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Laplace type operators: Dirichlet problem

WOJCIECH KOZ�LOWSKI

Abstract. We investigate Laplace type operators in the Euclidean space. We
give a purely algebraic proof of the theorem on existence and uniqueness (in the
space of polynomial forms) of the Dirichlet boundary problem for a Laplace type
operator and give a method of determining the exact solution to that problem.
Moreover, we give a decomposition of the kernel of a Laplace type operator into
SO(n)-irreducible subspaces.
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(secondary).

1. Introduction

In geometric and analytic investigations there appears, in a natural way, a whole
class of elliptic self-adjoint operators of form

L = La,b = adδ + bδd, a, b > 0,

called Laplace type operators. If a = b = 1 then L = � = dδ + δd is sim-
ply the Laplace-Beltrami operator. Another example is the Laplace-Ahlfors op-
erator S�S. Originally, the Laplace-Ahlfors operator was defined as an operator
acting on the space of smooth vector fields in Rn: S�S = 1

2� + n−2
2n grad div . If

n = 3, S�S = 0 reduces to the elasticity equation considered by H. Weyl ([14]).
(For more details we refer to [1] or [11]). Because of the natural duality between
the space of vector fields and 1-forms in Rn , the operator S�S can be identified
with the operator L = L n−1

n , 1
2

= n−1
n dδ + 1

2δd, acting on the space of 1-forms

in Rn . A generalization of the Ahlfors-Laplace operator to Riemannian mani-
folds was done by A. Pierzchalski (see [9, 10]). It is worth to note that if a Rie-
mannian manifold is Ricci flat then the Ahlfors-Laplace operator has exactly the
form L n−1

n , 1
2
.

Laplace type operators have some properties similar to �. For example La,b =
(
√

aδ + √
bd)�(

√
aδ + √

bd), where the star denotes the operator adjoint with
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respect to the inner product given by an integral. Despite similarities, some of the
important features of L may be quite different than those of �. The reason lies in
a shape of the leading symbol of L . By contrast to �, L is not of metric symbol, if
a �= b.

In this paper we investigate Laplace type operators in the Euclidian space Rn .
Since partial derivation of a polynomial is an algebraic operation, both the dif-
ferential d and co-differential δ in the space �p of polynomial p-forms in Rn

can be defined in a pure algebraic way. In particular, any Laplace type operator
L = La,b = adδ + bδd may be defined in this manner. There appears a natural
question, whether one can investigate the operator L using pure algebraic meth-
ods. In particular, whether one can obtain the theorem on existence and uniqueness
purely algebraically for such operators. In this paper we give an affirmative answer.

The main results are: Theorem 4.5 on existence and uniqueness of solutions
to the Dirichlet boundary problem for L and the unit sphere in Rn , and Section 4.4
where we give an algorithm for solving Dirichlet boundary problem explicitly. The
algorithm involves pure algebraic operations only.

In the whole paper (except Section 5 which is a complement to theory devel-
oped in Section 2.1-3.3) we do not use any analysis, at all. Surprisingly enough,
to the best of the author’s knowledge, no book on differential equations or spheri-
cal harmonic, contains an algebraic proof on existence and uniqueness of solutions
to the Dirichlet boundary problem, even in the simplest case �ϕ = 0, ϕ|S = f ,
where f is a polynomial 0-form, i.e., polynomial in Rn . The most algebraic proof
we found is contained in the Krylov’s book [7], nevertheless the author applies the
Maximum Principle which is proved analytically.

The main tool we construct is the decomposition (3.16) of the L
p
k = ker(L :

�
p
k → �

p
k ) into four mutually orthogonal (with respect to some special inner prod-

uct (2.3)) subspaces. This decomposition seems to be of independent interest. Here
�

p
k denotes the space of polynomial p-forms that coefficients are homogeneous of

degree k. The important tool in getting the decomposition is Theorem 2.7 which
asserts that d� = ιν and δ� = −εν . This fact was observed by Antoni Pierzchalski.

In the special case L = S�S and p = 1 the decomposition (3.16) reduces
to the decomposition of ker S�S obtained by H. M. Reimann in [11]. It was later
used by A. Lipowski in [8], where the author considered Neumann type boundary
conditions for S�S.

In Section 4.3 the projections formulae onto the four subspaces from (3.16) are
given. Applying this formulae together with the method from the proof of theorem
on existence solution to the Dirichlet boundary problem we build an algorithm of
solving Dirichlet problem Lϕ = 0, ϕ|S = ω|S , explicitly. Moreover, we give an
example (see Example 4.12) of direct application of the method. This algorithm
could be applied for solving the Dirichlet problem by computers.

In Section 5 we investigate the decomposition of L
p
k from the representation

theory point of view. It turns out that (3.16) may be reducible in general. The main
result of this section - Theorem 5.5 - contains the decomposition L

p
k into SO(n)-

irreducible subspaces. In the special case p = 1 and L = � the decomposition
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from Theorem 5.5 reduces to those from [11] and [6]. In Section 5 we use algebraic
tools constructed in Section 2.1-3.3 only with the one exception, namely, we apply
Theorem A from [4].

This paper was inspired by the articles [11] of H. M. Reimann and [4] of G. B.
Folland.

ACKNOWLEDGEMENTS. The author would like to thank very much to Professor
Antoni Pierzchalski for helpful discussions.

2. Preliminaries

2.1. Polynomial forms

Suppose n is non-negative integer and n ≥ 2. If x = (x1, . . . , xn) ∈ Rn and α =
(α1, . . . , αn) is a multi-index then xα = (x1)α1 · · · (xn)αn and |α| = α1 + · · · + αn .
Put ∂i = ∂

∂xi , ∂2
i, j = ∂i ◦ ∂ j and Dα = (∂1)

α1 ◦ · · · ◦ (∂n)
αn .

Recall first the basic properties of homogeneous polynomials. For more details
we refer to [3, 12, 2]. Let Pk denote the space of all (real-valued) homogeneous
polynomials in Rn of degree k. As a consequence of homogeneity we obtain, so
called, Euler property: k f (x) = ∑n

i=1 xi∂i f (x). If f ∈ Pk has a form f (x) =∑
|α|=k aαxα we define differential operator f (D) = ∑

|α|=k aα Dα . Obviously,
f (D) : Pl → Pl−k .

Define the inner product (·, ·) = (·, ·)k in Pk as follows; ( f, g) = f (D)g,
for f, g ∈ Pk . Clearly, for any f ∈ Pk , g ∈ Pl and h ∈ Pk+l , (g f, h)k+l =
( f, g(D)h)k . In particular, (x j f, h) = ( f, ∂ j h). It means that multiplication by g
and operator g(D) are formally adjoint each to the other.

For any x ∈ Rn let |x | denote Euclidean norm in Rn . The polynomial r2

defined by r2(x) = |x |2 is a member of P2. Differential operator � = −r2(D) is
nothing but the classical Laplace operator. Let Hk = {h ∈ Pk : �h = 0} be the
space of all harmonic homogeneous polynomials of degree k. Clearly, Hk = {h ∈
Pk : r2(D)h = 0}. By Euler property it follows easily that for any f ∈ Pk ,

�(r2 f ) = −2(n + 2k) f + r2� f. (2.1)

Since multiplication by −r2 and � are formally adjoint, we obtain

Pk = Hk ⊕⊥ r2Pk−2, (2.2)

where ⊕⊥ denotes orthogonal direct sum. In particular, dimHk = dimPk −
dimPk−2. Thus dim im (�|Pk ) = dimPk − dimHk = dimPk−2.
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As a direct consequence of the formula (2.2) we obtain:

Proposition 2.1. For each f ∈ Pk there exist unique polynomials h j ∈ Hk−2 j ,
0 ≤ j ≤ mk = [k/2] such that f = h0 + r2h1 + · · · + (r2)mk hmk .

Consider any p-form ω in Rn , p ≥ 0. If p = 0 we identify ω with a function
on Rn . Assume that any p-form, p < 0, is the zero form. If p ≥ 1 then ω has
unique expression

ω = 1

p!

n∑
i1,...,i p=1

ωi1,...,i p dxi1 ∧ · · · ∧ dxi p ,

where the functions ωi1,...,i p = ω(∂i1, . . . , ∂i p ), called coefficients, are skew-sym-
metric with respect to indices. A p-form ω is called polynomial p-form if ωi1,...,i p ’s
are polynomials. Denote by �p vector space of all polynomial p-forms in Rn . Al-
though, in this paper, we consider only polynomial forms, some properties, formu-
lae, theorems etc. hold for forms with differentiable (or even arbitrary) coefficients.
For this reason designation “polynomial form” will be used only if a property, for-
mula, theorem etc. holds only for forms with polynomial coefficients.

If ω and η are any p-forms defined on a subset Z ⊂ Rn then ωη will denote
point-wise inner product of that forms, i.e., ωη is a function Z → R defined by

ωη = 1

p!

n∑
i1,...,i p=1

ωi1,...,i pηi1,...,i p .

A polynomial p-form ω is called homogeneous if all coefficients are from Pk , for
some k. Such a form will be called (p/k)-form. Denote by �

p
k the vector space

of all (p/k)-forms. Clearly, �
p
k is a finite dimensional vector space and dim �

p
k =(n

p

)
dimPk . Manifestly, �0

k = Pk , and �n
k is, in a natural way, isomorphic to Pk .

