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Sobolev versus Hölder local minimizers
and existence of multiple solutions
for a singular quasilinear equation

JACQUES GIACOMONI, IAN SCHINDLER AND PETER TAKÁČ

Abstract. We investigate the following quasilinear and singular problem,{
−�pu = λ

uδ
+ uq in �;

u|∂� = 0, u > 0 in �,
(P)

where � is an open bounded domain with smooth boundary, 1 < p < ∞, p−1 <

q ≤ p∗ − 1, λ > 0, and 0 < δ < 1. As usual, p∗ = N p
N−p if 1 < p <

N , p∗ ∈ (p, ∞) is arbitrarily large if p = N , and p∗ = ∞ if p > N . We
employ variational methods in order to show the existence of at least two distinct

(positive) solutions of problem (P) in W 1,p
0 (�). While following an approach

due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate
interest: a strong comparison principle and a regularity result for solutions to
problem (P) in C1,β (�) with some β ∈ (0, 1). Furthermore, we show that δ < 1
is a reasonable sufficient (and likely optimal) condition to obtain solutions of
problem (P) in C1(�).

Mathematics Subject Classification (2000): 35J65 (primary); 35J20, 35J70
(secondary).

1. Introduction

In this paper we are interested in the following quasilinear and singular problem:

{
−�pu = λ

uδ
+ uq in �;

u|∂� = 0, u > 0 in �.
(P)

Here, � is an open bounded domain with smooth boundary, �pu =∇·(|∇u|p−2∇u)

denotes the p-Laplace operator, 1 < p < ∞, p − 1 < q ≤ p∗ − 1, λ > 0, and
0 < δ < 1. As usual, p∗ = N p

N−p if 1 < p < N , p∗ ∈ (p, ∞) is arbitrarily large
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if p = N , and p∗ = ∞ if p > N . Such problems arise, for instance, in models of
pseudoplastic flows.

Our main concern is the question of existence and multiplicity of weak solu-
tions to the Dirichlet boundary value problem (P) in W 1,p

0 (�). To obtain multiple
(at least two distinct, positive) solutions of problem (P), we combine some well-
known variational methods (see e.g. Ambrosetti-Brezis-Cerami [2]) with a few new
ideas of our own which employ two new results of separate interest: a regularity
result for solutions to problem (P) in C1,β(�) with some β ∈ (0, 1), Theorem 2.2,
and a strong comparison principle, Theorem 2.3. Our regularity result is obtained
by adapting some ideas from Lieberman [33] for estimates in Campanato spaces.
The strong comparison principle extends a result of Cuesta and Takáč [14]. More
precisely, we look for solutions to problem (P) that are critical points of the energy
functional Eλ : W 1,p

0 (�) → R defined by

Eλ(u) = 1

p

∫
�

|∇u|p dx

− λ

1 − δ

∫
�

(u+)1−δ dx − 1

q + 1

∫
�

(u+)q+1 dx
(1.1)

in the Sobolev space W 1,p
0 (�). As usual, r+ = max{r, 0} and r− = max{−r, 0}

for r ∈ R. Note that Eλ is not of class C1 on W 1,p
0 (�) because of the singular

term (u+)1−δ; consequently, one cannot directly apply classical variational meth-
ods, such as the Mountain Pass lemma of Ambrosetti-Rabinowitz [4].

First, we show that the number

�
def= inf{λ > 0: (P) has no weak solution} (1.2)

satisfies 0 < � < ∞. Then we prove the existence of multiple (at least two distinct,
positive) solutions of problem (P) for every λ ∈ (0, �): a local minimizer and a
saddle point for the functional Eλ. Indeed, this existence and multiplicity result is
a consequence of a competition between the positive and two negative terms in the
energy functional Eλ. Notice that Eλ(0) = 0 and 0 < 1 − δ < 1 < p < q + 1. Let
0 < λ < �. The first negative term,

− λ

1 − δ

∫
�

(u+)1−δ dx,

dominates provided u > 0 is “small”, the positive term,

1

p

∫
�

|∇u|p dx,

becomes dominant for u > 0 “mid-sized”, and the second negative term,

− 1

q + 1

∫
�

(u+)q+1 dx,
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becomes dominant for u > 0 “large”. This intuitive picture clearly suggests two
critical points for Eλ: a local minimizer between “small” and “mid-sized”, and a
saddle point between “mid-sized” and “large”. As λ ∈ (0, �) approaches �, the
two critical points merge into a single one for λ = � which disappears for λ > �;
see definition (1.2).

The local minimizer is obtained first in the C1 topology with the help of our
C1,β regularity result (Theorem 2.2) combined with our strong comparison princi-
ple (Theorem 2.3). Then we take advantage of arguments due to Brezis and Niren-
berg [12] and Ambrosetti, Brezis, and Cerami [2] in order to show that the local
minimizer in the C1 topology is also a local minimizer for Eλ in the W 1,p

0 topol-
ogy. In contrast, the saddle point is obtained by a modification of the Mountain Pass
lemma of Ambrosetti-Rabinowitz [4], cf. Ghoussoub and Preiss [25].

Before giving our main results, let us briefly recall the literature concerning re-
lated singular problems. When p = 2, the following problem has been investigated
in quite a large number of papers:

 −�u = λ κ(x)

uδ
+ µ(x) uq in �;

u|∂� = 0, u > 0 in �.

(1.3)

The weights κ, µ : �→R are assumed to be nonnegative and (essentially) bounded.
When µ = 0 (the purely singular problem), Crandall, Rabinowitz, and Tartar [15]
show that, for any δ > 0, problem (1.3) admits a unique solution uλ in C2(�) ∩
C(�); furthermore, if 0 < δ < 1 then uλ is in C2(�)∩C1(�). When µ > 0 is small
enough, Coclite and Palmieri [13] prove the existence of a solution to problem (1.3)
for 0 < λ < �, with � as in (1.2), 0 < � < ∞. Assuming 0 < δ < 1, Yijing,
Shaoping, and Yiming [44] apply variational arguments based on Nehari’s method
[35] to show the existence of at least two solutions for q > 1 subcritical: q < ∞
if N = 1 or 2, and q < 2∗ − 1 = N+2

N−2 if N ≥ 3. The critical case q = 2∗ − 1
and N ≥ 3 was settled almost simultaneously in Haitao [29] and Hirano, Saccon,
and Shioji [31] by two different methods: Perron’s method and Nehari’s method,
respectively. To get the existence of at least two solutions, Haitao [29] shows that for
any 0 < λ < �, the solution obtained by Perron’s method is a local minimizer for
the energy functional Eλ. His arguments depend on the strong maximum principle
(see Brezis and Nirenberg [11, Theorem 3]). In Adimurthi and Giacomoni [1], the
existence of at least two solutions in dimension N = 2 is extended to 0 < δ < 3
and to critical nonlinearities of Trudinger-Moser type (see Moser [34]). Note that
δ < 3 is the optimal condition on δ (δ > 0) to obtain solutions in W 1,2

0 (�).
In the case p 	= 2 the question of multiplicity of solutions has been investigated

for problems with convex and concave nonlinearities of the following kind:{ −�pu = λ uδ + uq in �;
u|∂� = 0, u > 0 in �,

(1.4)

where 0 < δ < p − 1 < q ≤ p∗ − 1. Ambrosetti, Garcı́a Azorero, and Peral [3]
establish the existence of at least two solutions to problem (1.4) for the subcritical
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(q < p∗ − 1) and radially symmetric case (� = BR(0) a ball). Their main tools are
some uniform a priori estimates (that require radial symmetry) and global bifurca-
tion theory. The critical case q = p∗ −1 is treated in Garcı́a Azorero and Peral [20]
with additional restrictions on p and λ > 0 small enough. These restrictions are
used to prove that the levels of certain Palais-Smale sequences are strictly below the
first critical level SN/p/N at which the Palais-Smale condition fails. Recall

S = inf
0	=u∈W 1,p

0 (�)

∫
�

|∇u|p dx(∫
�

|u|p∗ dx
)p/p∗ .

Note that in this work, the existence of at least two solutions is not obtained for
all λ ∈ (0, �); only for λ > 0 small enough. The restriction that λ > 0 be small
was removed in Garcı́a Azorero, Peral, and Manfredi [21] using the approach of
C1 versus W 1,p

0 local minimizers ([2]). Essential elements in their approach are
a C1,β regularity result of DiBenedetto [19] and a strong comparison principle of
Guedda and Veron [27]. A similar result for problem (P) with radial symmetry is
obtained in Giacomoni and Sreenadh [22] when 0 < δ, λ > 0 is small enough, and
q > p − 1 > 0. The radially symmetric setting enables a shooting method to be
employed; see also Atkinson and Peletier [8] and Prashanth and Sreenadh [37] for
1 < p < N and λ ∈ (0, �).

