this take w € ﬁg and put n = (1/p)t,w. Clearly, t,n =0,5n =0
and An = 0 (see (3.3)),s0n € Xg—l,l' One can easily check that dn = w. [l

Suppose now that 0 < p < n and k > 0. Identity (3.7) implies that for any
n€ Xp—1.k-1,

LUn)=((b—-—a)n—p+k) —2b+2c(a(p+k—2)+b(n—p+k—2))dn.
Thus we obtain 17 (xp—1,k-1) C E,f. Hence (see (3.14)), SUdXS_z,k C SII:.
Lemma 3.10. Suppose thatk > 0 and 0 < p < n.

(1) Spaces xp.x and 11,(xp—1k—1) are mutually orthogonal.

(ii) If either k # 2 or p < n then I, : Xp—1 k-1 — 25 is one-to-one and

8: 1y (Xp—1,k—1) = Xp—1,k—1 is a bijection.
(iii) If either k # 2 or p < n then 2,‘? = Xp.k @+ I (Xp—1,k—1)-
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Proof. (i) Take w € xpx and n € xp—1x—1. Using Theorem 2.7 and (3.4) we
obtain
(@leyn — crr?dn) = —(Bwln) + cL(Aowldy) = 0.

Therefore (i) follows.

(i) If k = 1 then our assertion is a direct consequence of Lemma 3.4. There-
fore, we may assume that k > 2, and either k > 2 or p < n. The assumption
implies immediately that

n#-2k-1andn#—k—p—2). (3.18)

Lemma 3.4 implies that it suffices to show that ¢, # cg. Suppose that ¢; =
co. One easily checks that the equation ¢ = c¢¢ is equivalent to the equation
(n+k—p—2)(n+ 2k —2) = 0. It contradicts (3.18).

(iii) Relations I7(xp—1k-1) C £r 825 C Xp—1,k—1, and point (ii) implies
that § : S,f — Xp—1,k—11s asurjection. Thus dimil,[(7 =dim ) +dim x,_1 k-1 =
dim x, ¢ +dim I7,(xp—1,k—1)- Since xp x and Iy (x p—1,xk—1) are mutually orthogonal
subspaces of Sf point (iii) follows. O

Corollary 3.11. Ifk > 0and0 < p <nthen Iy : Xp—1 k-1 —> 25 is one-to-one,
moreover we have the decomposition Slf = Xpk eI (Xp—1,k—1)-

Remark 3.12. Corollary 3.11 is the sufficiently tool in solving Dirichlet boundary
problem for the Laplace type operator.

As a direct consequence of (3.10), (3.14) and Lemma 3.10 we obtain:

Corollary 3.13. Suppose thatk > 0and 0 < p < n. If either k # 2 or p < n then
L‘,f has the decomposition (3.16).

Lemma 3.14.

(1) If p=nandk = 2 then IL(X,(,)_M) = {0}.
(i) The map § : 5 — er?—z,z is a surjection.
(i) £5 = X7, &1 dx) | 3@ evdxy) 5,

Proof. (1) We see (cf. 3.15) that in the case p = nand k = 2, c; = 1/n. Take
any n € X,?_ 1.1 then clearly e,dn = 0. Thus using using (2.4) and Proposition

2.4 we obtain r2dn = eytydn = e,(—du,n + ((n — 1) + 1)n). Therefore we have
Ie,n=1in=¢en— n_lnsvn =0.

(ii) We know that 8udX,9,2,2 C $5 (see (3.11)) and 6(97}) C xn—1,1. Identity
(3 12) implies now that d)(,? 22 C 5($%). Now it sufﬁces to show that §(£7) N

Xn 1.1 = {0} Letw € $);5 and suppose that o € X 1.1 then 1,6 = 0. Since w
is n-form déw = Aw = 0 Thus we have 0 = du, 80) = —,dSw + néw = néw.
Hence §w = 0.
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(iii) Clearly, 2; = Sf)’g. We know that ¢, : d X;?-z,z — Sf)g 1S one-to-one
(see Proposition 3.2 (iii)). (ii) implies now dim £5 = dim x, > + dimd Xr?—2,2 =
dim y, 2 + dim 8vd(X2—2,2)~ Since x, 2 and svdxr?—z,z are orthogonal subspaces of
£ (see Lemma 3.10 (i) and (3.14)) and x,.2 = Xy, , & dx,_, 3, (iii) follows. [J

Remark 3.15. It is worth to see that if operators LD = L, p and LO® = Li/pi/a
then ¢; 1) = c; . Hence ker LD and ker L® have the same decomposition.