Moreover, it is convenient to put �
p
k = {0} if either p < 0 or k < 0.

Equip the space �
p
k with the inner product (·|·) = (·|·)p,k as follows; for any

(p/k)-forms ω and η we put

(ω|η)p,k = 1

p!

n∑
i1,...,i p=1

(ωi1,...,i p , ηi1,...,i p )k, (2.3)

where ωi1,...,i p ’s and ηi1,...,i p ’s denote coefficients of ω and η, respectively. Notice
that (·|·)0,k and (·, ·)k coincide.

Consider the vector field νx = x1∂1 + · · · + xn∂n and the (1/1)-form ν�
x =

x1dx1 +· · ·+ xndxn. One sees that ν�ν = r2. Let εν denote exterior multiplication
by ν�, i.e., ενω = ν� ∧ ω. Its adjoint with respect to the pointwise inner product
is denoted by ιν , i.e., (ενω)η = ω(ινη). If ω is a p-form then ινω is (p − 1)-form
defined by ινω = ω(ν, ·, . . . , ·) if p ≥ 1 and ινω = 0, if p = 0, and ενω = ν� ∧ ω.
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It is clear that for any (p/k)-form ω, ινω ∈ �
p−1
k+1 and ενω ∈ �

p+1
k+1 . Mani-

festly, ι2ν = ιν ◦ ιν = 0 and ε2
ν = εν ◦ εν = 0. Moreover, ([5, page 63]) ιν is graded

derivation of degree −1. As an easy consequence of the definitions we obtain that
for any p-form ω,

(ενω)i0,...,i p = xi0ωi1,i2,...,i p − xi1ωi0,i2,...,i p − · · · − xi pωi1,i2,...,i0,

(ινω)i2,...,i p =
n∑

i=1

xiωi,i2,...,i p .

Let � denote Hodge star operator. Recall that for any p-form η, �η is the unique
(n − p)-form such that for any p-form ω,

ω ∧ �η = (ωη)dx1 ∧ · · · ∧ dxn.

This operator is an isometry, i.e, (�ω)(�η) = ωη and satisfies the identity �2 =
�� = (−1)p(n−p) on the space of p-forms.

Let x0 ∈ Rn . We say that ω is tangential (respectively normal) at x0 if
(ινω)x0 = 0 (respectively (ενω)x0 = 0). Clearly, each form is tangential and normal
at 0 ∈ Rn . Take now any subset Z ⊂ Rn . We say that ω is tangential (respectively
normal) on Z if ω is tangential (respectively normal) at each point z ∈ Z .

Take any p-form ω. Since ιν is graded derivation of degree −1 and ν�ν = r2,
we have ινενω = r2ω − ενινω. Hence we obtain

(ινεν + ενιν)ω = r2ω. (2.4)

It follows that each ω may be uniquely written as

ω = ωT + ωN,

where ωT are ωN tangential and normal, respectively. Outside 0 ∈ Rn , we have
ωT = (1/r2)ινενω and ωN = (1/r2)ενινω.

Corollary 2.2. Let ω be a p-form. Take any x0 �= 0, x0 ∈ Rn. If ω is both
tangential and normal at x0 , then ωx0 = 0. In particular, if the polynomial form ω

is both tangential and normal on Rn then ω = 0.

Proof. We have (ινω)x0 = (ενω)x0 = 0. Thus (ενινω)x0 = (ινενω)x0 = 0. Hence
the formula (2.4) implies that (r2ω)x0 = |x0|2ωx0 = 0. Since x0 �= 0, ωx0 = 0.

For any a, b ∈ R define the linear operator la,b by la,b = aενιν + bινεν.

Clearly, la,b : �p → �p and la,b : �
p
k → �

p
k+2.

Proposition 2.3. If a, b �= 0 then la,b : �p → �p is one-to-one.

Proof. Take any p-form ω and suppose that la,bω = 0, i.e., aενινω = −bινενω. It
means that polynomial forms aενινω and −bινενω are both tangential and normal
on Rn . Since a, b �= 0, ενινω = 0 ινενω = 0. Formula (2.4) now implies that
ω = 0.
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2.2. Relations between d, δ, ιν and εν

Let d and δ denote the (exterior) differential and codifferential, respectively. Recall
that for any p-form ω, dω (respectively δω) is (p + 1)-form (respectively (p − 1)-
form) which coefficients are given by ([15, pages 9-10])

(dω)i0,...,i p = ∂i0ωi1,i2,...,i p − ∂i1ωi0,i2,...,i p − · · · − ∂i pωi1,i2,...,i0,

(δω)i2,...,i p = −
n∑

i=1

∂iωi,i2,...,i p .

Manifestly, d : �
p
k → �

p+1
k−1 and δ : �

p
k → �

p−1
k−1 . It is very-well known that d

is graded derivation, d2 = d ◦ d = 0 and δ2 = δ ◦ δ = 0. Moreover, on �p,
δ = (−1)n(p+1)+1 � d � and d = (−1)n(n−p) � δ �.

Observe that

dεν = −ενd and διν = −ινδ. (2.5)

Indeed. Since d is graded derivation and ν� is closed, the first formula of (2.5) fol-
lows. To prove the second one it suffices to take p-form ω and compute coefficients
of διν and ινδ.

Proposition 2.4. Suppose ω is a (p/k)-form. We have the following identities

δενω = −ενδω − (n − p + k)ω,

dινω = −ινdω + (p + k)ω.

Proof. Let δi
j denote Kronecker symbol. Compute coefficients of ενδω and δενω.

(ενδω)i1,...,i p = xi1(δω)i2,i3...,i p − xi2(δω)i1,i3...,i p − · · · − xi p (δω)i2,i3...,i1

= −
n∑

i0=1

(
xi1∂i0ωi0,i2,i3...,i p − xi2∂i0ωi0,i1,i3...,i p − · · ·

· · · − xi p∂i0ωi0,i2,i3...,i1

)

= −
n∑

i0=1

(xi1∂i0ωi0,i2,i3...,i p + xi2∂i0ωi1,i0,i3...,i p + · · ·

· · · + xi p∂i0ωi1,i2,i3...,i0).
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On the other hand

(δενω)i1,...,i p = −
n∑

i0=1

∂i0(xi0ωi1,i2,...,i p − xi1ωi0,i2,...,i p − · · · − xi pωi1,i2,...,i0)

= −
n∑

i0=1

(δ
i0
i0

ωi1,i2,...,i p − δ
i1
i0

ωi0,i2,...,i p − · · · − δ
i p
i0

ωi1,i2,...,i0)

−
n∑

i0=1

(xi0∂i0ωi1,i2,...,i p − xi1∂i0ωi0,i2,...,i p − · · · −xi p∂i0ωi1,i2,...,i0)

= −(n − p + k)ωi1,...,i p

+
n∑

i0=1

(xi1∂i0ωi0,i2,...,i p + xi2∂i0ωi1,i0,...,i p + · · · + xi p∂i0ωi1,i2,...,i0).

In the last equality the Euler property was used to the homogeneous polynomial
ωi1,...,i p ∈ Pk .

Making similar computations one can obtain the second formula. One can also
use the well-known identity (see [5, Theorem 7.9(2)]) : dιν + ινd = Lν, where Lν

is Lie derivative in the direction of ν.

As a consequence of (2.5), (2.4) and Proposition 2.4 we obtain:

Proposition 2.5. For any polynomial form ω we have

d(r2ω) = r2dω + 2ενω

δ(r2ω) = r2δω − 2ινω.

Remark 2.6. Proposition 2.5 holds for any differential form ω, not necessary poly-
nomial.

Consider now d and δ as operators d : �
p
k → �

p+1
k−1 and δ : �

p
k → �

p−1
k−1 . Let

d� and δ� denote adjoint operator, respectively. One of the most important tool, we
will use is:

Theorem 2.7. For any (p/k)-form ω, δ�ω = −ενω and d�ω = ινω.

Proof. We will prove only the first formula of our assertion. The second one can be
obtained in a similar way.
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Fix p, k > 0. To prove the first formula take ω ∈ �
p
k and η ∈ �

p−1
k−1 . We have

(δω|η) = 1

(p − 1)!

n∑
i2,...,i p=1

((δω)i2,...,i p , ηi2,...,i p )

= − 1

(p − 1)!

n∑
i2,...,i p=1

(
n∑

i1=1

∂i1ωi1,i2,...,i p , ηi1,i2,...,i p

)

= − 1

(p − 1)!

n∑
i1,i2,...,i p=1

(ωi1,i2,...,i p , xi1ηi2,...,i p ).

On the other hand

(ω|ενη) = 1

p!

n∑
i1,...,i p=1

(ωi1,...,i p , (ενη)i1,...,i p )

= 1

p!

n∑
i1,...,i p=1

(
(ωi1,i2,i3,...,i p , xi1ηi2,i3,...,i p )

−(ωi1,i2,i3,...,i p , xi2ηi1,i3,...,i p ) − · · · − (ωi1,i2,i3,...,i p , xi pηi2,i3,...,i1)
)

= 1

p!


 n∑

i1,...,i p=1

(
(ωi1,i2,i3,...,i p , xi1ηi2,i3,...,i p )

+
n∑

i1,...,i p=1

(ωi1,i2,i3,...,i p , xi1ηi2,i3,...,i p )

+ · · ·

+
n∑

i1,i2,i3,...,i p=1

ωi1,i2,i3,...,i p , xi1ηi2,i3,...,i p

)


= 1

p!
p

n∑
i1,i2,...,i p=1

(ωi1,i2,...,i p , xi1ηi2,...,i p )

= 1

(p − 1)!

n∑
i1,i2,...,i p=1

(ωi1,i2,...,i p , xi1ηi2,...,i p ).