The outline of this paper is as follows. Our main results are stated in Section 2.
In Section 3 we prove the existence of a solution that is a local minimizer of Eλ in
W 1,p

0 (�) for 0 < λ < �. In the proof we use Theorem 2.2 which follows from the
regularity results contained in Appendices A and B. In Section 4, using Ekeland’s
principle and minimax arguments, we prove the existence of a second solution and
thus finish the proof of Theorem 2.1.

ACKNOWLEDGEMENTS. The authors thank the anonymous referee for suggesting
a number of valuable improvements and corrections.

2. Main results

We look for weak solutions (solutions, for short) of problem (P), that is, for func-
tions u ∈ W 1,p

0 (�) satisfying ess infK u > 0 over every compact set K ⊂ � and∫
�

|∇u|p−2∇u · ∇φ dx = λ

∫
�

u−δφ dx +
∫

�

uqφ dx (2.1)

for all φ ∈ C∞
c (�). As usual, C∞

c (�) denotes the space of all C∞ functions
φ : � → R with compact support. We denote by p∗ = N p/(N − p) the critical
Sobolev exponent for 1 < p < N ; we take p∗ ∈ (p, ∞) arbitrarily large for
p = N , and p∗ = ∞ for p > N .
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We introduce some notation which will be used throughout the paper. Given
1 ≤ p < ∞, the norm in L p(�) is denoted by

‖u‖L p(�)
def=

(∫
�

|u|p dx

)1/p

and the norm in W 1,p
0 (�) by

‖u‖
W 1,p

0 (�)

def=
(∫

�

|∇u|p dx

)1/p

.

The normalized positive eigenfunction associated with the principal eigenvalue λ1
of −�p is denoted by φ1:

−�pφ1 = λ1 |φ1|p−2φ1 in �; φ1 = 0 on ∂�, (2.2)

φ1 ∈ W 1,p
0 (�) is normalized by φ1 > 0 in � and

∫
�

φ
p
1 dx = 1.

The function d(x) denotes the distance from a point x ∈ � to the boundary
∂�, where � = � ∪ ∂� is the closure of � ⊂ RN . This means that

d(x)
def= dist(x, ∂�) ≡ inf

y∈∂�
|x − y|.

Note that the strong maximum and boundary point principles from Vázquez [43,
Theorem 5, page 200] guarantee φ1 > 0 in � and ∂φ1

∂ν
< 0 on ∂�, respectively.

Hence, since φ1 ∈ C1(�), there are constants � and L , 0 < � < L , such that
� d(x) ≤ φ1(x) ≤ L d(x) for all x ∈ �.

The open ball in W 1,p
0 (�) of radius r centered at u is denoted by

Br (u)
def= {v ∈ W 1,p

0 (�) : ‖u − v‖
W 1,p

0 (�)
< r},

for some r ∈ (0, ∞) and u ∈ W 1,p
0 (�). If u = 0, we abbreviate Br ≡ Br (0).

Finally, the open ball in RN of radius r centered at x is denoted by Br (x).
Our main result is the following theorem.

Theorem 2.1. Let the pair (p, q) satisfy either p ∈ (1, ∞) and q ∈ (p−1, p∗−1),

or else p ∈
(

2N
N+2 , 2

]
∪

(
3N

N+3 , 3
)

and q = p∗ − 1. Then there exists � ∈ (0, ∞)

with the following properties:

(i) For every 0 < λ < � there exist at least two solutions of problem (P), uλ and
vλ, such that uλ, vλ ∈ C1(�) and uλ � vλ.

(ii) For λ = � there exists at least one solution of (P) in C1(�).
(iii) For every λ > � there is no solution of (P).
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To prove Theorem 2.1, we establish a C1,β(�), Theorem B.1 in Appendix B. The-
orem B.1 gives the following regularity result for weak solutions to problem (P).

Theorem 2.2. Let 0 < δ < 1, 1 < p < ∞, and p − 1 < q ≤ p∗ − 1. Then any
weak solution to problem (P) belongs to C1,β(�) for some β ∈ (0, 1).

This regularity result motivates and complements the following new strong
comparison principle.

Theorem 2.3. Let u, v ∈ C1,β(�), for some 0 < β < 1, satisfy 0 � u, 0 � v and

−�pu − λu−δ = f, (2.3)

−�pv − λv−δ = g, (2.4)

with u = v = 0 on ∂�, where f, g ∈ C(�) are such that 0 ≤ f < g pointwise
everywhere in �. Then, the following strong comparison principle holds:

0 < u < v in � and
∂v

∂ν
<

∂u

∂ν
< 0 on ∂�. (2.5)

Remark 2.4. Theorem 2.3 holds if we replace the p-Laplacian operator by a more
general quasilinear operator; see, for instance, conditions (3)-(7) in Cuesta and
Takáč [14].

Proof of Theorem 2.3. First, note that from the strong maximum of Vázquez (see
Theorem 5 in [43]), we infer that u > 0 in � and ∂u

∂ν
< 0 on ∂�. Hence, since

u ∈ C1(�), there are constants � and L , 0 < � < L , such that � d(x) ≤ u(x) ≤
L d(x) near the boundary ∂�. Analogous results hold for v. Moreover, f ≤ g in �

guarantees u ≤ v in �, by the weak comparison principle which can be proved by
a standard variational argument. Consequently,

� d(x) ≤ u(x) ≤ v(x) ≤ L d(x) (2.6)

near the boundary ∂�. As in the proof of Proposition 2.4 in Cuesta and Takáč [14]
(see page 729), we define an η-neighborhood �η ⊂ � of the boundary ∂�,

�η
def= {x ∈ � : d(x) < η}, (2.7)

for η > 0, and set w
def= v − u, 0 ≤ w ∈ C1,β(�) with w = 0 on ∂�. There exists

η > 0 small enough, such that in the open set �η we have

− div(A(x)∇w) − B(x)w

= −
N∑

i, j=1

∂

∂xi

(
ai j (x)

∂w

∂x j

)
− λB(x)w = g − f > 0.

(2.8)
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The coefficients ai j (x) are given by

ai j (x) =
∫ 1

0
|(1 − t)∇u(x) + t∇v(x)|p−2

×


δi j + (p − 2)

∂

∂xi
((1 − t)u + tv)

∂

∂x j
((1 − t)u + tv)

|(1 − t)∇u(x) + t∇v(x)|2


 dt

(2.9)

for x ∈ �η and i, j = 1, 2, . . . , N , where δi j denotes the Kronecker symbol:
δi j = 1 if i = j ; δi j = 0 if i 	= j . The differential operator above induced by the
matrix (ai j )i, j=1,2,...,N is uniformly elliptic in �η with ai j ∈ C0,β(�η) provided
η > 0 is chosen small enough. The coefficient B(x) satisfies

B(x) = −δ

∫ 1

0

dt

((1 − t)u(x) + tv(x))δ+1
< 0. (2.10)

Inequalities in (2.6) guarantee that B(x) satisfies the conditions of Lemma 2.7 in
Hernández, Mancebo, and Vega [30]. We conclude that the (classical) strong maxi-
mum principle applies to inequality (2.8) in each connected component of the open
set �η, thus yielding inequalities (2.5) in �η.

Finally, we will show that u < v throughout �. Let η′ ∈ (0, η) and �̃
def=

� \ �η′ . Employing w > 0 in �η, we can find c > 0 such that w ≥ c on ∂�̃ ⊂ �η.
Moreover, recalling f, g ∈ C(�) with 0 ≤ f < g pointwise everywhere in �, we
can choose c > 0 small enough, such that also

λ

uδ
− λ

(u + c)δ
≤ g − f holds in �̃.

It follows that u + c ≤ v on ∂�̃ together with

−�p(u + c) − λ

(u + c)δ
≤ f + (g − f ) = g = −�pv − λ

vδ
in �̃.

Consequently, we may apply the weak comparison principle (see Proposition 2.3 in
[14]) in order to conclude that u + c ≤ v holds throughout �̃. As � = �η ∪ �̃, we
have verified u < v throughout �.

3. Existence of weak solutions

3.1. Existence of a solution for 0 < λ ≤ �

First, let us consider the following purely singular Dirichlet problem:{ −�pu = λu−δ in �;
u|∂� = 0, u > 0 in �.