The following corollary shows that the decomposition (3.17) of .6,f is com-
plete from the the differential and co-differential point of view. A proof based on
Proposition 3.2, Proposition 2.4, (3.9) and Lemma 3.14 (i) is left to the reader.

Corollary 3.16. Suppose that o € f),f ,k>0and w # 0.

e Ifwe Xg,k then w is not closed (dw # 0) but is co-closed (§w = 0).
o I[fwed ngly k41 then w is both closed and co-closed.
e Ifwe SvdXI(,)_z,k then w is closed but not co-closed.

o Ifw e Ip Xg—l,k—l then w is not closed and not co-closed if k > 1 and closed
but not co-closed if k = 1.

If k = 0 then each w € f),f is both closed and co-closed. Moreover, in this case
f)g = Xg,o =Rifp =0and$§g =af)(2_1’1 if p>0.

Remark 3.17. () If p > 0,d : x) | — §f isa bijection, thus dim xg,l, | =
dimﬁg = (Z) Since, p-forms t,w(I), where w(I) = dx"' A --- Adx'r, I =
(i1,...,1p), i1 <--- < ip consist a basis of X2—1,1'

(2) We know by (3.9) that Xg,o = {0} for p > 0. We show now that Xz?—l,k =

{0} if k # 1. Indeed. Take n € Xr(t)—l,k and put = dn € H)_,. Then dw =
—dén = 0 and ey = 0, for w is a n-form. Thus, we have 0 = (bw|éw) =
—(wleydw) = (k — 1)(w|w). Since d : xr?il’k — $);_, is one-to-one, our assertion
follows.

As a direct application of above corollary and remark we obtain
dx)_,, ifp=k=0,

*Xg,k= eyR ifp=n—1,k=1. (3.19)
8VdX1?—p—2,k otherwise.

Proof of (3.19). We proceed as follows. We have that *ngk C 5’):_17, for xA = Ax.
Suppose that k = 0. If p = 0 then X,O,,k = X(g)o = R and xR is spanned by
dx' A .-+ A dx™. This last form is clearly both closed and co-closed, so *X,?,k =
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*Xg,o = er?—l,l‘ If p > O then Xg,o = {0} (see (3.9)) and of course Xm?—p—Z,O =
{0}, s0 evdx,)_, 50 = (O}

Suppose thatk > 0. If w € Xg « and @ # 0 then xw is closed but not co-closed.
Indeed, d(*w) = £ %8 x*xw = £ *dw = 0and §(xw) = £ xd x*w = = xdw # 0,
for in this case dw # 0 (see Proposition 3.2) and * is an isomorphism.

If k = 1then »x) | C evdx, , 5 & InX, , 1o Butxy , ;o #0
iff p=n—1butthen x), = x7_, and exdy,) , ,, = edx® | = {0}, s0
*Xg,l C IAX,?_[)_LO. Since, in this case, dim Xg,l = dim X,?_Ll =" =1

and dim IAX;?,k = dim IAX(()),() = dim X(()),o = 1 we have the equality *Xg,] =
IAX;LPA’O If p #n—1, IAX,g,p,LO = {0} so *Xg,l C gvdX;?fpfz,l' But

: 0 _ n _ n T 0 T 0
dlm)(py] = (p-H) = (n—(p+1)) = dlan_p_Q’l = dlmgvan_p_z,l- Thus,
0 _ 0
*Xp,l - 8Van—p—2,1
Suppose now that k > 1. Then *ng - s,,dx}?_p_”. Letn = gydow €
svdxr(l)_p_z’k and n # 0. Then we see that xn is co-closed, for §(xn) = —§ *

deyw = £ xd x xdey,w = 0. Moreover, if p < n — 2, *n is not closed, for
d(xn) = —d x ey,dw = £ * §(e,dw) # 0 by Proposition 3.2 (iv). Thus xn € Xg «

and therefore, *ngk = 8,,dxr?_p_2’k if 0 < p <n—2andk > 1. On the other
hand, if p = n — 1 or p = n then evdxr?_p_lk = {0} and X,?,k = {0}.
Proposition 3.18. Let w € )(2_1’“1 and n = dw # 0. Then n is not normal, i.e.,
nT 0, except the case: p =n, k = 0.