Therefore, the first formula follows.
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3. Laplace type operators

3.1. Definition and basic properties of Laplace type operator

Let a, b > 0. Differential operator

L = La,b = adδ + bδd

is called the Laplace type operator. In particular, L1,1 is just the Laplace-Beltrami
operator � = dδ + δd. Moreover, S�S = (n − 1)/ndδ + 1/2δd, considered as an
operator �1 → �1, is called the Ahlfors-Laplace operator (cf. [10]).

Take any p-form ω and compute coefficients the of dδω and δdω. We have

(dδω)i1,...,i p = −
n∑

i=1

(∂2
i1,iωi,i2,i3,...,i p + ∂2

i2,iωi1,i,i3,...,i p + · · · + ∂2
i p,iωi1,i2,i3,...,i ),

(δdω)i1,...,i p = −
n∑

i=1

∂2
i,iωi1,...,i p

+
n∑

i=1

(∂2
i1,iωi,i2,i3,...,i p + ∂2

i2,iωi1,i,i3,...,i p + · · · + ∂2
i p,iωi,i2,i3,...,i ),

Therefore, for any f ∈ Pk , (dδ + δd) f = δd f = −r2(D) f . It means that, in the
case of 0-forms, the Laplace-Beltrami operator L1,1 and classical Laplace operator
coincide. Moreover, for any p-form ω,

(�ω)i1,...,i p = �ωi1,...,i p . (3.1)

Because of this and (2.1) we obtain that for any ω ∈ �
p
k ,

�(r2ω) = −2(n + 2k)ω + r2�ω. (3.2)

It is clear that L maps �
p
k into �

p
k−2. Let denote

L
p
k = kernel of (L : �

p
k → �

p
k−2),

H
p
k = kernel of (� : �

p
k → �

p
k−2).

In particular, (3.1) implies that (p/k)-form ω is harmonic, i.e, �ω = 0, if and only
if each coefficient ωi1,...,i p of ω is a member of Hk . Thus, dim H

p
k = (n

p

)
dimHk =

dim �
p
k −dim �

p
k−2. As a direct consequence of (3.1) and Proposition 2.1 we obtain:

Corollary 3.1. For each ω ∈ �
p
k there exist unique polynomial forms η j ∈ H

p
k−2 j ,

0 ≤ j ≤ mk = [k/2] such that ω = η0 + r2η1 + · · · + (r2)mk ηmk .
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Using (2.5) and Proposition 2.4 we get, that for any polynomial form ω

ιν�ω = �ινω − 2δω. (3.3)

Consider L = La,b as an operator L : �
p
k → �

p
k−2. Clearly, if k = 0, 1 then

�
p
k = L

p
k = H

p
k . Moreover, L0

k = Hk and Ln
k is in a natural way isomorphic to

Hk .
Let l = la,b = aενιν + bινεν and let L�

a,b denote the adjoint operator to La,b.
As a direct consequence of Theorem 2.7 we get that for any (p/k)-form ω,

L�
a,b(ω) = −la,b(ω). (3.4)

In particular, ��ω = −r2ω, for l1,1ω = r2ω. From (3.4) we have

�
p
k = L

p
k ⊕⊥ im l. (3.5)

Since a, b > 0, Proposition 2.3 implies that la,b is one-to-one. Therefore, dim L
p
k =

dim �
p
k − dim �

p
k−2 = dim H

p
k .

The next part of this section has pure technical character. We will introduce
some special linear operator Ic and derive the compositions L ◦ Ic and � ◦ Ic. This
knowledge became useful in the Section 3.3, where we decompose L

p
k onto direct

sum of four mutually orthogonal subspaces. One of them will be described as an
image on Ic, going one step future.

Take any η ∈ �
q
l then dη ∈ �

q+1
l−1 . Using Proposition 2.5 and 2.4 one can

easily obtain

dδ(r2dη) = −2(q + l)dη + 2ενδ(dη) + r2dδ(dη),

δd(r2dη) = −2(n − q + l − 2)dη − 2ενδ(dη).

Therefore,

L(r2dη) = −2(a(q + l) + b(n − q + l − 2))dη + 2(a − b)ενδ(dη) + r2L(dη).

Using (2.5) and Proposition 2.4 one can check that

L(ενη) = (b(n − q + l − 2) − a(n − q + l))dη + εν(Lη),

In particular, if L = �, i.e., a = b = 1, for any η ∈ �
q
l we get

�(r2dη) = −2(n + 2l − 2)dη + r2�(dη),

�(ενη) = −2dη + εν(�η). (3.6)

For any constant c ∈ R we define a linear operator

Ic = Ic(q + 1, l + 1) = εν − cr2d : �
q
l → �

q+1
l+1 .
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As a straightforward consequence of above considerations we obtain that for any
(q/ l)-form η,

L(Icη) = ((b − a)(n − q + l) (3.7)

+2c(a(q + l) + b(n − q + l − 2)) − 2b)dη

−2c(a − b)ενδdη − cr2L(dη) + εν(Lη),

�(Icη) = (2c(n + 2l − 2) − 2)dη − cr2�(dη) + εν(�η). (3.8)

3.2. Spaces χp,k and χ0
p,k

For any 0 ≤ p ≤ n and k ≥ 0 define

χp,k = H
p
k ∩ ker δ, and χ0

p,k = χp,k ∩ ker ιν .

Put χq,l = χ0
q,l = {0} if either q < 0 or l < 0. Manifestly, H0

k = χ0,k = χ0
0,k = Hk

and H
p
0 = �

p
0 .

The spaces χ0
p,k’s will play a fundamental role in the next part of this paper. In

the next section we will build a whole decomposition of L
p
k using that spaces. Now

we show some basic properties of χ0
p,k and operators d , ενd and Ic restricted to it.

Let ω ∈ χ0
p,0 then ινω = 0 and dω = 0. By Proposition 2.4 we obtain

0 = dινω = −ινdω + (p + 0)ω. So

χ0
p,0 = {0} if p > 0. (3.9)

Observe that dχp−1,k+1 ⊂ χp,k . On the other hand, using (2.5) and (3.3) we check
that ινχp,k ⊂ χp−1,k+1. Since ι2ν = 0 we even have ιν : χp,k → χ0

p−1,k+1.

Theorem 2.7 implies now that χp,k = χ0
p,k ⊕⊥ dχp−1,k+1. Since d2 = 0, for

any 0 ≤ p ≤ n and k ≥ 0 we have

χp,k = χ0
p,k ⊕⊥ dχ0

p−1,k+1. (3.10)

Moreover, as a direct consequence of (3.6) we get

ενdχ0
p−2,k ⊂ H

p
k . (3.11)

By Proposition 2.4 for η ∈ χ0
p−2,k .

δενdη = −(n − p + k)dη, (3.12)

Therefore,
δ : ενdχ0

p−2,k → dχ0
p−2,k .
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Summarizing one can prove the following:

Proposition 3.2.

(i) If 0 < p ≤ n and k ≥ 0 then d : χ0
p−1,k+1 → χp,k is one-to-one and for any

η ∈ χ0
p−1,k+1, (dη|dη) = (p + k)(η|η).

(ii) If 0 < p ≤ n and k ≥ 0 then ιν : dχ0
p−1,k+1 → χ0

p−1,k+1 is a bijection and

for any η ∈ χ0
p−1,k+1, (ινdη|ινdη) = (p + k)(dη|dη).

(iii) If 2 ≤ p ≤ n and k ≥ 0 then εν : dχ0
p−2,k → H

p
k is one-to-one and for any

η ∈ χ0
p−2,k , (ενdη|ενdη) = (n − p + k)(dη|dη).

(iv) If 2 ≤ p ≤ n and k ≥ 0 then δ : ενdχ0
p−2,k → dχ0

p−2,k is a bijection and for

any η ∈ χ0
p−2,k , (δενdη|δενdη) = (n − p + k)2(dη|dη).

For c ∈ R let
Ic = Ic(p, k) = εν − cr2d : �

p−1
k−1 → �

p
k .

Take any η ∈ χp−1,k−1 then δdη = 0. By Proposition 2.4 and 2.5 we obtain

(δ Ic)η = −(n − p + k)η + 2cινdη. (3.13)

Remark 3.3. Observe that if η = dη′, η′ ∈ χp−2,k then Icη = ενdη′ and (3.13)
reduces to (3.12).

Since δ� = �δ, (3.8) implies that δ Ic(χp−1,k−1) ⊂ H
p−1
k−1 . Since δ2 = 0, we

conclude that
δ Ic : χp−1,k−1 → χp−1,k−1.

Lemma 3.4. Suppose that 1 ≤ p ≤ n and k ≥ 1. Let c ∈ R and c0 = 1
2

n−p+k
p+k−2 .