(3.1)
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Recall 0 < δ < 1. By requiring “u > 0 in �” we actually mean ess infK u > 0
for any compact set K ⊂ �. We look for a solution u ∈ W 1,p

0 (�) that satisfies

equation (3.1) in the sense of distributions. More precisely, if u0 ∈ W 1,p
0 (�) is a

distributional solution of problem (3.1), with ess infK u0 > 0 for any compact set
K ⊂ �, then u0 ∈ C1(�) by interior regularity due (independently) to DiBenedetto
[19, Theorem 2, page 829] and Tolksdorf [42, Theorem 1, page 127].

Lemma 3.1. Assume 0 < δ < 1 and λ > 0. Then problem (3.1) has a unique
weak solution in W 1,p

0 (�) in the sense of distributions. This solution, denoted by
uλ, satisfies uλ ≥ ελφ1 a.e. in �, where ελ > 0 is a constant.

Proof. First, we observe that an energy functional on W 1,p
0 (�) formally corre-

sponding to problem (3.1) can be given by

Ẽλ(u)
def= 1

p

∫
�

|∇u|p dx − λ

1 − δ

∫
�

(u+)1−δ dx , u ∈ W 1,p
0 (�).

Owing to the Poincaré inequality and 0 < 1 − δ < 1 < p < ∞, this func-
tional is coercive and weakly lower semicontinuous on W 1,p

0 (�). It follows that

Ẽλ possesses a global minimizer u0 ∈ W 1,p
0 (�). We have u0 	≡ 0 in �, owing to

Ẽλ(0) = 0 > Ẽλ(εφ1) for every ε > 0 small enough.
Second, the polar decomposition u = u+ − u− of any function u ∈ W 1,p

0 (�)

gives ∇u = ∇u+ − ∇u−. Thus, if u0 is a global minimizer for Ẽλ, then so is
its absolute value |u0|, by Ẽλ(|u0|) ≤ Ẽλ(u0). The equality Ẽλ(|u0|) = Ẽλ(u0)

holds if and only if u−
0 = 0 a.e. in �, that is, if and only if u0 ≥ 0 a.e. in �.

Thus, any global minimizer u0 for Ẽλ must satisfy u0 ≥ 0 a.e. in �. Equivalently,
u ∈ W 1,p

0 (�)+ where

W 1,p
0 (�)+

def=
{

u ∈ W 1,p
0 (�) : u ≥ 0 a.e. in �

}

stands for the positive cone in W 1,p
0 (�).

Third, we will show that even u0 ≥ εφ1 holds almost everywhere in � with
a constant ε > 0 small enough. To this end, let us first remark that the Gâteaux
derivative Ẽ ′

λ(εφ1) of Ẽλ at εφ1 exists and satisfies

Ẽ ′
λ(εφ1) = −�p(εφ1) − λ(εφ1)

−δ = λ1(εφ1)
p−1 − λ(εφ1)

−δ

= (εφ1)
−δ

(
λ1(εφ1)

p−1+δ − λ
)

≤ −λ

2
(εφ1)

−δ < 0

(3.2)

whenever ε > 0 is small enough, say, 0 < ε ≤ ελ.
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On the contrary to our claim above, suppose that the (nonnegative) function
v = (u0 − ελφ1)

− = (ελφ1 − u0)
+ does not vanish identically in �. Denote

�+ = {x ∈ � : v(x) > 0}.

Let us investigate the function ξ(t)
def= Ẽλ(u0 + tv) of t ∈ R+ = [0, ∞). This

function is convex thanks to the fact that the restriction of the functional Ẽλ to the
positive cone W 1,p

0 (�)+ is convex. We have ξ(t) ≥ ξ(0) for all t ≥ 0. Furthermore,
owing to u0 + tv ≥ max{u0, tελφ1} ≥ tελφ1 for t > 0, the Gâteaux derivative
Ẽ ′

λ(u0 + tv) of Ẽλ at u0 + tv exists and yields ξ ′(t) = 〈Ẽ ′
λ(u0 + tv), v〉 for t > 0.

This derivative is nonnegative and nondecreasing. Consequently, for 0 < t < 1 we
have

0 ≤ ξ ′(1) − ξ ′(t) = 〈Ẽ ′
λ(u0 + v) − Ẽ ′

λ(u0 + tv), v〉
=

∫
�+

Ẽ ′
λ(ελφ1) v dx − ξ ′(t)

≤ −λ

2

∫
�+

(ελφ1)
−δ v dx < 0,

(3.3)

by inequality (3.2) and ξ ′(t) ≥ 0, a contradiction. We have verified v ≡ 0 in �,
that is, u0 ≥ ελφ1 a.e. in �.

Finally, we have proved that every global minimizer u0 for Ẽλ on W 1,p
0 (�)

must satisfy u0 ≥ ελφ1 a.e. in �. The functional Ẽλ being strictly convex on
W 1,p

0 (�)+, we conclude that u0 is the only critical point of Ẽλ in W 1,p
0 (�)+ with

the property ess infK u0 > 0 for any compact set K ⊂ �. Consequently, uλ = u0
provides the unique weak solution to problem (3.1).

Remark 3.2. In our proof of Lemma 3.1 above, v0 = 0 is a critical point for the
functional v �→ Ẽλ(u0 + v) defined for all v ∈ C∞

c (�) only. We have proved

that the functional Ẽλ restricted to W 1,p
0 (�)+ has precisely one critical point that

stays away from zero, uniformly on any compact set K ⊂ �, namely, the global
minimizer u0.

We obtain the following result regarding �.

Lemma 3.3. Let 0 < δ < 1 and p − 1 < q ≤ p∗ − 1. Then 0 < � < ∞.

Proof. We give the proof only in the critical case, i.e. q = p∗ −1. In the subcritical
case, i.e., q < p∗ − 1, the proof is simpler since the energy functional Eλ defined

below is weakly lower semicontinuous in W 1,p
0 (�). Let uλ be the unique solution

to (3.1). Define

fλ(x, s)
def=

{
λs−δ + sq if s > uλ(x);
λ(uλ(x))−δ + (uλ(x))q if s ≤ uλ(x).

(3.4)
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Let Fλ(x, s) = ∫ s
0 fλ(x, t) dt . Define Eλ : W 1,p

0 (�) → R by

Eλ(u)
def= 1

p

∫
�

|∇u|p dx −
∫

�

Fλ(x, u) dx . (3.5)

From Lemma A.4, Eλ is C1(W 1,p
0 (�), R). We consider the following minimization

problem:
Iλ = min

u∈Br

Eλ(u). (3.6)

Clearly, we have Iλ > −∞. Note that
∫
�

(
1
p |∇u|p − 1

q+1 |u|q+1
)

dx > 0 for every

u ∈ ∂Br provided r > 0 is small enough. Fix such r > 0; the other negative term
in Eλ(u) may be made arbitrarily small by taking λ > 0 small enough. Therefore
we find r and λ such that

min
u∈∂Br

Eλ(u) > 0. (3.7)

Moreover, since Eλ(tu) < 0 for t small, we have

Iλ < 0. (3.8)

Let {un}∞n=1 be a minimizing sequence, i.e. un ⊂ Br and Eλ(un) → Iλ as n →
∞. From (3.7) and (3.8), {un}∞n=1 satisfies dist(un, ∂Br ) ≥ η0 for some η0 > 0.
Therefore, there exists 0 < r0 < r such that

un ∈ Br0 . (3.9)

Now, from Ekeland’s variational principle, there exist r0 ≤ r1 < r and a sequence
{vn}∞n=1 ⊂ Br1 satisfying

dist(un, vn) ≤ 1

n
, Eλ(un) ≤ Eλ(vn) and

E ′
λ(vn) → 0 in W −1,p′

(�) as n → ∞.

(3.10)

From the first statement of (3.10), {vn}∞n=1 is a minimizing sequence for Iλ and up to
a subsequence satisfies vn ⇀ ũλ as n → ∞ with ũλ ∈ Br1 . From the last statement
of (3.10), we have

−�p(vn) − fλ(x, vn) = on(1) in W −1,p′
(�). (3.11)

From (3.11), Theorem 2.1 in Boccardo and Murat [9] with

fn(x) = (max{vn(x), uλ(x)})−δ + on(1),

gn(x) = (max{vn(x), uλ(x)})q
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(note that from Hardy’s inequality and since q = p∗ − 1, { fn}∞n=1 and {gn}∞n=1
satisfy the conditions in Theorem 2.1 in [9]), Remark 2.1 in [9] and from Brezis
and Lieb [10], it follows that

‖vn‖W 1,p
0 (�)

= ‖vn − ũλ‖W 1,p
0 (�)

+ ‖ũλ‖W 1,p
0 (�)

+ on(1) and

‖vn‖Lq+1(�) = ‖vn − ũλ‖Lq+1(�) + ‖ũλ‖Lq+1(�) + on(1)
(3.12)

as n → ∞. From (3.9), (3.10) and (3.12), it follows that ũλ, vn − ũλ ∈ Br . Thus,∫
�

(
1

p
|∇vn − ũλ|p − 1

q + 1
|vn − ũλ|q+1

)
dx > 0 . (3.13)

From (3.12) and (3.13), we get

Iλ = Eλ(vn) + on(1)

= Eλ(ũλ) + 1

p
‖vn − ũλ‖p

W 1,p
0 (�)

− 1

q + 1
‖vn − ũλ‖q+1

Lq+1(�)
+ on(1)

≥ Eλ(ũλ) + on(1).