Proof. One can easily check that r2(dw)T = r’dw — (p + k)eyw. Thus, dw is
normal iff r’dw = (p + k)&, . We have,

(r*do|r’dw) = (rPdo|(n + j)e,w) = 2(p + k) (dw|dw).
On the other hand, by (3.2) we have

(Frdw|r’dw) = —(do|A(r’dw)) = 2(p + 2k)(dw|dw).
We conclude £ = 0. Of course p > 1. Now we have

n- przda) — pIa(p,2)w.

0=r’do — peyw =

Since dw # 0, by Corollary 3.1, n = p. O

4. Dirichlet boundary problem

4.1. Dirichlet boundary problem for Laplace-Beltrami operator

Observe first that (2.2) implies the following
Proposition 4.1. For each g € Py there exist a unique f € Py such that A(r* f)=g.
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Let S denote the unit sphere in R”.
Proposition 4.2. [f w is a harmonic polynomial and w|s = 0 then w=0.

Proof. We have w = fy + ... + fo, where f; € H;, j = 0,...,k, If k = 0 our
assertion is trivial. Assume that k > 1 and f; # 0. Let x # 0 then w(x/|x|) = 0,
for x/|x| € S. Homogeneity implies now that 0 = |x|*kfk(x) 4o FxTHAG) +
1x|° fo(x). Without loss of generality we may assume that k is even, so if we put
y = x and y = —x, we obtain two following equations

0= fi) + P fica ) + oo+ 12 fo
VI femt1 ) + P o3 + o4+ T A1)

0 = £ + V2 fica () + oo+ 1912 fo
et )+ 1P fe3s ) + o+ YT A1)

They follows that fi + r2fi—s + ... + (r2)% fo = 0, and fie1 + r2fies + ... +

(r2)¥f1 = 0. Proposition 2.1 implies now that fo = ... = fr—2 = fr = 0, and
fi=..=fi3= fi-1 =0.
This completes the proof. O

Theorem 4.3 (Dirichlet boundary problem). Let w and n be polynomial p-forms.
There exists unique polynomial p-form ¢ such that A¢ = w and ¢|s = n|s.

Theorem 4.3 is a direct consequence of 3.1 and the following:

Lemma 4.4. Let  and g be polynomials. The differential equation Au = f and
uls = g, has the unique polynomial solution.

Proof. Without loss of generality, we may assume that f, g are homogeneous poly-
nomials. Let, for example, f € Py and g € P;. Proposition 4.1 implies, that there
exists a unique polynomial v € Py, such that A(r?>v) = f. From Proposition 2.1
we have v = v + r2v; + ... + (r2)mkvmk and g = go + r2g1 + ...+ (rz)"”gm,,
where v; € Hy—2;, 0 < j < my,and g; € Hk—2;, 0 < j < my. Putv =
Vo 4+ V1 + oo+ Upys 8 = g0+ 81+ ... + gm,. then v, ¢” are harmonic polynomials,
V'|s = (r?v)|s and g’|s = g|s. Obviously, the polynomial u = r?v — v’ + g’ is a
solutionto Au = f,ul|s = g.

The uniqueness results from Proposition 4.2. O

4.2. Dirichlet problem for Laplace type operator

Consider a Laplace type operator L = ad$ + béd, a, b > 0. A goal of this section
is the following
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Theorem 4.5 (Dirichlet boundary problem). For any w,n € AP, there exists the
unique ¢ € AP such that Lo = w and ¢|s = nls.

Clearly, if p =n or p = 0, or a = b then Theorem 4.5 reduces to the Dirichlet
problem for A. Therefore, we may suppose that 0 < p < n and a # b.
As a consequence of 3.5 we obtain:

Proposition 4.6. For any w € A,f there exist unique ¥ € Af such that LYy = w.
Lemma4.7. Letw € AP. If Lo = 0 and w|s = 0 then o = 0.