If k = 1, or k ≥ 2 and c �= c0 then Ic : χp−1,k−1 → �
p
k is one-to-one, whereas

δ : Ic(χp−1,k−1) → χp−1,k−1 is a surjective. Moreover, for any η ∈ χ0
p−1,k−1,

(Icη|Icη) = ρ(c)(η|η), where

ρ(c) = 2(n + 2k − 4)(p + k − 2)c2 − 4(p + k − 2)c + (n − p + k).

Proof. It suffices to show that δ Ic : χp−1,k−1 → χp−1,k−1 is a bijection. Take
η ∈ χp−1,k−1 and suppose that δ Icη = 0.

If k = 1, dη = 0. Formula (3.13) implies that 0 = (δ Ic)η = −(n − p + 1)η.
Since (n − p + 1) �= 0, η = 0.

Let k ≥ 2. We have d(δ Ic)η = 0, for δ Icη = 0. By (3.13) and Proposition 2.4,
(2c(p + k − 2) − (n − p + k))dη = 0. Since c �= c0, η must be closed. Therefore,
0 = (δ Ic)η = −(n − p + k)η. Since n − p + k > 0, η = 0.
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Take any ω′ = Ic(η
′), where η′ ∈ χ0

p−1,k−1 and ω′′ = ενdη′′, where η′′ ∈
χ0

p−2,k . Using Theorem 2.7, Proposition 2.4 and (3.11) we get

(ω′|ω′′) = (ενη
′ − cr2dη′|ενdη′′)

= (ενδη
′ + (n − p + k)η′|dη′′) + c(dη′|�ενdη′′)

= (n − p + k)(ινη
′|η′′)

= 0.

Therefore, we obtain the following decomposition

Ic(χp−1,k−1) = Ic(χ
0
p−1,k−1) ⊕⊥ ενdχ0

p−2,k . (3.14)

Remark 3.5. As we will see in the next section spaces χp,k and Ic(χp.k) are mu-
tually orthogonal. Therefore, in the light of (3.10) and (3.14), the algebraic sum
V p

k (c) = χp,k + Ic(χp,k) splits as V p
k (c) = χ0

p,k ⊕⊥ dχ0
p−1,k+1 ⊕⊥ ενdχ0

p−2,k ⊕⊥

Ic(χ
0
p−1,k−1), where only the last component depends on c, whereas three remain-

ing components are subspaces of H
p
k (even of ker La,b, for any a, b > 0). In the

next section we will show that the kernel of any Laplace type operator is of form
V p

k (c) for some c.

3.3. Decomposition of L
p
k

Let L = La,b = adδ + bδd, a, b > 0. Since for any ω ∈ χp,k δdω = 0,
χ0

p,k ⊂ χp,k ⊂ L
p
k . Suppose that Lω = 0, then dδω = −(b/a)δdω, so �δω = 0.

Hence δL
p
k ⊂ χp−1,k−1. In particular, δH

p
k ⊂ χp−1,k−1. Put

cL =cL(p, k)=



1

2

2b−(b−a)(n− p+k)

a(p+k−2)+b(n− p+k−2)
, if k ≥2, 0< p≤n,

0, otherwise.
(3.15)

Notice that our assumption (a, b > 0 and n ≥ 2) ensure that cL is well-defined. In
the particular case,

c� = c�(p, k) =



1

n + 2k − 4
, if k ≥ 2, 0 < p ≤ n,

0, otherwise.

Remark 3.6. Observe that the constant c� do not depend on p.

Let, as in previously,

Ic = Ic(p, k) = εν − cr2d : �
p−1
k−1 → �

p
k .

Put, for simplicity

IL = IL(p, k) = IcL = IcL (p,k)(p.k).
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A goal of this section is to prove the following:

Theorem 3.7. For any 0 ≤ p ≤ n and k ≥ 0 the space L
p
k is the direct sum of four

mutually orthogonal subspaces:

L
p
k = χ0

p,k ⊕⊥ dχ0
p−1,k+1 ⊕⊥ ενdχ0

p−2,k ⊕⊥ IL(p, k)χ0
p−1,k−1. (3.16)

Moreover, χ0
p,k , dχ0

p−1,k+1 and ενdχ0
p−2,k are subspaces of H

p
k .

In the special case we get

H
p
k = χ0

p,k ⊕⊥ dχ0
p−1,k+1 ⊕⊥ ενdχ0

p−2,k ⊕⊥ I�(p, k)χ0
p−1,k−1. (3.17)

Remark 3.8. It is worth to say that in (3.16) some subspaces may equals {0} (see
3.9). In particular, if p = 1 then ενdχ−1,k = {0}, so L1

k = χ0
1,k ⊕⊥ dχ0

0,k+1 ⊕⊥

ILχ0
0,k−1 = χ0

1,k ⊕⊥ dHk+1 ⊕⊥ IL(Hk−1).

To prove Theorem 3.7 it suffices to apply the following: Lemma 3.9, Corollary
3.13 and Lemma 3.14 below.

Lemma 3.9. If either p = 0 or k = 0 then the decomposition (3.16) holds.

Proof. If p = 0 our assertion is a direct consequence of the following equalities
H0

k = χ0,k = χ0
0,k = Hk and L0

k = Hk .

Consider the case p>0 and k =0. Then H
p
0 =�

p
0 , ενdχ0

p−2,0 = ILχ0
p−1,−1 =

{0}, and χ0
p,0 = {0} (see (3.9)). To prove (3.16) it suffices to show that H

p
0 =

dχ0
p−1,1. To do this take ω ∈ H

p
0 and put η = (1/p)ινω. Clearly, ινη = 0, δη = 0

and �η = 0 (see (3.3)), so η ∈ χ0
p−1,1. One can easily check that dη = ω.

Suppose now that 0 < p ≤ n and k > 0. Identity (3.7) implies that for any
η ∈ χp−1,k−1,

L(Icη) = ((b − a)(n − p + k) − 2b + 2c(a(p + k − 2) + b(n − p + k − 2))dη.

Thus we obtain IL(χp−1,k−1) ⊂ L
p
k . Hence (see (3.14)), ενdχ0

p−2,k ⊂ L
p
k .

Lemma 3.10. Suppose that k > 0 and 0 < p ≤ n.

(i) Spaces χp,k and IL(χp−1,k−1) are mutually orthogonal.
(ii) If either k �= 2 or p < n then IcL : χp−1,k−1 → L

p
k is one-to-one and

δ : IcL (χp−1,k−1) → χp−1,k−1 is a bijection.
(iii) If either k �= 2 or p < n then L

p
k = χp,k ⊕⊥ IL(χp−1,k−1).
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Proof. (i) Take ω ∈ χp,k and η ∈ χp−1,k−1. Using Theorem 2.7 and (3.4) we
obtain

(ω|ενη − cLr2dη) = −(δω|η) + cL(�ω|dη) = 0.

Therefore (i) follows.
(ii) If k = 1 then our assertion is a direct consequence of Lemma 3.4. There-

fore, we may assume that k ≥ 2, and either k > 2 or p < n. The assumption
implies immediately that

n �= −2(k − 1) and n �= −(k − p − 2). (3.18)

Lemma 3.4 implies that it suffices to show that cL �= c0. Suppose that cL =
c0. One easily checks that the equation cL = c0 is equivalent to the equation
(n + k − p − 2)(n + 2k − 2) = 0. It contradicts (3.18).

(iii) Relations IL(χp−1,k−1) ⊂ L
p
k , δL

p
k ⊂ χp−1,k−1, and point (ii) implies

that δ : L
p
k → χp−1,k−1 is a surjection. Thus dim L

p
k = dim χp,k +dim χp−1,k−1 =

dim χp,k+dim IL(χp−1,k−1). Since χp,k and IL(χp−1,k−1) are mutually orthogonal
subspaces of L

p
k point (iii) follows.

Corollary 3.11. If k > 0 and 0 < p < n then IL : χp−1,k−1 → L
p
k is one-to-one,

moreover we have the decomposition L
p
k = χp,k ⊕⊥ IL(χp−1,k−1).

Remark 3.12. Corollary 3.11 is the sufficiently tool in solving Dirichlet boundary
problem for the Laplace type operator.

As a direct consequence of (3.10), (3.14) and Lemma 3.10 we obtain:

Corollary 3.13. Suppose that k > 0 and 0 < p ≤ n. If either k �= 2 or p < n then
L

p
k has the decomposition (3.16).

Lemma 3.14.

(i) If p = n and k = 2 then IL(χ0
n−1,1) = {0}.

(ii) The map δ : Hn
2 → dχ0

n−2,2 is a surjection.

(iii) Ln
2 = χ0

n,2 ⊕⊥ dχ0
n−1,3 ⊕⊥ ενdχ0

n−2,2.

Proof. (i) We see (cf. 3.15) that in the case p = n and k = 2, cL = 1/n. Take
any η ∈ χ0

n−1,1 then clearly ενdη = 0. Thus using using (2.4) and Proposition

2.4 we obtain r2dη = ενινdη = εν(−dινη + ((n − 1) + 1)η). Therefore we have
IcL η = I 1

n
η = ενη − n−1nενη = 0.