Hence, Eλ(ũλ) = Iλ and

{ −�pũλ = fλ(x, ũλ) in �;
ũλ|∂� = 0.

Now, Theorem 2.3 imply that ũλ > uλ in �, hence ũλ is a weak solution to prob-
lem (P). Thus � > 0.

Now, let us show that � < ∞. We argue by contradiction: suppose there
exists a sequence λn → ∞ such that problem (P) admits a solution un . There exists
λ∗ > 0 such that

λ

tδ
+ tq ≥ (λ1 + ε)t p−1 for all t > 0, ε ∈ (0, 1) and λ > λ∗.

Choose λn > λ∗. Clearly un is a supersolution of the problem{ −�pu = (λ1 + ε)u p−1 in �;
u > 0, u|∂� = 0.

(3.14)

for all ε ∈ (0, 1). We now use Lemma 3.1 to choose µ < λ1 + ε small enough so
that µφ1(x) < un(x) and µφ1 is a subsolution to problem (3.14). By a monotone
interation procedure we obtain a solution to (3.14) for any ε ∈ (0, 1), contradicting
the fact that λ1 is an isolated point in the spectrum of −�p in W 1,p

0 (�) (see Anane
[5]).
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We prove now the existence of positive weak solution to (P) for any 0 < λ <

�. Precisely, we have the following result:

Proposition 3.4. For any λ ∈ (0, �), there exists uλ a positive weak solution to
(P). Moreover, Eλ(uλ) < 0.

Proof. Fix 0 < λ < λ2 < �. λ2 is such that there exist solutions to (P) for λ = λ2.
Let uλ be the solution of (3.1) and uλ2 is one solution of (P) (when λ = λ2 in the
equation of (P)). Clearly, from Theorem B.1 in Appendix B, uλ, uλ2 are in C1,β(�)

for some 0 < β < 1 and uλ ≤ uλ2 in �. Indeed, setting �
def= {uλ − ū > 0} and

from the equations satisfied by uλ and ū = uλ2 we have∫
�

(+�pū − �puλ)(uλ − ū) dx ≤ λ

∫
�

(u−δ
λ − ū−δ)(uλ − ū) dx ≤ 0 (3.15)

and ∫
�

(+�pū − �puλ)(uλ − ū) dx

≥
∫

�

(|∇uλ|p−2∇uλ − |∇ū|p−2∇ū)(∇uλ − ∇ū) dx

≥




C p

∫
uλ−ū>0

|∇(uλ − ū)|2
(|∇uλ| + |∇ū|)2−p

dx if 1 < p < 2

C p

∫
uλ−ū>0

|∇(uλ − ū)|p dx if p ≥ 2

≥ 0

(3.16)

from Lemma 4.1 in Ghoussoub and Yuan [26]. Hence from (3.15) and (3.16), we
get uλ ≤ ū.

By the strong comparison principle (Theorem 2.3), we obtain ū > uλ in

�, ∂ ū
∂ν

<
∂uλ

∂ν
on ∂�. Define

f̃λ(x, s) =




λū(x)−δ + ū(x)q if s > ū(x),

λs−δ + sq if uλ(x) ≤ s ≤ ū(x),

λuλ(x)−δ + uλ(x)q if s < uλ(x).

Let F̃λ(x, s) = ∫ s
0 f̃λ(x, t) dt . Define the functional Ẽλ : W 1,p

0 (�) → R by

Ẽλ(u) = 1

p

∫
�

|∇u|p dx −
∫

�

F̃λ(x, u) dx .

Ẽλ is bounded below in W 1,p
0 (�) and is weakly lower semi-continuous. Hence,

Ẽλ achieves its global minimum at some uλ ∈ W 1,p
0 (�). Moreover, since Ẽλ is
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C1 by Lemma A.4, uλ solves the equation −�puλ = f̃λ(x, uλ) in �. From the
strong maximum principle of Vázquez (see Theorem 5 in [43]) we get uλ > 0 in
�. It follows by regularity results (see again Theorem B.1 in Appendix B) that
uλ ∈ C1,β(�) for some β ∈ (0, 1). Again, by Therorem 2.3, we conclude that
uλ < uλ < ū in � and ∂

∂ν
(uλ − uλ) < 0, ∂

∂ν
(ū − uλ) < 0 on ∂�. Hence,

f̃λ(x, uλ) = λu−δ
λ + uq

λ for x ∈ � and so uλ is a weak solution to (P). Moreover,
we have that

Ẽλ(uλ) ≤ Ẽλ(uλ) = Eλ(uλ) <
1

p

∫
�

|∇uλ|p dx − λ

1 − δ

∫
�

uλ
1−δ dx < 0.

This completes the proof of Proposition 3.4.

Now, we show the following result.

Proposition 3.5. There exists at least one positive weak solution for λ = � to (P).

Proof. Let {λk}∞k=1 such that λk ↗ � as k → ∞. Then, from Proposition 3.4, there
exists uk = uλk ≥ uλk

to a weak positive solution to (P) for λ = λk . Therefore, for
any φ ∈ C∞

c (�), we have∫
�

|∇uk |p−2∇uk∇φ dx = λk

∫
�

(uk)
−δφ dx +

∫
�

uq
k φ dx . (3.17)

Since uk ∈ W 1,p
0 (�) and uk ≥ uλk

it is easy to see that (3.17) holds also for

φ ∈ W 1,p
0 (�). Moreover, from Proposition 3.4

Eλk (uk) < 0. (3.18)

From (3.18), it follows that

sup
k

‖uk‖W 1,p
0 (�)

< ∞. (3.19)

Hence, there exists u� ≥ uλk
such that uk ⇀ u� in W 1,p

0 (�) as k → ∞ and then
by Sobolev imbedding:

uk ⇀ u� in Lq(�) and pointwise a.e. as k → ∞. (3.20)

From (3.17), (3.19) and (3.20), we get for any φ ∈ W 1,p
0 (�):∫

�

|∇u�|p−2∇u�∇φ dx = λ

∫
�

(u�)−δφ dx +
∫

�

uq
�φ dx (3.21)

which completes the proof of Proposition 3.5.
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From the above propositions, we get the following corollary:

Corollary 3.6. Let 1 < p < ∞, p − 1 < q ≤ p∗ − 1, 0 < δ < 1, and 0 < λ ≤ �.
Then there exists a minimal solution to (P).

Proof. We use here the weak comparison principle (see Proposition 2.3 in Cuesta
and Takáč [14] or Tolksdorf [41]) and the following monotone iterative scheme:

 − �pun − λ

uδ
n

= uq
n−1 in �;

un|∂� = 0,

(3.22)

where u0 = uλ, the unique solution to (3.1). Note that u0 is a weak subsolution
to (P) and u0 ≤ u� where u� is the solution to (P) obtained in Proposition 3.5.
Then, from the weak comparison principle, we get easily that u0 ≤ u1 and {un}∞n=1
is nondecreasing. Furthermore, un ≤ u� and {un}∞n=1 is uniformly bounded in

W 1,p
0 (�). Hence, it is easy to prove that {un}∞n=1 converges weakly in W 1,p

0 (�)

and pointwise to ûλ, a weak solution to (P). Let us show that ûλ is the minimal
solution to (P) for any λ ∈ (0, �]. Let vλ a weak solution to (P) for λ ∈ (0, �].
Then, u0 = uλ ≤ vλ. From the weak comparison principle, un ≤ vλ for any n ≥ 0.
Letting n → ∞, we get ûλ ≤ vλ. This completes the proof of Corollary 3.6.

3.2. C1 versus W 1,p local minimizers of the energy

Let uλ be the solution to (P) given by Proposition 3.4. The main result in this
paragraph is

Proposition 3.7. For 0 < λ < �, uλ is a local minimizer of Eλ in W 1,p
0 (�).