Proof. We may write ® = wi + --- + wg, where w; € S?. If &k = O then our
assertion is obvious. Let k > 0. Suppose that wy 7# 0. Corollary 3.11 implies that
forany j > 0, w; = a)/] + I1.(n;), where a); € xp,jand nj € xp—1,j—1. Observe

that I1n; = Ian; + cjrzdr]j, where the constant c; = ca — ¢/, depends on j (see
(3.15)). Let

k
& =) (& + Ia(n)) + c;dn;) + wo.
j=1

Clearly, w is harmonic and w|s = ®|s = 0, so @ = 0. Thus w, + Iank = 0. By
Corollary 3.11 it results that w,@ = 0 and nx = 0. Therefore wy = 0. It contradicts
our assumption wy 7 0. O

Proof of Theorem 4.5. We may assume that w € A,f and n € Alp . Take ¥ € Af 2
such that Ly = w. By Corollary 3.1 there exist unique forms v; € ﬁ,f 1o 2
0<i<mrandn; €9/ ,;,0<j<msuchthaty = Yo+ r’yi +--- +
(r2)™ 2, and g = 1o + 7201 -+ ().

Corollary 3.11 implies that for any 0 < i < myyp and 0 < j < my there
exist unique p-forms ¥/ € xpii2-2i, ¥ € Xp—1k+2-2i—1s 77’]. € Xp,i-2; and
7;;./ € Xp—1,—2j—1 such that ¥; = ¢/ + In(¢]) and n; = n;. + IA(n/j/). Therefore,
Vi = wl.’—{—IL(wl.”)—f—cirzdwi” andn; = n;—i—IL(n;’)—}—cjrzn;f, where c; = ca—cr.
Hence ¢ |s = ¥|s and n|s = 1|, where

mk+271
Vo= > @+ L)+ cdW]) + Yy
i=0
my—1
ﬁ —

= >+ L) + cjdn)) + 1.
j=0

Since Ly = Lij = 0, it suffices to put ¢ = ¥ — ¥ + 7.
The uniqueness results from Lemma 4.7. O

Remark 4.8. It is worth to note that in whole section we used only the Corollary
3.11.
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4.3. Projection formulae

Let L be a Laplace type operator, k > O and 0 < p < n. Fixa € Sf . By

Theorem 3.7 there exist unique o' 0

0o 2
€ Xpr @ €dY g pi1

o’ e 8vdX2_z,k and
ot e ILXg—l,k—l such that

a=a'+a®+a+a “4.1)
For each 1 < i < 4 define the projection 7/ = yri by ni(a) = af. Let n*> €
X2_1 k1 n” e X2_2 « and nte X2_1 «_ be such that o =dn?, o = e,dn® and

ot = Iyt Lemma 3.4, Proposition 3.2 and Lemma 3.14 imply that if a! # 0 then
corresponding 7' is uniquely determined. If &' = 0 then we put n' = 0. Define the
maps o' =o0;,i =2,3,4,by

ai(ot) = oi(a) = ni.
Let j denote the identity map on S,f . Clearly, we have

771:j—7T2—7T3—7T4, ﬂz:d(iz, 7T3=8vd0'3, 714=IL04.

Let n = n* 4+ dn>. One can easily calculate that
81t = QeL(p+k=2) = (= p+ k) — (0 = p +kdr’,
where of course, I}, = I (p, k) and ¢ = ¢ (p, k). Therefore,
Wl =—(n—p+h(p+k—2n.

Since da = §1;,n we obtain

0, ifk=0orp=0,1,
— 1,6, otherwise.
n—p+k)(p+k—2)
0, ifk=0o0rp=0,
4 orp=nandk =2,
S+ (n—p+k)do?), otherwise.
oL (pHh—2)—(n—p+k) Ot prRdeT)

And finally,

0, ifk=0or p=0,
orp=nandk =2,

_a(p—i—k—Z)-|—b(n—p+k—2)(S

o= bn—p+k—-2)n+2k—-2)

, if p=1,

_ alp+k—-2)+bn—p+k—-2)
bn—p+k—=—2)(n+2k—-2)(p+k—2)

tyd§, otherwise.
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Let ¢ = a! + dn?. Since 1,¢ = (p + k)n? we obtain

piktv(j — 7t = 7r3), otherwise.

0, if p =0,
02={ r

In the example below we derive for given form « € 56% corresponding o and '.