(ii) We know that ενdχ0
n−2,2 ⊂ Hn

2 (see (3.11)) and δ(Hn
2) ⊂ χn−1,1. Identity

(3.12) implies now that dχ0
n−2,2 ⊂ δ(Hn

2). Now it suffices to show that δ(Hn
2) ∩

χ0
n−1,1 = {0}. Let ω ∈ Hn

2 and suppose that δω ∈ χ0
n−1,1 then ινδω = 0. Since ω

is n-form dδω = �ω = 0. Thus we have 0 = dινδω = −ινdδω + nδω = nδω.
Hence δω = 0.
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(iii) Clearly, Ln
2 = Hn

2. We know that εν : dχ0
n−2,2 → Hn

2 is one-to-one

(see Proposition 3.2 (iii)). (ii) implies now dim Ln
2 = dim χn,2 + dim dχ0

n−2,2 =
dim χn,2 + dim ενd(χ0

n−2,2). Since χn,2 and ενdχ0
n−2,2 are orthogonal subspaces of

Ln
2 (see Lemma 3.10 (i) and (3.14)) and χn,2 = χ0

n,2 ⊕⊥ dχ0
n−1,3, (iii) follows.

Remark 3.15. It is worth to see that if operators L(1) = La,b and L(2) = L1/b,1/a

then cL(1) = cL(2) . Hence ker L(1) and ker L(2) have the same decomposition.

The following corollary shows that the decomposition (3.17) of H
p
k is com-

plete from the the differential and co-differential point of view. A proof based on
Proposition 3.2, Proposition 2.4, (3.9) and Lemma 3.14 (i) is left to the reader.

Corollary 3.16. Suppose that ω ∈ H
p
k , k > 0 and ω �= 0.

• If ω ∈ χ0
p,k then ω is not closed (dω �= 0) but is co-closed (δω = 0).

• If ω ∈ dχ0
p−1,k+1 then ω is both closed and co-closed.

• If ω ∈ ενdχ0
p−2,k then ω is closed but not co-closed.

• If ω ∈ I�χ0
p−1,k−1 then ω is not closed and not co-closed if k > 1 and closed

but not co-closed if k = 1.

If k = 0 then each ω ∈ H
p
k is both closed and co-closed. Moreover, in this case

H
p
0 = χ0

0,0 = R if p = 0 and H
p
0 = dχ0

p−1,1 if p > 0.

Remark 3.17. (1) If p > 0, d : χ0
p−1,1 → H

p
0 is a bijection, thus dim χ0

p−1,1 =
dim H

p
0 = (n

p

)
. Since, p-forms ινω(I ), where ω(I ) = dxi1 ∧ · · · ∧ dxi p , I =

(i1, . . . , i p), i1 < · · · < i p consist a basis of χ0
p−1,1.

(2) We know by (3.9) that χ0
p,0 = {0} for p > 0. We show now that χ0

n−1,k =
{0} if k �= 1. Indeed. Take η ∈ χ0

n−1,k and put ω = dη ∈ Hn
k−1. Then δω =

−dδη = 0 and ενω = 0, for ω is a n-form. Thus, we have 0 = (δω|δω) =
−(ω|ενδω) = (k − 1)(ω|ω). Since d : χ0

n−1,k → Hn
k−1 is one-to-one, our assertion

follows.

As a direct application of above corollary and remark we obtain

�χ0
p,k =




dχ0
n−1,1 if p = k = 0,

ενR if p = n − 1, k = 1.

ενdχ0
n−p−2,k otherwise.

(3.19)

Proof of (3.19). We proceed as follows. We have that �χ0
p,k ⊂ H

n−p
k , for �� = ��.

Suppose that k = 0. If p = 0 then χ0
p,k = χ0

0,0 = R and �R is spanned by

dx1 ∧ · · · ∧ dxn . This last form is clearly both closed and co-closed, so �χ0
p,k =
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�χ0
0,0 = dχ0

n−1,1. If p > 0 then χ0
p,0 = {0} (see (3.9)) and of course dχ0

n−p−2,0 =
{0}, so ενdχ0

n−p−2,0 = {0}.
Suppose that k > 0. If ω ∈ χ0

p,k and ω �= 0 then �ω is closed but not co-closed.
Indeed, d(�ω) = ± � δ � �ω = ± � δω = 0 and δ(�ω) = ± � d � �ω = ± � dω �= 0,
for in this case dω �= 0 (see Proposition 3.2) and � is an isomorphism.

If k = 1 then �χ0
p,1 ⊂ ενdχ0

n−p−2,1 ⊕⊥ I�χ0
n−p−1,0. But χ0

n−p−1,0 �= 0

iff p = n − 1 but then χ0
p,0 = χ0

n−1,1 and ενdχ0
n−p−2,1 = ενdχ0

−1,1 = {0}, so

�χ0
p,1 ⊂ I�χ0

n−p−1,0. Since, in this case, dim χ0
p,1 = dim χ0

n−1,1 = (n
n

) = 1

and dim I�χ0
p,k = dim I�χ0

0,0 = dim χ0
0,0 = 1 we have the equality �χ0

p,1 =
I�χ0

n−p−1,0 If p �= n − 1, I�χ0
n−p−1,0 = {0} so �χ0

p,1 ⊂ ενdχ0
n−p−2,1. But

dim χ0
p,1 = ( n

p+1

) = ( n
n−(p+1)

) = dim χ0
n−p−2,1 = dim ενdχ0

n−p−2,1. Thus,

�χ0
p,1 = ενdχ0

n−p−2,1

Suppose now that k > 1. Then �χ0
p,k ⊂ ενdχ0

n−p−2,k . Let η = ενdω ∈
ενdχ0

n−p−2,k and η �= 0. Then we see that �η is co-closed, for δ(�η) = −δ �

dενω = ± � d � �dενω = 0. Moreover, if p ≤ n − 2, �η is not closed, for
d(�η) = −d � ενdω = ± � δ(ενdω) �= 0 by Proposition 3.2 (iv). Thus �η ∈ χ0

p,k

and therefore, �χ0
p,k = ενdχ0

n−p−2,k if 0 ≤ p ≤ n − 2 and k > 1. On the other

hand, if p = n − 1 or p = n then ενdχ0
n−p−2,k = {0} and χ0

p,k = {0}.
Proposition 3.18. Let ω ∈ χ0

p−1,k+1 and η = dω �= 0. Then η is not normal, i.e.,

ηT �= 0, except the case: p = n, k = 0.

Proof. One can easily check that r2(dω)T = r2dω − (p + k)ενω. Thus, dω is
normal iff r2dω = (p + k)ενω. We have,

(r2dω|r2dω) = (r2dω|(n + j)ενω) = 2(p + k)(dω|dω).

On the other hand, by (3.2) we have

(r2dω|r2dω) = −(dω|�(r2dω)) = 2(p + 2k)(dω|dω).

We conclude k = 0. Of course p ≥ 1. Now we have

0 = r2dω − pενω = n − p

n
r2dω − pI�(p, 2)ω.

Since dω �= 0, by Corollary 3.1, n = p.

4. Dirichlet boundary problem

4.1. Dirichlet boundary problem for Laplace-Beltrami operator

Observe first that (2.2) implies the following

Proposition 4.1. For each g ∈Pk there exist a unique f ∈Pk such that �(r2 f )=g.
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Let S denote the unit sphere in Rn .

Proposition 4.2. If w is a harmonic polynomial and w|S = 0 then w=0.

Proof. We have w = fk + ... + f0, where f j ∈ H j , j = 0, ..., k, If k = 0 our
assertion is trivial. Assume that k ≥ 1 and fk �= 0. Let x �= 0 then w(x/|x |) = 0,
for x/|x | ∈ S. Homogeneity implies now that 0 = |x |−k fk(x) + ... + |x |−1 f1(x) +
|x |0 f0(x). Without loss of generality we may assume that k is even, so if we put
y = x and y = −x , we obtain two following equations

0 = fk(y) + |y|2 fk−2(y) + ... + |y|2 k
2 f0

+|y|( fk−1(y) + |y|2 fk−3(y) + ... + |y|2 k−2
2 f1(y)).

0 = fk(y) + |y|2 fk−2(y) + ... + |y|2 k
2 f0

−|y|( fk−1(y) + |y|2 fk−3(y) + ... + |y|2 k−2
2 f1(y)).

They follows that fk + r2 fk−2 + ... + (r2)
k
2 f0 = 0, and fk−1 + r2 fk−3 + ... +

(r2)
k−2

2 f1 = 0. Proposition 2.1 implies now that f0 = ... = fk−2 = fk = 0, and
f1 = ... = fk−3 = fk−1 = 0.

This completes the proof.

Theorem 4.3 (Dirichlet boundary problem). Let ω and η be polynomial p-forms.
There exists unique polynomial p-form ϕ such that �ϕ = ω and ϕ|S = η|S.

Theorem 4.3 is a direct consequence of 3.1 and the following:

Lemma 4.4. Let f and g be polynomials. The differential equation �u = f and
u|S = g, has the unique polynomial solution.

Proof. Without loss of generality, we may assume that f, g are homogeneous poly-
nomials. Let, for example, f ∈ Pk and g ∈ Pl . Proposition 4.1 implies, that there
exists a unique polynomial v ∈ Pk , such that �(r2v) = f . From Proposition 2.1
we have v = v0 + r2v1 + ... + (r2)mk vmk and g = g0 + r2g1 + ... + (r2)ml gml ,
where v j ∈ Hk−2 j , 0 ≤ j ≤ mk , and g j ∈ Hk−2 j , 0 ≤ j ≤ ml . Put v′ =
v0 + v1 + ... + vmk , g′ = g0 + g1 + ... + gml . then v′, g′ are harmonic polynomials,
v′|S = (r2v)|S and g′|S = g|S . Obviously, the polynomial u = r2v − v′ + g′ is a
solution to �u = f , u|S = g.