Proof. We observe first that uλ is a local minimizer in the C1-topology. Indeed,
taking advantage of the strong comparison principle shown in Theorem 2.3 and the
definition of uλ, we have that for ν > 0 small enough,

‖u − uλ‖C1(�̄) ≤ ν ⇒ uλ ≤ u ≤ ū. (3.23)

where ū is defined in the proof of Proposition 3.4. From (3.23), we get that

‖u − uλ‖C1(�̄) ≤ ν ⇒ Eλ(uλ) = Ẽλ(uλ) ≤ Ẽλ(u) = Eλ(u).

Now, let us show that uλ is a local minimizer of Eλ in W 1,p
0 (�). Suppose not

and we derive a contradiction. First, we deal with the subcritical case, i.e. q <

p∗ − 1. In this case, Eλ is weakly lower semicontinuous on W 1,p
0 (�) and achieves

its minimum on bounded subsets of W 1,p
0 (�). Hence, if uλ is not a local minimum

for Eλ, for every ε > 0 we obtain vε such that 0 < ‖vε‖W 1,p
0 (�)

≤ ε and

Eλ(uλ + vε) < Eλ(uλ), Eλ(uλ + vε) = inf‖v‖
W

1,p
0 (�)

≤ε
Eλ(uλ + v). (3.24)
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By the Lagrange multiplier rule (see Phelps [36]), we obtain µε ≤ 0 such that

〈E ′
λ(uλ + vε), h〉 = µε

∫
�

|∇vε |p−2∇vε.∇h dx, ∀h ∈ W 1,p
0 (�).

That is, in the weak sense,

−�p(uλ + vε) − fλ(x, uλ + vε) = −µε�pvε (3.25)

where fλ is defined in (3.4). Define the maps Aε : � × RN → RN and h̃λ :
� × RN → R as

Aε(x, w) = |∇uλ(x) + w|p−2(∇uλ(x) + w) − |∇uλ(x)|p−2∇uλ(x)

− µε |w|p−2w with

h̃λ(x, s)
def= fλ(x, uλ(x) + s) − fλ(x, uλ(x))

= λ(max{uλ(x) + s, uλ(x)})−δ − λuλ(x)−δ

+ (max{uλ(x) + s, uλ(x)})q − uλ(x)q .

Then (3.25) can be written as{
− ∇ · (Aε(x, ∇vε)) = h̃λ(x, vε) in �;
vε = 0 on ∂�.

(3.26)

Using similar arguments as in Garcı́a Azorero, Peral, and Manfredi [21] (Section 2,
page 5 in the subcritical case and pages 19-20 in the critical case), the fact that the
singular terms in (3.26) are non increasing and arguments in the proof of Theorem
A1 in Garcı́a Azorero and Peral [20], we obtain that supε ‖vε‖L∞(�) < ∞. Let us
show now that supε ‖ vε

d ‖L∞(�) < ∞. For this, we just need to estimate vε near the
boundary. Set v̄ε the unique solution to

 − �p(uλ + v̄ε) + µε�pv̄ε = λ

(max{uλ, uλ + v̄ε})δ in �;
v̄ε = 0 on ∂�.

(3.27)

Observing that (η − 1)uλ is a subsolution to (3.27) for η > 0 small enough and
K uλ is a supersolution for K > 0 large, we get (η − 1)uλ ≤ v̄ε ≤ K uλ, η and K
could be chosen independently of ε. Furthermore, v̄ε ≤ vε . Indeed,

0 ≤
∫

v̄ε−vε>0
(−�p(uλ + v̄ε) + �p(uλ + vε))(v̄ε − vε) dx

+ µε

∫
v̄ε−vε>0

(−�pv̄ε + �pvε)(v̄ε − vε) dx

≤
∫

v̄ε−vε>0

(
λ

max{uλ, uλ + v̄ε}δ − λ

max{uλ, uλ + vε}δ
)

(v̄ε − vε) dx ≤ 0
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from which it follows that v̄ε ≤ vε and ηuλ ≤ uλ+vε . Finally, using the weak com-
parison principle in a small neighborhood of ∂� and for K large enough (indepen-
dent of ε), we get vε ≤ K uλ near the boundary. Hence, we have supε ‖ vε

d ‖L∞(�) <

∞. Now, using Theorem B.1 in Appendix B, it follows that for some 0 < β < 1,
supε ‖vε‖C1,β (�) < ∞. From Ascoli-Arzela theorem, we get then vε → 0 as

ε → 0+ in C1(�) which contradicts the definition of vε since uλ is a C1-minimizer
of Eλ, uλ > 0 in � and ∂uλ

∂ν
< 0 on ∂�. This completes the proof of Proposi-

tion 3.7 in the subcritical case. Now, we deal with the critical case, i.e. q = p∗ − 1.
Following some ideas contained in Brezis and Nirenberg [12], we use the truncated
nonlinearity fλ, j : � × R → R+ defined by

fλ, j (x, s)
def= λ max{uλ(x), s}−δ + min

{
max{uλ(x), s}q , jq}

.

Let Fλ, j (x, s) = ∫ s
0 fλ, j (x, t) dt . Define Eλ, j : W 1,p

0 (�) → R by

Eλ, j (u)
def= 1

p

∫
�

|∇u|p dx −
∫

�

Fλ, j (x, u) dx . (3.28)

Then, Eλ, j is weakly lower semicontinuous on W 1,p
0 (�) and

∀w ∈ W 1,p
0 (�), Eλ, j (w) → Eλ(w) as j → ∞. (3.29)

Now, suppose that uλ is not a local minimizer of Eλ in W 1,p
0 (�). Then, for any

ε > 0 small enough, there exists vε ∈ W 1,p
0 (�) such that ‖vε‖W 1,p

0 (�)
≤ ε and

Eλ(uλ + vε) < Eλ(uλ). (3.30)

From (3.29) and (3.30), there exists j (ε) ∈ N such that j (ε) → ∞ as ε → 0+ and
satisfying

Eλ, j (ε)(uλ + vε) < Eλ(uλ) = Eλ, j (ε)(uλ). (3.31)

Therefore, for any ε > 0 small enough, there exists wε ∈ W 1,p
0 (�) such that

‖wε‖W 1,p
0 (�)

≤ ε and satisfying

Eλ, j (ε)(uλ + wε) = min‖v‖
W

1,p
0 (�)

≤ε
Eλ, j (ε)(uλ + v) ≤ Eλ, j (ε)(uλ + vε). (3.32)

As in the subcritical case, we can prove that there exists µε ≤ 0 such that

−�p(uλ + wε) − fλ, j (ε)(x, uλ + wε) = −µε�pwε. (3.33)

As above, we get that supε ‖wε‖C1,β (�) < ∞ for some 0 < β < 1. Hence, wε → 0

in C1(�) as ε → 0+. Together with (3.31) and (3.32), it implies that for ε > 0
small enough

Eλ, j (ε)(uλ + wε) = Eλ(uλ + wε) < Eλ(uλ)

which contradicts the fact that uλ is a C1 local minimizer of Eλ. The proof of
Proposition 3.7 is now complete.
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4. Existence of a second weak solution for 0 < λ < �

Now, we are able to show the existence of a second solution using the Moutain Pass
lemma. As in Paragraph 3.1, since the functional Eλ is not C1, we use the cut-
-off functional Eλ defined in (3.5). We recall that from Proposition 3.7, uλ, given
by Proposition 3.4, is a local minimizer of Eλ. Moreover, from Theorem 2.3, any
critical point vλ of Eλ satisfies vλ > uλ in � and hence solves (P). Therefore, to
prove the existence of a second solution it is enough to show that Eλ has a critical
point vλ different from uλ. We first define a generalized notion of Palais Smale
sequence for Eλ:

Definition 4.1. Let F ⊂W 1,p
0 (�) be a closed set. We say that a sequence {vn}∞n=1 ⊂

W 1,p
0 (�) is a Palais Smale sequence for Eλ at the level c around F ( a (P SF ,c) for

short) if

lim
n→∞ dist(vn,F) = 0, lim

n→∞ Eλ(vn) = c, lim
n→∞ ‖E ′

λ(vn)‖W−1,p′
(�)

= 0.

We have the following compactness result for (P SF ,c) sequences for Eλ:

Lemma 4.2. Let F ⊂ W 1,p
0 (�) be a closed set, c ∈ R. Let {vn}∞n=1 ⊂ W 1,p

0 (�) be

a (P SF ,c) sequence for Eλ. Then {vn}∞n=1 is bounded in W 1,p
0 (�) and there exists a

subsequence of {vn}∞n=1, we still denote by {vn}∞n=1, such that vn ⇀ vλ in W 1,p
0 (�)

where vλ is a weak solution to (P).