Example 4.9. Let n = 3 and « be a (1/3)-form: o« = (3yz> — y?)dx + xyzdy +
(3x%y — y?)dz. One sees that o € .6%. Since p =1,

o’ =0.
We see that cA = ca(1,3) = 1/5 and S = —xz, thus
n* = (5/21)xz.
Hence

ot = Ian* = Ia(1,3)n*

1
= i((4xzz - yzz - 23)dx + Sxyzdy + (4xz2 —x3 - xyz)dz).

Therefore,
1
7= qule—ab)
1
= %(—x?’z + 21x2yz - 7xy3 + 6xy2z + 21xyz2 —x - 7y3z).
o2 = dn?
1
= %((—3%2 +42x%yz — Ty + 6y*z + 21yz> — 2°)dx
+(21x%z — 21xy2 + 12xyz + 21xz% — 21y2z)dy
+(=x 4 21x%y + 6xy> + 42xyz — 3xz> — Ty )dz).
So

1
o' = S (=27 = 18xyz = 9y = 2y%2 + 27y + V)dx

+(—9x2z + 9xy2 +4xyz — 9xz> + 9y2z)dy
+(x3 4+ 27x%y — 2xy? — 18xyz — xz% — 9y°)dz).
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4.4. Explicit solutions

Fix the Laplace type operator L = adé + béd, a, b > 0. Let w € AP. We give a
method of finding the solution to the Dirichlet Problem Ly = 0, ¢|s = |s.
Suppose first that w € .7),1:. Clearly, if k = 0,1 we put ¢ = w. Letk > 1 and
let n = o%w. Put
o =+ (1 —r) (e —ca)dn,

where, clearly, c;, = c1(p, k) and cA = ca(p, k). One sees that w|s = '|s. Since
(see Theorem 3.7) Ldn = 0 and w — r>(cy, — cp)dn = (0 — Ian) + I, Lo’ = 0.
Therefore ¢ = @' is the unique solution to Ly = 0 and ¢|s = o'|s.

Fixw e A?. If o = wy + wy + - - - + wg, where w; € Af then ¢ = ¢o + ¢1 +
-+ 4 ¢y, where ¢; is the solution to Lyp; = 0, ¢;|s = w;|s. So we may assume that
w € A,’: . Suppose that w has the following decomposition (see Corollary 3.1)

w = ag+ria + -+ ) ay,, 4.2)

where a; € 9 ,;. Let o] be such that Lo, = 0 and w]|s = a;|s. Then ¢ = wj +
S a);nk is the unique solution to the differential equation Ly = 0, ¢|s = w|s. So

it suffices to derive e;s. In fact, a method of deriving of o reduces to an algorithm
of finding spherical harmonic decomposition of homogeneous polynomial which
can be found in the literature (see, for example [2, Theorem 5.21]). However, our
recurrence formula seems to be more efficient for computation.
By (2.1) and an easy recurrence, we obtain that for any &2 € Hy, [ > 0 and
m = 0,
A" h) = Yidm )" ',

where
1, if [ =0,

_ -1
Vilm =1 ()2 [T m — jy(n+ 2k +m — j — 1)), if [ > 0.
j=0

Notice that Al ((r>)"h) = 0if | > m. Put yi ,y = Vk.m.m. for simplicity.

Remark 4.10. Above formula is the very special case of the general one given in
[13, Lemma 3.2 page 176]. This formula asserts how to compute A!(¢h) for any
h € Hy and any (smooth) radial function ¢.

Put w; = ag + rlog + -+ + (rz)iozi, 0 <i < my. Clearly, w,, = o, wo = g
and forany 1 <i <my, wi—1 = w; — (r3) ;. By (3.2) and the definition of yx ;

we obtain

1 .
o = A'w;, fori=0,...,my,
Vk—2i,i

where of course A = Ao ---0 A (s times).
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Example 4.11. Let n = 3. Consider polynomial f, f(x,y,z) = 4yz% + x2y.
Clearly f € Pyand Af(x,y,z) = —10y. Let f = ho+r?hy, h; € Hz_2;,i =0, 1.
One sees that m3 = [3/2] = 1 and y3-2.1,1 = —10. Therefore, h1(x,y,z2) =
(—10y)/(—10) = y. Hence

fo,y,2) =3y =y + (2 +y* + )y

Example 4.12. Let n = 3 and w = (4yz> + x%y)dx + xyzdy + (3x%y — y¥)dz.
Solve the Dirichlet problem

$*Sg = 0 and ¢ls = wls. 4.3)

Since n = 3 (see Section 3.1), S*S = (2/3)ds + (1/2)5d. We see (cf. Example 4.9
and 4.11) that = « + r2ydx, where a was form from Example 4.9.