The uniqueness results from Proposition 4.2.

4.2. Dirichlet problem for Laplace type operator

Consider a Laplace type operator L = adδ + bδd, a, b > 0. A goal of this section
is the following
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Theorem 4.5 (Dirichlet boundary problem). For any ω, η ∈ �p, there exists the
unique ϕ ∈ �p such that Lϕ = ω and ϕ|S = η|S.

Clearly, if p = n or p = 0, or a = b then Theorem 4.5 reduces to the Dirichlet
problem for �. Therefore, we may suppose that 0 < p < n and a �= b.

As a consequence of 3.5 we obtain:

Proposition 4.6. For any ω ∈ �
p
k there exist unique ψ ∈ �

p
k such that Lψ = ω.

Lemma 4.7. Let ω ∈ �p. If Lω = 0 and ω|S = 0 then ω = 0.

Proof. We may write ω = ωk + · · · + ω0, where ω j ∈ L
p
j . If k = 0 then our

assertion is obvious. Let k > 0. Suppose that ωk �= 0. Corollary 3.11 implies that
for any j > 0, ω j = ω′

j + IL(η j ), where ω′
j ∈ χp, j and η j ∈ χp−1, j−1. Observe

that ILη j = I�η j + c jr2dη j , where the constant c j = c� − cL depends on j (see
(3.15)). Let

ω̃ =
k∑

j=1

(ω′
j + I�(η j ) + c j dη j ) + ω0.

Clearly, ω is harmonic and ω|S = ω̃|S = 0, so ω̃ = 0. Thus ω′
k + I�ηk = 0. By

Corollary 3.11 it results that ω′
k = 0 and ηk = 0. Therefore ωk = 0. It contradicts

our assumption ωk �= 0.

Proof of Theorem 4.5. We may assume that ω ∈ �
p
k and η ∈ �

p
l . Take ψ ∈ �

p
k+2

such that Lψ = ω. By Corollary 3.1 there exist unique forms ψi ∈ H
p
k+2−2i ,

0 ≤ i ≤ mk+2 and η j ∈ H
p
l−2 j , 0 ≤ j ≤ ml such that ψ = ψ0 + r2ψ1 + · · · +

(r2)mk+2ψmk+2 and η = η0 + r2η1 + · · · + (r2)ml ηl .
Corollary 3.11 implies that for any 0 ≤ i < mk+2 and 0 ≤ j < ml there

exist unique p-forms ψ ′
i ∈ χp,k+2−2i , ψ ′′

i ∈ χp−1,k+2−2i−1, η′
j ∈ χp,l−2 j and

η′′
j ∈ χp−1,l−2 j−1 such that ψi = ψ ′

i + I�(ψ ′′
i ) and η j = η′

j + I�(η′′
j ). Therefore,

ψi = ψ ′
i + IL(ψ ′′

i )+cir2dψ ′′
i and η j = η′

j + IL(η′′
j )+c jr2η′′

j , where c j = c�−cL .

Hence ψ |S = ψ̃ |S and η|S = η̃|S , where

ψ̃ =
mk+2−1∑

i=0

(ψ ′
i + IL(ψ ′′

i ) + ci dψ ′′
i ) + ψmk+2,

η̃ =
ml−1∑
j=0

(η′
j + IL(η′′

j ) + c j dη′′
j ) + ηml .

Since Lψ̃ = Lη̃ = 0, it suffices to put ϕ = ψ − ψ̃ + η̃.
The uniqueness results from Lemma 4.7.

Remark 4.8. It is worth to note that in whole section we used only the Corollary
3.11.
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4.3. Projection formulae

Let L be a Laplace type operator, k ≥ 0 and 0 ≤ p ≤ n. Fix α ∈ L
p
k . By

Theorem 3.7 there exist unique α1 ∈ χ0
p,k , α2 ∈ dχ0

p−1,k+1, α3 ∈ ενdχ0
p−2,k and

α4 ∈ ILχ0
p−1,k−1 such that

α = α1 + α2 + α3 + α4. (4.1)

For each 1 ≤ i ≤ 4 define the projection π i = π i
L by π i (α) = αi . Let η2 ∈

χ0
p−1,k+1, η3 ∈ χ0

p−2,k and η4 ∈ χ0
p−1,k−1 be such that α2 = dη2, α3 = ενdη3 and

α4 = ILη4. Lemma 3.4, Proposition 3.2 and Lemma 3.14 imply that if αi �= 0 then
corresponding ηi is uniquely determined. If αi = 0 then we put ηi = 0. Define the
maps σ i = σ i

L , i = 2, 3, 4, by

σ i (α) = σ i
L(α) = ηi .

Let j denote the identity map on L
p
k . Clearly, we have

π1 = j − π2 − π3 − π4, π2 = dσ 2, π3 = ενdσ 3, π4 = ILσ 4.

Let η = η4 + dη3. One can easily calculate that

δ ILη = (2cL(p + k − 2) − (n − p + k))η4 − (n − p + k)dη3,

where of course, IL = IL(p, k) and cL = cL(p, k). Therefore,

ινδ ILη = −(n − p + k)(p + k − 2)η3.

Since δα = δ ILη we obtain

σ 3 =




0, if k = 0 or p = 0, 1,

− 1

(n − p + k)(p + k − 2)
ινδ, otherwise.

σ 4 =




0, if k = 0 or p = 0,

or p = n and k = 2,
1

2cL(p+k−2)−(n− p+k)
(δ+(n− p+k)dσ 3), otherwise.

And finally,

σ 4 =




0, if k = 0 or p = 0,

or p = n and k = 2,

−a(p + k − 2) + b(n − p + k − 2)

b(n − p + k − 2)(n + 2k − 2)
δ, if p = 1,

− a(p + k − 2) + b(n − p + k − 2)

b(n − p + k − 2)(n + 2k − 2)(p + k − 2)
ινdδ, otherwise.
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Let ϕ = α1 + dη2. Since ινϕ = (p + k)η2 we obtain

σ 2 =
{

0, if p = 0,
1

p+k ιν(j − π4 − π3), otherwise.

In the example below we derive for given form α ∈ H1
3 corresponding αi and ηi .

Example 4.9. Let n = 3 and α be a (1/3)-form: α = (3yz2 − y3)dx + xyzdy +
(3x2 y − y3)dz. One sees that α ∈ H1

3. Since p = 1,

α3 = 0.

We see that c� = c�(1, 3) = 1/5 and δα = −xz, thus

η4 = (5/21)xz.

Hence

α4 = I�η4 = I�(1, 3)η4

= 1

21
((4x2z − y2z − z3)dx + 5xyzdy + (4xz2 − x3 − xy2)dz).

Therefore,

η2 = 1

4
ιν(α − α4)

= 1

28
(−x3z + 21x2 yz − 7xy3 + 6xy2z + 21xyz2 − xz3 − 7y3z).

α2 = dη2

= 1

28
((−3x2z + 42x2 yz − 7y3 + 6y2z + 21yz2 − z3)dx

+(21x2z − 21xy2 + 12xyz + 21xz2 − 21y2z)dy

+(−x3 + 21x2 y + 6xy2 + 42xyz − 3xz2 − 7y3)dz).

So

α1 = 1

12
((−x2z − 18xyz − 9y3 − 2y2z + 27yz2 + z3)dx

+(−9x2z + 9xy2 + 4xyz − 9xz2 + 9y2z)dy

+(x3 + 27x2 y − 2xy2 − 18xyz − xz2 − 9y3)dz).
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4.4. Explicit solutions

Fix the Laplace type operator L = adδ + bδd, a, b > 0. Let ω ∈ �p. We give a
method of finding the solution to the Dirichlet Problem Lϕ = 0, ϕ|S = ω|S .

Suppose first that ω ∈ H
p
k . Clearly, if k = 0, 1 we put ϕ = ω. Let k > 1 and

let η = σ 4ω. Put
ω′ = ω + (1 − r2)(cL − c�)dη,

where, clearly, cL = cL(p, k) and c� = c�(p, k). One sees that ω|S = ω′|S . Since
(see Theorem 3.7) Ldη = 0 and ω − r2(cL − c�)dη = (ω − I�η)+ ILη, Lω′ = 0.
Therefore ϕ = ω′ is the unique solution to Lϕ = 0 and ϕ|S = ω′|S .

Fix ω ∈ �p. If ω = ω0 + ω1 + · · · + ωk , where ωi ∈ �
p
i then ϕ = ϕ0 + ϕ1 +

· · · + ϕl , where ϕi is the solution to Lϕi = 0, ϕi |S = ωi |S . So we may assume that
ω ∈ �

p
k . Suppose that ω has the following decomposition (see Corollary 3.1)

ω = α0 + r2α1 + · · · + (r2)mk αmk , (4.2)

where αi ∈ H
p
l−2i . Let ω′

i be such that Lω′
i = 0 and ω′

i |S = αi |S . Then ϕ = ω′
0 +

· · ·+ω′
mk

is the unique solution to the differential equation Lϕ = 0, ϕ|S = ω|S . So
it suffices to derive α′

i s. In fact, a method of deriving of αi reduces to an algorithm
of finding spherical harmonic decomposition of homogeneous polynomial which
can be found in the literature (see, for example [2, Theorem 5.21]). However, our
recurrence formula seems to be more efficient for computation.