Proof. From Definition 4.1, there exists K > 0 such that

1

p

∫
�

|∇vn|p dx

−
∫

vn>uλ

[(
λ

1 − δ
v1−δ

n + v
q+1
n

q + 1

)
−

(
λ

1 − δ
u1−δ

λ + uq+1
λ

q + 1

)]
dx

−
∫

vn≤uλ

vn(λu−δ
λ + uq

λ) dx ≤ K

from which it follows that

1

p

∫
�

|∇vn|p dx −
∫

vn>uλ

(
λ

1 − δ
v1−δ

n + v
q+1
n

q + 1

)
dx ≤ K . (4.1)

Again from Definition 4.1 we have∫
�

|∇vn|p dx =
∫

vn>uλ

(λv1−δ
n + v

q+1
n ) dx +

∫
vn≤uλ

(λu−δ
λ + uq

λ)vn dx

+ on(1) ‖vn‖W 1,p
0 (�)

.

(4.2)
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From (4.1) and (4.2) we get

‖vn‖p

W 1,p
0 (�)

+ On(‖vn‖W 1,p
0 (�)

)

≥
∫

vn>uλ

v
q+1
n dx ≥ q + 1

p
‖vn‖p

W 1,p
0 (�)

− K .
(4.3)

From (4.3), it follows that {vn}∞n=1 is bounded in W 1,p
0 (�) and there exists vλ such

that a suitable subsequence satisfies vn ⇀ vλ in W 1,p
0 (�). Let φ ∈ W 1,p

0 (�). From
Definition 4.1, we get∫

�

|∇vn|p−2∇vn∇φ dx =
∫

�

fλ(x, vn)φ dx + on(1). (4.4)

Since fλ(x, vn) ≤ u−δ
λ + (max(uλ, vn))

q , q ≤ p∗ − 1, vn ⇀ vλ in W 1,p
0 (�) and

doing n → ∞ in (4.4), we get∫
�

|∇vλ|p−2∇vλ∇φ dx =
∫

�

fλ(x, vλ)φ dx . (4.5)

From Theorem 2.3 and (4.5), it follows that vλ is a weak solution to (P). This com-
pletes the proof of Lemma 4.2.

We observe that from Proposition 3.4 and the fact that lim
t→∞ Eλ(tφ) = −∞ for

0 ≤ φ ∈ W 1,p
0 (�)\{0}, Eλ has a Moutain Pass geometry close to uλ. Hence we

may fix e ∈ W 1,p
0 (�)\{0} such that Eλ(e) < Eλ(uλ). Let R0 = ‖e − uλ‖W 1,p

0 (�)
,

l0 > 0 small enough such that uλ is a minimizer of Eλ on Bl0(uλ). Set

�
def= {η ∈ C([0, 1], W 1,p

0 (�))| η(0) = uλ , η(1) = e}
and define the mountain pass level

γ0 = inf
η∈�

max
t∈[0,1]

Eλ(η(t)).

We distinguish between the following two cases:

(P1) “Zero altitude case”

inf
{

Eλ(u) : u ∈ W 1,p
0 (�) and ‖u − uλ‖W 1,p

0 (�)
= l

}
≤ Eλ(uλ)

for all l < R0;
(P2) there exists l1 < R0 such that

inf
{

Eλ(u) : u ∈ W 1,p
0 (�) and ‖u − uλ‖W 1,p

0 (�)
= l

}
> Eλ(uλ).
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Note that (P1) (respectively (P2)) implies that γ0 = Eλ(uλ) (respectively γ0 >

Eλ(uλ)). In case where (P1) occurs, we can construct a (P SF ,γ0) sequence with
F = ∂Bl(uλ), l ≤ l0, and get at least a second weak solution to (P). More precisely,
we have the following result:

Proposition 4.3. Let p ∈ (1, ∞), q ∈ (p − 1, p∗ − 1], δ ∈ (0, 1) and λ ∈ (0, �).
Suppose that (P1) holds. Then, there exists a weak solution vλ of (P) such that
vλ 	= uλ.

Proof. From Theorem (1) in Ghoussoub and Preiss [25], for l ≤ l0 we get the
existence of a (P SF ,γ0) sequence, {vk}∞k=1. From Lemma 4.2, {vk}∞k=1 is bounded

and up to a subsequence weakly convergent in W 1,p
0 (�) to vλ, a weak solution

to (P). To prove that uλ 	= vλ, it is sufficient to prove that vk → vλ strongly
in W 1,p

0 (�) as k → ∞. Since vk ⇀ vλ as k → ∞, applying Theorem 2.1 in
Boccardo and Murat [9] as in the proof of Lemma 3.3 and from Remark 2.1 in [9],
we get the following result from Brezis-Lieb (see [10]): As k → ∞,

‖vk‖W 1,p
0 (�)

= ‖vk − vλ‖W 1,p
0 (�)

+ ‖vλ‖W 1,p
0 (�)

+ ok(1) and

‖vk‖Lq+1(�) = ‖vk − vλ‖Lq+1(�) + ‖vλ‖Lq+1(�) + ok(1).
(4.6)

By Sobolev imbedding theorem, we have also:∫
vk≥uλ

|v1−δ
k − v1−δ

λ | dx = ok(1) as k → ∞.

Since vλ is a weak solution to (P), we have:

‖vλ‖p

W 1,p
0 (�)

− ‖vλ‖q+1
Lq+1(�)

− λ

∫
�

v1−δ
λ = 0. (4.7)

Therefore, as k → ∞∫
�

|∇vk |p−2∇vk∇(vk − vλ) dx = λ

∫
vk≥uλ

v−δ
k (vk − vλ) dx

+
∫

�

v
q
k (vk − vλ) dx + ok(1).

(4.8)

It follows from (4.6), (4.8) and (4.7) that∫
�

|∇vk − ∇vλ|p dx =
∫

�

|vk − vλ|q+1 dx + ok(1) as k → ∞. (4.9)

Now, we consider two cases:

(i) Eλ(uλ) 	= Eλ(vλ),
(ii) Eλ(uλ) = Eλ(vλ).
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In case (i), we are done. If (ii) holds, then from (4.6), we get

Eλ(vk − vλ) = Eλ(vk) − Eλ(vλ) + ok(1) = ok(1) as k → ∞.

Thus,

1

p
‖vk − vλ‖p

W 1,p
0 (�)

− 1

q + 1
‖vk − vλ‖q+1

Lq+1(�)
≤ ok(1) as k → ∞. (4.10)

Then, from (4.9) and (4.10), we obtain ‖vk − vλ‖W 1,p
0 (�)

→ 0 as k → ∞. Hence

‖uλ−vλ‖W 1,p
0 (�)

= l and uλ 	= vλ. This completes the proof of Proposition 4.3.

In case where (P2) occurs, we have the following result:

Proposition 4.4. Let the pair (p, q) satisfy either p ∈ (1, ∞) and q ∈ (p−1, p∗−
1), or else p ∈

(
2N

N+2 , 2
]
∪

(
3N

N+3 , 3
)

and q = p∗ −1. Let λ ∈ (0, �) and suppose

that (P2) holds. Then there exists a weak solution vλ such that uλ 	= vλ.

Proof. We give the proof only in the second case (critical case) i.e. p ∈ ( 2N
N+2 , 2] ∪

( 3N
N+3 , 3) and q = p∗ − 1. The first case (subcritical case) i.e. p ∈ (1, ∞) and

q ∈ (p −1, p∗ −1) follows from Lemma 4.2 and Lemma C.1 in Appendix C. First,
without loss of generality, we can assume that uλ has the minimal energy among
all weak solutions (if not, we would have already found our second solution). Let
F = W 1,p

0 (�). By Lemma 4.2, all (P SF ,γ0) sequences are bounded in W 1,p
0 (�).

Again we need to prove the compactness of the (P SF ,γ0) sequences in W 1,p
0 (�).

For that, we show that γ0 is strictly below the first critical level where the Palais-
Smale condition fails. Following the ideas in Brezis and Nirenberg [11], we use the
test functions

Uε(x) = CN ε
N−p

p(p−1)(
ε p/(p−1) + |x − y|p/(p−1)

) N−p
p

φ(x)

where ε > 0, CN is a normalization constant, y ∈ �, and φ ∈ C∞
c (�) is a cut-off

function such that φ = 1 in a neighborhood of y. Then, we prove the following
statement:

Claim. There exists ε0 > 0 and R0 ≥ 1 such that ∀ε ∈ (0, ε0)

Eλ(uλ + RUε) = Eλ(uλ + RUε) < Eλ(uλ) ∀R ≥ R0,

Eλ(uλ + t R0Uε) = (Eλ(uλ + t R0Uε) < Eλ(uλ) + 1

N
S

N
p ∀ t ∈ [0, 1].