Since k = 3 and p = 1 (see (3.15)) cs»s = 11/34 and cpo = 1/5. Since
n4 = (5/21)xz (c¢f- Example 4.9) the unique solution to (4.3) is ¢ = o + (cs*s —
ea)(1 = r2)dn* + ydx, ie.,

1
¢ = 35 (~x"z =34y = 72+ 10227 + 34y — 2+ 2)dx + xyzdy

1
%—ﬁ(—x3 +102x%y — xy? — xz% + x — 34y%)dz.

5. Our decompositions from the rotation group point of view

In the whole section we assume that n > 3. Because of representation theory it
is convenient to consider complex vector spaces, so we pass to complexifications.
More precisely, we complexify all spaces, maps, and extend (-, -) x to the Hermi-
tian inner product. For example, since now, A,f will denote the complexification of
the space of (p/k)-forms in R”. Moreover we set, A\’ = (AP(R")*) ®g C. In
fact, we have \” = A}.

5.1. Preliminaries

Consider the rotation group G = G, = SO(n), and let s = [n/2]. Recall that
if  is any p-form on R” or on S then the natural action of G on w is given by
gw = (g_l)*a). Under this action all considered operators d, 8, ¢, €, and x are
G-map, i.e., they commute with the G-action.

If m = (my, ..., my), is a dominant weight of G, i.e., m;’s are integers that
satisfym; > ---myg > 0ifn =2s +land m| > ---my_1 > |mg| if n = 2s, then
R, (m) will denote the irreducible representation of G having highest weight m. We
will denote by 1; (respectively ;) the sequence of j 1’s (respectively 0’s).

If R is a representation on V we will sometimes identify R and V, writing
R = V. If V = R,(m) then the space of all highest weight vector (together with
zero vector), which is necessarily one-dimensional, will be denoted by hwv (V).
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The following examples are classical:

(1) Lezt Zz’l—(k then V is irreducible, V = R, (k, 05_1) and hwv(H}) = span ((x' +
ix°)%).

(2) Let V.= AP. If p < n/2 (respectively p > n/2) then V. = R,(1,,05—,)
and hwv(V) = span ¢{? where P = (dx" +idx®) A - A (dx?P71 4 idx?P)
(respectively hwv(V) = span (x¢"~?)). If p = n/2 then V is reducible, V =
Vi@ Vo with Vi = R,(1y) and V_ = R,(15—1, —1), hwv(Vy) = span ¢® and
hwv(V_) = span ¢® where ¢5 = 571 A (dx"~! —idx").

3) LetV = 55,’: and p > 0. Then V is isomorphic, as a representation, to the tensor
product Hy ® /\?. Therefore, V is reducible in general. We distinguish the
irreducible component V' of V generated by the form p?* = (x! + ix?)k¢? if
p<sand (x' +ix2) %" Pif p > 5. Then V' = Ry(k + 1, 1,1, 05_,) if
p=<s,V =Ryk+1,1,_p_1,05_pyp)ifs < p<n—1land V' = R, (k, 05_1)
if p = n. Moreover, p”°* is a highest weight vector of V/. If n = 2s and p = s
we also distinguish a subspace V. This is the smallest irreducible subspaces of
V containing ¢ = (x! +ix2)k¢*~!. We have, V/ = R,(k+1, 1,_», —1) and

(pﬁk is a highest weight vector of V.

Denote by 7, , the natural action of G on the Hilbert space I'” = I'(E (P)y of all
square integrable sections of the bundle E (") = AP T*S, which are, in fact, square
integrable p-forms on S. (E© is the trivial bundle S x R and I'(E®) is equal to
L%(S)). Points (a)-(e) below describe all irreducible subrepresentations of 7, ,. A
proof based on the Frobenius reciprocity theorem and branching theorem may be
found in [4, Theorem A, page 137].

The irreducible representations of G occurring in 7, ,, are as follows:

(@) R,(k,05_1),k>0,if p=0orp=n—1.

(b) Ry(k,1,-1,05_p) and R,(k,1,,0,_p_1), k = 1,if 1 < p < s —1orif
n=2s+1land p=s5—1.