By (2.1) and an easy recurrence, we obtain that for any h ∈ Hk , l ≥ 0 and
m ≥ 0,

�l((r2)mh) = γk,l,m(r2)m−lh,

where

γk,l,m =



1, if l = 0,

(−1)l2l
l−1∏
j=0

(m − j)(n + 2(k + m − j − 1)), if l > 0.

Notice that �l((r2)mh) = 0 if l > m. Put γk,m = γk,m,m , for simplicity.

Remark 4.10. Above formula is the very special case of the general one given in
[13, Lemma 3.2 page 176]. This formula asserts how to compute �l(φh) for any
h ∈ Hk and any (smooth) radial function φ.

Put ωi = α0 + r2α1 + · · · + (r2)iαi , 0 ≤ i ≤ mk . Clearly, ωmk = ω, ω0 = α0

and for any 1 ≤ i ≤ mk , ωi−1 = ωi − (r2)iαi . By (3.2) and the definition of γk,l,m
we obtain

αi = 1

γk−2i,i
�iωi , for i = 0, . . . , mk,

where of course �s = � ◦ · · · ◦ � (s times).
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Example 4.11. Let n = 3. Consider polynomial f , f (x, y, z) = 4yz2 + x2 y.
Clearly f ∈ P3 and � f (x, y, z) = −10y. Let f = h0+r2h1, hi ∈ H3−2i , i = 0, 1.
One sees that m3 = [3/2] = 1 and γ3−2·1,1 = −10. Therefore, h1(x, y, z) =
(−10y)/(−10) = y. Hence

f (x, y, z) = 3yz2 − y3 + (x2 + y2 + z2)y.

Example 4.12. Let n = 3 and ω = (4yz2 + x2 y)dx + xyzdy + (3x2 y − y3)dz.
Solve the Dirichlet problem

S�Sϕ = 0 and ϕ|S = ω|S. (4.3)

Since n = 3 (see Section 3.1), S�S = (2/3)dδ + (1/2)δd. We see (cf. Example 4.9
and 4.11) that ω = α + r2 ydx , where α was form from Example 4.9.

Since k = 3 and p = 1 (see (3.15)) cS�S = 11/34 and c� = 1/5. Since
η4 = (5/21)xz (cf. Example 4.9) the unique solution to (4.3) is ϕ = α + (cS�S −
c�)(1 − r2)dη4 + ydx , i.e.,

ϕ = 1

34
(−x2z − 34y3 − y2z + 102yz2 + 34y − z3 + z)dx + xyzdy

+ 1

34
(−x3 + 102x2 y − xy2 − xz2 + x − 34y3)dz.

5. Our decompositions from the rotation group point of view

In the whole section we assume that n ≥ 3. Because of representation theory it
is convenient to consider complex vector spaces, so we pass to complexifications.
More precisely, we complexify all spaces, maps, and extend (·, ·)p,k to the Hermi-
tian inner product. For example, since now, �

p
k will denote the complexification of

the space of (p/k)-forms in Rn . Moreover we set,
∧p = ( ∧p

(Rn)�
) ⊗R C. In

fact, we have
∧p = �

p
0 .

5.1. Preliminaries

Consider the rotation group G = Gn = SO(n), and let s = [n/2]. Recall that
if ω is any p-form on Rn or on S then the natural action of G on ω is given by
gω = (g−1)�ω. Under this action all considered operators d, δ, ιν , εν and � are
G-map, i.e., they commute with the G-action.

If m = (m1, . . . , ms), is a dominant weight of G, i.e., m j ’s are integers that
satisfy m1 ≥ · · · ms ≥ 0 if n = 2s + 1 and m1 ≥ · · · ms−1 ≥ |ms | if n = 2s, then
Rn(m) will denote the irreducible representation of G having highest weight m. We
will denote by 1 j (respectively 0 j ) the sequence of j 1’s (respectively 0’s).

If R is a representation on V we will sometimes identify R and V , writing
R = V . If V = Rn(m) then the space of all highest weight vector (together with
zero vector), which is necessarily one-dimensional, will be denoted by hwv(V ).
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The following examples are classical:

(1) Let V =Hk then V is irreducible, V = Rn(k, 0s−1) and hwv(Hk) = span ((x1 +
i x2)k).

(2) Let V = ∧p. If p < n/2 (respectively p > n/2) then V = Rn(1p, 0s−p)

and hwv(V ) = span ζ p where ζ p = (dx1 + idx2) ∧ · · · ∧ (dx2p−1 + idx2p)

(respectively hwv(V ) = span (�ζ n−p)). If p = n/2 then V is reducible, V =
V+ ⊕ V− with V+ = Rn(1s) and V− = Rn(1s−1, −1), hwv(V+) = span ζ s and
hwv(V−) = span ζ s− where ζ s− = ζ s−1 ∧ (dxn−1 − idxn).

(3) Let V = H
p
k and p > 0. Then V is isomorphic, as a representation, to the tensor

product Hk ⊗ ∧p. Therefore, V is reducible in general. We distinguish the
irreducible component V ′ of V generated by the form ϕ p,k = (x1 + i x2)kζ p if
p ≤ s and (x1 + i x2)k � ζ n−p if p > s. Then V ′ = Rn(k + 1, 1p−1, 0s−p) if
p ≤ s, V ′ = Rn(k+1, 1n−p−1, 0s−n+p) if s < p ≤ n−1 and V ′ = Rn(k, 0s−1)

if p = n. Moreover, ϕ p,k is a highest weight vector of V ′. If n = 2s and p = s
we also distinguish a subspace V ′−. This is the smallest irreducible subspaces of

V containing ϕ
s,k
− = (x1 + i x2)kζ s−1− . We have, V ′− = Rn(k + 1, 1s−2, −1) and

ϕ
s,k
− is a highest weight vector of V ′−.

Denote by πp,n the natural action of G on the Hilbert space � p = �(E (p)) of all
square integrable sections of the bundle E (p) = ∧p T �S, which are, in fact, square
integrable p-forms on S. (E (0) is the trivial bundle S × R and �(E (0)) is equal to
L2(S)). Points (a)-(e) below describe all irreducible subrepresentations of πp,n . A
proof based on the Frobenius reciprocity theorem and branching theorem may be
found in [4, Theorem A, page 137].

The irreducible representations of G occurring in πp,n are as follows:

(a) Rn(k, 0s−1), k ≥ 0, if p = 0 or p = n − 1.
(b) Rn(k, 1p−1, 0s−p) and Rn(k, 1p, 0s−p−1), k ≥ 1, if 1 ≤ p < s − 1 or if

n = 2s + 1 and p = s − 1.
(c) Rn(k, 1n−p−1, 0s+p−n) and Rn(k, 1n−p−2, 0s+p+1−n), k ≥ 1 if s < p < n − 1.
(d) Rn(k, 1s−1), Rn(k, 1s−2, 0) and Rn(k, 1s−2, −1), k ≥ 1, if n = 2s and p = s−1

or p = s.
(e) Rn(k, 1s−1), k ≥ 1, if n = 2s + 1 and p = s.

The irreducible representations from (a)-(d) occur with multiplicity one. The rep-
resentations from (e) occur with multiplicity two.

5.2. Irreducible decomposition of L
p
k

As we have seen, in Section 3.3 if L = adδ + bδd, a, b > 0 is a Laplace type
operator then L

p
k = ker L ∩ �

p
k splits as (see (3.16))

L
p
k = χ0

p,k ⊕⊥ dχ0
p−1,k+1 ⊕⊥ ενdχ0

p−2,k ⊕⊥ IL(p, k)χ0
p−1,k−1.
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Since �
p
k is G-invariant subspace, χ0

p,k = ker δ ∩ ker ιν ∩ �
p
k is. Therefore, each

component in the above decomposition is G-invariant subspace. Our aim is to check
when (3.16) is irreducible. In the light of Proposition 3.2 and Corollary 3.11 we
know when G-maps d, ενd , and IL are one-to-one. Thus, only we have to do is to
show when χ0

p,k is irreducible. By (3.19), Proposition 3.2 and G-equivariantness of
d, εν and � we obtain:

Proposition 5.1. Representation χ0
p,k is equivalent to χ0

n−1,1 if p = k = 0 and to

χ0
n−p−2,k if neither p = k = 0 nor p = n − 1, k = 1.

Suppose 0 ≤ p ≤ n −1. If χ0
p,k �= R, i.e., p > 0 or k > 0 then representations

χ0
p,k and dχ0

p,k are equivalent.

Let iS denote the inclusion map S → Rn . The pull-back i�S is a G-map. Sim-
ilarly, tangential projection ω �→ ωT and restriction ω �→ ω|S are G-maps, so the
map ω �→ ωT |S is. Clearly, we may identify, ωT |S and i�Sω. Suppose that ω is a
homogeneous polynomial form. If ω is not normal, i.e., ωT �= 0, then by homo-
geneity ωT |S �= 0. If, in addition, ω is tangential (for example if ω ∈ χ0

p,k) then we

may identify ω with ωT |S or equivalently with i�Sω:

i�Sχ
0
p,k = χ0

p,k .