Proof of the claim. The first inequality shows that � is non empty. The proof is
a direct consequence of the fact that q > p − 1 and R large. Let us prove the
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second inequality. We use the approach in Garcı́a Azorero and Peral [20] where the
following estimates are proved (see pages 946 and 949):∫

�

|∇uλ + t R0Uε |p dx ≤
∫

�

|∇uλ|p dx + (t R0)
p
∫

�

|∇Uε |p dx

+ pt R0

∫
�

|∇uλ|p−2∇uλ∇Uε dx + O(εβ)

(4.11)

with β >
(N−p)

p and∫
�

(uλ + t R0Uε)
q+1 dx ≥

∫
�

uq+1
λ dx + (t R0)

q+1
∫

�

U q+1
ε dx

+ (q + 1)t R0

∫
�

uq
λUε dx + (q + 1)(t R0)

q
∫

�

uλU q
ε dx + O(εγ )

(4.12)

with γ >
(N−p)

p . Then,

Eλ(uλ + t R0Uε) = 1

p

∫
�

|∇uλ + t R0Uε |p dx

− λ

1 − δ

∫
�

(uλ + t R0Uε)
1−δ dx − 1

q + 1

∫
�

(uλ + t R0Uε)
q+1 dx

≤
∫

�

|∇uλ|p dx + (t R0)
p

p

∫
�

|∇Uε |p dx + t R0

∫
�

(λu−δ
λ + uq

λ)Uε dx

− λ

1−δ

∫
�

(uλ+t R0Uε)
1−δ dx− 1

q+1

∫
�

(uλ + t R0Uε)
q+1 dx+o(ε

N−p
p )

≤ Eλ(uλ) + (t R0)
p
∫

�

|∇Uε |p dx − (t R0)
q+1

q + 1

∫
�

U q+1
ε dx

− (t R0)
q
∫

�

uλU q
ε dx + t R0

∫
�

uq
λUε dx + λ

1 − δ

∫
�

u1−δ
λ dx

− λ

1 − δ

∫
�

(uλ + t R0Uε)
1−δ dx + t R0

∫
�

λu−δ
λ Uε dx + o(ε

N−p
p ) .

(4.13)

Now, we estimate the last three terms as follows:

λ

1 − δ

∫
�

u1−δ
λ dx − λ

1 − δ

∫
�

(uλ + t R0Uε)
1−δ dx + t R0

∫
�

λu−δ
λ Uε dx

≤ K
∫

Bµ(y)

Uε dx

for µ > 0. Moreover,

∫
Bµ(y)

Uε dx ≤




ε
N− (N−p)

p
[
O(1) + O

(
ε

N−p
p−1 −N )]

if p 	= 2N

N + 1
,

O
(
ε

N− (N−p)
p log ε

)
if p = 2N

N + 1
.

(4.14)
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From (4.14) and p ∈ ( 2N
N+2 , 2), we get∫

Bµ(y)

Uε dx = o(ε
N−p

p ). (4.15)

Now, assume that p ∈ ( 3N
N+3 , 3). In this case, using the Taylor expansion, we

estimate the last three terms in (4.13) as follows:

λ

1 − δ

∫
�

u1−δ
λ dx − λ

1 − δ

∫
�

(uλ + t R0Uε)
1−δ dx + t R0

∫
�

λu−δ
λ Uε dx

≤ K
∫

Bµ(y)

U 2
ε dx

for µ > 0. Moreover,

∫
Bµ(y)

U 2
ε dx ≤




ε
N− 2(N−p)

p
[
O(1) + O

(
ε

2(N−p)
p−1 −N )]

if p 	= 3N

N + 2
,

O
(
ε

N− 2(N−p)
p log ε

)
if p = 3N

N + 2
.

(4.16)

From (4.16) and p ∈ ( 3N
N+3 , 3), we get∫

Bµ(y)

U 2
ε dx = o(ε

N−p
p ). (4.17)

Thus, From (4.13), (4.15) and (4.17), it follows that

Eλ(uλ + t R0Uε) ≤ Eλ(uλ) + (t R0)
p
∫

�

|∇Uε |p dx − (t R0)
q+1

q + 1

∫
�

U q+1
ε dx

− (t R0)
q
∫

�

uλU q
ε dx + o(ε

N−p
p ).

for p ∈ ( 2N
N+2 , 2) ∪ ( 3N

N+3 , 3). The case p = 2 is done in Haitao [29] and in Hirano,
Saccon and Shioji [31]. Arguing as in Garcı́a Azorero and Peral [20] (see page 947),
we get for p ∈ ( 2N

N+2 , 2] ∪ ( 3N
N+3 , 3):

sup
t∈R+

Eλ(uλ + t R0Uε) < Eλ(uλ) + 1

N
S

N
p

which completes the proof of the claim Now, the compactness of {vk}∞k=1 implies
that Eλ(vλ) = γ0 > Eλ(uλ). Therefore vλ 	= uλ.

Thus, the proof of Theorem 2.1 follows from Propositions 4.3 and 4.4. Now,
Theorem 2.2 follows from the subsequent regularity results given in Appendices A
and B.
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A. Appendix

We start with an important technical tool which enables us to estimate the singular-
ity in the Gâteaux derivative of the energy functional Eλ : W 1,p

0 (�) → R defined
in (1.1).

Lemma A.1. Let 0 < δ < 1. Then there exists a constant Cδ > 0 such that the
inequality ∫ 1

0
|a + sb|−δ ds ≤ Cδ

(
max

0≤s≤1
|a + sb|

)−δ

(A.1)

holds true for all a, b ∈ RN with |a| + |b| > 0.

An elementary proof of this lemma can be found in Takáč [40, Lemma A.1,
page 233].

We continue by showing the Gâteaux-differentiability of the energy functional
Eλ at a point u ∈ W 1,p

0 (�) satisfying u ≥ εϕ1 in � with a constant ε > 0.

Lemma A.2. Let 0 < δ < 1, 1 < p < ∞, and p − 1 < q ≤ p∗ − 1. Assume that
u, v ∈ W 1,p

0 (�) and u satisfies u ≥ εϕ1 in � with a constant ε > 0. Then we have

lim
t→0

1

t
(Eλ(u + tv) − Eλ(u))

=
∫

�

|∇u|p−2∇u · ∇v dx − λ

∫
�

u−δv dx −
∫

�

uqv dx .

(A.2)

Proof. We show the result only for the singular term
∫
�

u−δv dx; the other two
terms are treated in a standard way. So let

F(u) = 1

1 − δ

∫
�

(u+)1−δ dx for u ∈ W 1,p
0 (�).

For ξ ∈ R \ {0} we define

z(ξ) = 1

1 − δ

d

dξ
(ξ+)1−δ =

{
ξ−δ if ξ > 0;

0 if ξ < 0.

Consequently,

1

t
(F(u + tv) − F(u)) =

∫
�

(∫ 1

0
z(u + stv) ds

)
v dx . (A.3)

Notice that for almost every x ∈ � we have u(x) > 0 and∫ 1

0
z(u(x) + stv(x)) ds −→ z(u(x)) = u(x)−δ as t → 0.
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Moreover, the integral on the left-hand side (with nonnegative integrand) is domi-
nated by

∫ 1

0
z(u(x) + stv(x)) ds ≤

∫ 1

0
|u(x) + stv(x)|−δ ds

≤ Cδ

(
max

0≤s≤1
|u(x) + stv(x)|

)−δ

≤ Cδ u(x)−δ ≤ Cδ (εϕ1(x))−δ = Cδ,ε ϕ1(x)−δ

with a constant Cδ,ε > 0 independent of x ∈ �. Here, we have used the estimate
(A.1) from Lemma A.1 above. Finally, we have vϕ−δ

1 ∈ L1(�), by v ∈ W 1,p
0 (�)

and Hardy’s inequality. Hence, we are allowed to invoke the Lebesgue dominated
convergence theorem in (A.3) from which the lemma follows by letting t → 0.

Corollary A.3. Let 0 < δ < 1, 1 < p < ∞, and p − 1 < q ≤ p∗ − 1. Then
the energy functional Eλ : W 1,p

0 (�) → R is Gâteaux-differentiable at every point

u ∈ W 1,p
0 (�) that satisfies u ≥ εϕ1 in � with a constant ε > 0. Its Gâteaux

derivative E ′
λ(u) at u is given by

〈E ′
λ(u), v〉 =∫

�

|∇u|p−2∇u · ∇v dx − λ

∫
�

u−δv dx −
∫

�

uqv dx
(A.4)

for v ∈ W 1,p
0 (�).