(©) Ru(k, 1y—p—1,054p—pn) and Ry(k, 1;,—p—2, Os4pt1-n), k = lifs < p <n—1

(d) Ry(k,15_1), Ry(k, 15_2,0)and R, (k, 152, —1),k > 1,ifn =2sand p = s—1
orp=s.

(€) Ry(k,15_1),k>1,ifn =25+ 1and p = 5.

The irreducible representations from (a)-(d) occur with multiplicity one. The rep-
resentations from (e) occur with multiplicity two.

5.2. Irreducible decomposition of S,f

As we have seen, in Section 3.3 if L = ad§ + bdd, a,b > 0 is a Laplace type
operator then £; = ker L N A splits as (see (3.16))

£r = Xg,k o+ dXS*l,kJrl ot Svng—z,k " 1L(p, k)ngLk*l'
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Since A,f is G-invariant subspace, X,(,) « = kerd Nkere, N A,f is. Therefore, each
component in the above decomposition is G-invariant subspace. Our aim is to check
when (3.16) is irreducible. In the light of Proposition 3.2 and Corollary 3.11 we
know when G-maps d, €,d, and I} are one-to-one. Thus, only we have to do is to
show when Xg, « 18 irreducible. By (3.19), Proposition 3.2 and G-equivariantness of
d, &, and x we obtain:
Proposition 5.1. Representation X,(,), i IS equivalent to Xr?—l, Vifp=k=0andto
Xr(t)—p—Z,k if neitherp =k =0norp=n—1k=1.

Suppose) < p <n—1. Ifxg,k #R, i.e, p > 0ork > 0then representations

0 0 :
Xpk and pr,k are equivalent.

Let is denote the inclusion map S — RR". The pull-back i is a G-map. Sim-

ilarly, tangential projection w > @’ and restriction @ + w|s are G-maps, so the
map w — ! |g is. Clearly, we may identify, »’ |g and iw. Suppose that  is a

homogeneous polynomial form. If  is not normal, i.e., o’ # 0, then by homo-
geneity ' | # 0. If, in addition, w is tangential (for example if w € x,?, ) then we

may identify o with w’ | or equivalently with i Sw:

x 0 0

lgxp,k = Xp,k‘
Ifn =dow, o e Xg—l,k+1’ p < nand n # 0 then by Proposition 3.18 n7 £ 0,
and (outside 0) n7 = (dw)T =dw — (1/r*)(p + k)eyw. So, nT |s = (dw —(p+
k)e,,a))l s. Consequently, under identification ign = n’|s we have

iE(ng—l,k+1) = {(da) —(p+ k)s,,a))|5 tw € Xg—l,k+1} .
We have

i5x0 4 Nisdxg 1 41) = {0}, 5.1)
Proof of (5.1). We may assume that 0 < p,q < n. If p # ¢ then our assertion
is obvious. Suppose that p = ¢. If p = 0, i;(dxg_uﬂ) = {0}. Take p > 0.
141 suchthate = dw — (p + Deyw on S. But
do— (p+Deyo=+calp,l+ 2)r)dw + Ian(p,l 4+ 2)w. Thus on S,

There exist o € Xg cand o € Xg

oa=04+calp,l+2))dw+ Ia(p,| +2)w. 5.2)
Since all forms from (5.2) are harmonic, equality (5.2) holds on the whole R”. Now
by (3.17) it follows that « = w = 0. ]

Let ¢P* and (pik be as in example (3). One can verify that if neither p = 0,
k > Onor p = n, k > 0 this forms are both closed and co-closed. Thus by Corollary
3.16 it follows thatif k > 0,0 < p <nork =0, p =n,

p.k 0
P e dyp_y ky10

and ¢*0 € Rif p = 0.
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Define now forms ¥?~ 1A+ 1 and y* =141 ag follows; P14+ = | P+ and
sTLL — 0%k, Moreover, we put 70 = 0, (p > 0) and 0 = 1. By
definitions follows that %X = ¢%¥. Moreover we see that

p—1,k+1 0
14 € Xp—1k+1

except the case p = n and k > 0. Similarly,

s—Lk+1 _ 0
v € Xs—1k+1-

We conclude the following:
Proposition 5.2. Let 0 < p < nand k > 0. Then we have Xg,k = {0} iff either
p>0k=00rp=norp=n-—1,k # 1. Except this cases Xg,k # {0}, for
yPk e Xg,k and Y7 £ 0.