If η = dω, ω ∈ χ0
p−1,k+1, p < n and η �= 0 then by Proposition 3.18 ηT �= 0,

and (outside 0) ηT = (dω)T = dω − (1/r2)(p + k)ενω. So, ηT |S = (
dω − (p +

k)ενω
)|S. Consequently, under identification i�Sη = ηT |S we have

i�S(dχ0
p−1,k+1) =

{(
dω − (p + k)ενω

)|S : ω ∈ χ0
p−1,k+1

}
.

We have

i�Sχ
0
p,k ∩ i�S(dχ0

q−1,l+1) = {0}. (5.1)

Proof of (5.1). We may assume that 0 ≤ p, q ≤ n. If p �= q then our assertion
is obvious. Suppose that p = q. If p = 0, i�S(dχ0

p−1,l+1) = {0}. Take p > 0.

There exist α ∈ χ0
p,k and ω ∈ χ0

p−1,l+1 such that α = dω − (p + l)ενω on S. But

dω − (p + l)ενω = (1 + c�(p, l + 2)r2)dω + I�(p, l + 2)ω. Thus on S,

α = (1 + c�(p, l + 2))dω + I�(p, l + 2)ω. (5.2)

Since all forms from (5.2) are harmonic, equality (5.2) holds on the whole Rn . Now
by (3.17) it follows that α = ω = 0.

Let ϕ p.k and ϕ
s,k
− be as in example (3). One can verify that if neither p = 0,

k > 0 nor p = n, k > 0 this forms are both closed and co-closed. Thus by Corollary
3.16 it follows that if k ≥ 0, 0 < p < n or k = 0, p = n,

ϕ p.k ∈ dχ0
p−1,k+1,

and ϕ0,0 ∈ R if p = 0.
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Define now forms ψ p−1,k+1 and ψ
s−1,k+1
− as follows; ψ p−1,k+1 = ινϕ

p,k and

ψ
s−1,k+1
− = ινϕ

s,k
− . Moreover, we put ψ p,0 = 0, (p > 0) and ψ0,0 = 1. By

definitions follows that ψ0,k = ϕ0,k . Moreover we see that

ψ p−1,k+1 ∈ χ0
p−1,k+1

except the case p = n and k > 0. Similarly,

ψ
s−1,k+1
− ∈ χ0

s−1,k+1.

We conclude the following:

Proposition 5.2. Let 0 ≤ p ≤ n and k ≥ 0. Then we have χ0
p,k = {0} iff either

p > 0, k = 0 or p = n or p = n − 1, k �= 1. Except this cases χ0
p,k �= {0}, for

ψ p,k ∈ χ0
p,k and ψ p,k �= 0.

By an easy calculation we obtain:

Proposition 5.3. For any k ≥ 0 we have

(ϕs,k |ϕs,k
− ) = 0 and (ψ s−1,k |ψ s−1,k

− ) = 0.

Let Up,k and Wp,k be the smallest G-irreducible subspaces of � p containing (ϕ p,k)T |S

and ψ p,k , respectively. Clearly, Un,k = Wn,k = {0} and U0,k = W0,k . We
also define U−

s,k and W −
s−1,k as the smallest G-irreducible subspaces of contain-

ing (ϕ
s,k
− )T |S and ψ

s−1,k
− , respectively. From the example (3) and considerations

above

Up,k =



Rn(k, 0s−1) if p = 0, k ≥ 0,

Rn(k + 1, 1p−1, 0s−p) if 0 < p ≤ s, k ≥ 0,

Rn(k + 1, 1n−p−1, 0s+p−n) if s < p ≤ n − 1, k ≥ 0.

i�SUp,k =



Rn(k, 0s−1) if p = 0, k ≥ 0,

Rn(k + 1, 1p−1, 0s−p) if 0 < p ≤ s, k ≥ 0,

Rn(k + 1, 1n−p−1, 0s+p−n) if s < p ≤ n − 1, k ≥ 0.

Wp,k =




Rn(k, 0s−1) if p = 0, k ≥ 0,

Rn(0s) if p = n − 1, k = 1,

Rn(k, 1p, 0s−p−1) if 0 < p ≤ s − 1, k ≥ 1,

Rn(k, 1n−p−2, 0s+p−n+1) if s ≤ p < n − 1, k ≥ 1.

We also have

U−
s,k = Rn(k + 1, 1s−2, −1), k ≥ 0, n = 2s,

i�SU−
s,k = Rn(k + 1, 1s−2, −1), k ≥ 0, n = 2s,

W −
s−1,k = Rn(k, 1s−2, −1), k ≥ 1, n = 2s.
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Taking into account (5.1) and comparing representations Up,k , Wp,k , U−
s,k and

W −
s−1,k with representations occurring in (a)-(e) above we conclude:

Theorem 5.4. Suppose that 0 ≤ p ≤ n − 1 and k ≥ 0. The subreperesntation χ0
p,k

of πp,n is reducible iff n = 2s, p = s − 1, k ≥ 1. In this case χ0
s−1,k splits as a sum

of two irreducible representations. More precisely, we have

χ0
p,k =




{0} if p > 0, k = 0,

or p = n − 1, k > 1,

Wp,k if p = 0, k ≥ 0,

or 1 ≤ p < s − 1, k ≥ 1,

or s ≤ p ≤ n − 2, k ≥ 1,

or n = 2s + 1, p = s − 1, k ≥ 1,

or p = n − 1, k = 1,

Ws−1,k ⊕ W −
s−1,k if n = 2s, p = s − 1, k ≥ 1.

Now we are able to give a full characterization of L
p
k from the representation theory

point of view.

Theorem 5.5. L
p
k has the following decomposition onto direct sum of nonempty

G-irreducible subspaces;
If p = 0, k ≥ 0 then

L
0
k = W0,k .

If p ≥ 1 and n = 2s + 1 then

L
p
k =




Up,0 if k = 0,

W1,k ⊕ U1,k ⊕ IL(1, k)W0,k−1 if p = 1, k ≥ 1,

ενUn−1,k−1 if p = n, k ≥ 1,

Wn−1,1 ⊕ Un−1,1 ⊕ ενUn−2,0 if p = n − 1, k = 1,

Un−1,k ⊕ ενUn−2,k−1
⊕IL(n − 1, k)Wn−2,k−1 if p = n − 1, k ≥ 2,

Wp,k ⊕ Up,k ⊕ ενUp−1,k−1
⊕IL(p, k)Wp−1,k−1 if 2 ≤ p ≤ n − 2, k ≥ 1.

If n = 2s then s ≥ 2 (n ≥ 3) and the decomposition of L
p
k is the same as above

except the cases p = s − 1, p = s and p = s + 1 where we have

L
s−1
k =




W1,k ⊕ W −
1,k ⊕ U1,k ⊕ IL(1, k)W0,k−1 if s = 2, k ≥ 1

Ws−1,1 ⊕ W −
s−1,1 ⊕ Us−1,1 ⊕ ενUs−2,0 if s ≥ 3, k = 1,

Ws−1,k ⊕ W −
s−1,k ⊕ Us−1,k

⊕ενUs−2,k−1 ⊕ IL(s − 1, k)Ws−2,k−1 if s ≥ 3, k ≥ 2,

L
s
k =




Us,0 ⊕ U−
s,0 if k = 0,

Ws,1 ⊕ Us,1 ⊕ U−
s,1 ⊕ ενUs−1,0 if k = 1,

Ws,k ⊕ Us,k ⊕ U−
s,k ⊕ ενUs−1,k−1

⊕IL(s, k)Ws−1,k−1 ⊕ IL(s, k)W −
s−1,k−1 if k ≥ 2,
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L
s+1
k =




Us+1,0 if k = 0,

Ws+1,1 ⊕ Us+1,1 ⊕ ενUs,0 ⊕ ενU−
s,0 if k = 1,

Ws+1,k ⊕ Us+1,k ⊕ ενUs,k−1 ⊕ ενU−
s,k−1⊕IL(s + 1, k)Ws,k−1 if k ≥ 2.

Proof. It suffices to apply Theorem 5.4, Proposition 5.2, 3.2, 5.3 and Lemma 3.10
to the decomposition (3.16).
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folds”, �Lódź University Press, 1997.
[10] A. PIERZCHALSKI, Ricci curvature and quasiconformal deformations of a Riemannian

manifold, Manuscripta Math. 66 (1989), 113–127.
[11] H. M. REIMANN, Rotation invariant differential equation for vector fields, Ann. Scuola

Norm. Sup. Pisa Cl. Sci. 9, (1982), 160–174.
[12] E. M. STEIN and G. WEISS, “Fourier Analysis on Euclidean Spaces”, Princeton University

Press, 1971.
[13] A. STRASBURGER, Differential operators of gradient type associated with spherical har-

monics, Ann. Polon. Math. 53 (1991), 161–183.
[14] H. WEYL, Eigenschwingungen eines beliebig gestatleten elastischen Korpers, Rend. Circ.

Mat. Palermo 39 (1915), 1–50.
[15] K. YANO, “Integral Formulas in Riemannian Geometry”, Marcel Dekker INC, New York,

1970.

Faculty of Mathematics
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