By an easy calculation we obtain:

Proposition 5.3. For any k > 0 we have
@ ety =0 and @My =0,

Let U, x and W), ; be the smallest G-irreducible subspaces of I'” containing (¢” kT |s
and wp’k, respectively. Clearly, U,y = Wy = {0} and Upx = Wor. We
also define U, and W._, , as the smallest G-irreducible subspaces of contain-

ing ((pfk)TIS and wfl’k, respectively. From the example (3) and considerations
above

Rn(ka O5-1) if P=0,k >0,
Upr =14 Rtk +1,1,-1,0;_p) if O0<p<s,k=>0,
Rytk+1,1,_p_1,054p—p)if s<p<n-—1k=>0.

Rn(k7 05—1) lf p = 0’ k Z 07
isUpr =13 Ru(k+1,1,_1,05_p) if O<p<s,k=>0,
Ry(k+1,1,_p_1,054pp)if s <p<n—-1k=>0.

Ry (k,05-1) if p=0,k>0,

W — R, (0y) if p=n—1,k=1,
PEZ Rk, 1,5, 05— p—1) if0<p<s—1,k>1,
Ry (k, 1n—p—2» Os-‘rp—n-‘rl) ifs<p<n-1k>1

We also have
Uy = Ratk+ 1,10, —-1), k>0,n=2s,
iU = Ra(k+ 1,150, =1), k>0,n=2s,
Wk = Ralk, Li2, = 1), k>1,n=2s.
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Taking into account (5.1) and comparing representations U x, Wy x, U, and

W, , with representations occurring in (a)-(¢) above we conclude:

Theorem 5.4. Suppose that0 < p <n —1and k > 0. The subreperesntation )(2’ k

of Wy is reducible iff n = 2s, p = s — 1, k > 1. In this case X?—l i Splits as a sum
of two irreducible representations. More precisely, we have

{0} if p>0k=0,
orp=n—1,k>1,

Wp,k if p=0,k>0,
orl<p<s—1k>1,

Xpk = ors <p<n-—2k=>1,
orn=2s+1,p=s—1,k>1,

orp=n—1,k=1,

WY—lskEBWV_—l,kif n=2s,p=s—1,k>1.

Now we are able to give a full characterization of Sf from the representation theory
point of view.

Theorem 5.5. 2,‘? has the following decomposition onto direct sum of nonempty
G-irreducible subspaces;
If p=0,k >0 then

£ = Wor.
If p>1landn =2s + 1 then
Up.o if k=0,
Wik @ Uik @ 1.1, k)Wo k-1 if p=1Lk>1,
5vUn—1,k—1 if p=nk=>1,
or — anl,leBUnfl,l@ngan,O if p=n—1k=1,
k Un—1,k ® evUn—24-1

©lLn—1, Wy 241 if p=n-1k=>2,

Wik ®Up i ®eyUp_1x-1
SIL(p, YWy _1 k-1 if2<p=<n-—-2k=>1.

If n = 2s then s > 2 (n > 3) and the decomposition of 2,‘? is the same as above
except the cases p =s — 1, p = s and p = s + 1 where we have

Wik @ W & Uik @11, )Wo k-1 if s=2,k>1

25—1 _ Ws—l,l ¥ Ws_—l,l 2 Us—l,l ®8VUS—2,0 ifS >3, k=1,
k Ws—1k @ Wiy @ Us—1.x
@evUs k-1 DI (s =1, k)Ws_o 1 if s >3,k > 2,
Uso® U, if k=0,
os Ws,l @ Us,l @ USTI @ 8UUS71,0 lfk =1,
r =

Wik @ Usk @ Ug ; @ e0Us—1,k-1
DIL(s, )Ws—1k—1 @ IL(s, k)Wg__Lk_l if k=2,
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Us+1,0 if k=0,
Wstr1,1 @ Us1,1 @ 60U 0 ® 60U ifk=1,

£s+1 —
k Witk @ Us+1,k ® 60Usk—1 D &y Us_,k—l
BIl(s+ 1, k)W k-1 if k>2.
Proof. 1t suffices to apply Theorem 5.4, Proposition 5.2, 3.2, 5.3 and Lemma 3.10
to the decomposition (3.16). ]
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