We continue by proving the C1-differentiability of the cut off energy func-
tional:

Lemma A.4. Let 0 < δ < 1, 1 < p < ∞, p − 1 < q < ∞, and w ∈ W 1,p
0 (�)

such that w ≥ εϕ1 with some ε > 0. Setting for x ∈ �

fλ(x, s) =
{

λs−δ + sq if s ≥ w(x),

λw(x)−δ + w(x)q if s < w(x),

Fλ(x, s) = ∫ s
0 fλ(x, t) dt and for u ∈ W 1,p

0 (�)

Eλ(u) = 1

p

∫
�

|∇u|p dx −
∫

�

Fλ(x, u) dx,

we have that Eλ belongs to C1(W 1,p
0 (�), R).
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Proof. As in Lemma A.2, we concentrate on the singular term, the others being
standard. Let

h(x, s) =
{

s−δ if s ≥ w(x),

w(x)−δ if s < w(x),

H(x, s) = ∫ s
0 h(x, t) dt , and S(u) = ∫

�
H(x, u)dx . Proceeding as in Lemma A.2,

we obtain that for all u ∈ W 1,p
0 (�), S(u) has a Gâteaux derivative S′(u) given by

〈S′(u), v〉 =
∫

�

(max{u(x), w(x)})−δv(x) dx .

Let uk ∈ W 1,p
0 (�), uk → u0. Then

|〈S′(uk) − S′(u0), v〉| =
∣∣∣∣
∫

�

(
(max{uk(x), w(x)})−δv(x)

−(max{u(x), w(x)})−δv(x)
)

dx
∣∣

≤ 2
∫

�

w−δ|v| dx

≤ 2ε−δ

∫
�

ϕ−δ
1 |v| dx

for all v ∈ W 1,p
0 (�). Again, as in Lemma A.2, we use Hardy’s inequality to

deduce that ϕ−δ
1 v ∈ L1, so that by Lesbegue’s dominated convergence theorem

we conclude that the Gâteaux derivative of S is continuous which implies that
S ∈ C1(W 1,p

0 (�), R).

Next, we give some regularity results for weak solutions to problem (P). We
start with the following lemma which allows for test functions φ in equation (2.1)
to be taken in W 1,p

0 (�) rather than only in C∞
c (�) ( ⊂ W 1,p

0 (�)).

Lemma A.5. Each positive weak solution u of problem (P) satisfies u ≥ ελφ1 a.e.
in �, where ελ > 0 is a constant independent of u. Moreover, for every function
w ∈ W 1,p

0 (�) we have u−δw ∈ L1(�) and∫
�

|∇u|p−2∇u · ∇w dx = λ

∫
�

u−δw dx +
∫

�

uqw dx . (A.5)

Proof. Let u be a positive weak solution of (P). Recall that u is required to satisfy
ess infK u > 0 over every compact set K ⊂ �.

First, we establish the inequality∫
�

|∇u|p−2∇u · ∇w dx ≥ λ

∫
�

u−δw dx +
∫

�

uqw dx (A.6)
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for every w ∈ W 1,p
0 (�) satisfying w ≥ 0 a.e. in �. Given 0 ≤ w ∈ W 1,p

0 (�), there
exists a sequence {wk}∞k=1 ⊂ C∞

c (�) such that wk ≥ 0 in � and wk → w strongly

in W 1,p
0 (�) as k → ∞. Since p < q + 1 ≤ p∗, this entails wk → w strongly also

in Lq+1(�) as k → ∞. Moreover, we can find a subsequence, denoted again by
{wk}∞k=1, such that wk → w almost everywhere in � as k → ∞. In equation (A.5)
we now replace w by wk and apply Fatou’s lemma to the integral

∫
�

u−δwk dx as
k → ∞, thus arriving at the desired inequality (A.6).

In particular, inequality (A.6) implies∫
�

|∇u|p−2∇u · ∇w dx ≥ λ

∫
�

u−δw dx (A.7)

whenever 0 ≤ w ∈ W 1,p
0 (�). Now we are ready to compare u with the unique

weak solution uλ of problem (3.1) obtained in Lemma 3.1. We apply the weak
comparison principle (cf. the proof of Theorem 2.3) to (the weak formulation of)
problem (3.1) (with uλ in place of u) and to inequality (A.7) (with u), thus obtaining
u ≥ uλ a.e. in �. This guarantees u ≥ ελφ1 a.e. in �.

Next, there are constants 0 < � < L < ∞ such that � d(x) ≤ φ1(x) ≤ L d(x)

for all x ∈ �. It follows that u ≥ ελ� d a.e. in �. Now, instead of using Fatou’s
lemma in the limiting process above, we apply Hardy’s inequality to the integral∫
�

u−δwk dx as k → ∞, thus arriving at the desired equality (A.5) for every w ∈
W 1,p

0 (�) satisfying w ≥ 0 a.e. in �.
Finally, we make use of the polar decomposition w = w+ −w− of an arbitrary

function w ∈ W 1,p
0 (�), where w+ = max{w, 0} and w− = max{−w, 0} satisfy

w+, w− ∈ W 1,p
0 (�) and ∇w = ∇w+ − ∇w−. Since we have already verified

equation (A.5) for w+ and w−, the desired equality (A.5) holds also for every w ∈
W 1,p

0 (�).

Lemma A.6. Each positive weak solution u of (P) belongs to L∞(�).

Proof. First, we show that each positive weak solution u of (P) satisfies∫
�

|∇(u − 1)+|p−2∇(u − 1)+ · ∇w dx ≤
∫

�

(λ + uq)w dx (A.8)

for every w ∈ C∞
c (�) with w ≥ 0. Indeed, let ψ : R → [0, 1] be a C1 cut-off

function such that ψ(s) = 0 if s ≤ 0, ψ ′(s) ≥ 0 if 0 ≤ s ≤ 1, and ψ(s) = 1

if s ≥ 1. Given any ε > 0, define ψε(t)
def= ψ((t − 1)/ε) for t ∈ R. Hence,

ψε ◦ u ∈ W 1,p
0 (�) with ∇(ψε ◦ u) = (ψ ′

ε ◦ u) ∇u. Using the weak form of problem
(P), equation (2.1), with the test function φ = (ψε ◦ u)w, where w ∈ C∞

c (�)

satisfies w ≥ 0, we obtain∫
�

|∇u|p−2∇u · ∇[(ψε ◦ u)w] dx =
∫

�

(λu−δ + uq)(ψε ◦ u)w dx .
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Hence, ∫
�

|∇u|p (ψ ′
ε ◦ u)w dx +

∫
�

|∇u|p−2(∇u · ∇w)(ψε ◦ u) dx

=
∫

�

(λu−δ + uq)(ψε ◦ u)w dx

with ψ ′
ε ◦ u ≥ 0, which yields∫

�

|∇u|p−2(∇u · ∇w)(ψε ◦ u) dx ≤
∫

�

(λu−δ + uq)(ψε ◦ u)w dx .

Letting ε → 0+ we arrive at (A.8). Finally, the L∞ bound and regularity of u
are obtained directly from equation (A.8) as follows: if q < p∗ − 1, one applies
Theorem A.1 from Anane [6], and if q = p∗ −1, the bootstrapping arguments from
the proof of Theorem A.1, pages 950–953, in Garcı́a Azorero and Peral [20] yield
the desired result. In both references [6, 20] the bootstrapping arguments use the
technique due to Serrin [39] (proof of Theorem 1).

Finally, we are ready to bound any weak solution u of problem (P) by a positive
scalar multiple of the eigenfunction φ1 also from above. This result complements
the corresponding bound from below, u ≥ ελφ1 a.e. in �, stated in the first part
of Lemma A.5 above. Equivalently, these lower and upper bounds for u/φ1 can be
reformulated as follows, using the distance function d in place of φ1:

Lemma A.7. Each positive weak solution u of problem (P) satisfies cλ d ≤ u ≤
Kλ d a.e. in �, where 0 < cλ ≤ Kλ < ∞ are some constants independent of u.

Proof. Let u ∈ W 1,p
0 (�) be a positive weak solution of problem (P). It follows from

the first part of Lemma A.5 and its proof that u(x) ≥ uλ(x) ≥ ελφ1(x) ≥ ελ� d(x)

for a.e. x ∈ �. Hence, we can take cλ = ελ� > 0 to get u ≥ cλ d a.e. in �.
Next, we take advantage of the inequality u ≥ cλ d to derive also u ≤ Kλ d .

Recall that u ∈ L∞(�), by Lemma A.6 above. First, we apply the estimate

uq = uq+δ

uδ
≤ ‖u‖q+δ

L∞(�)

uδ
a.e. in �

to the right-hand side of the equation in problem (P) to conclude that{
−�pu ≤

(
λ + ‖u‖q+δ

L∞(�)

)
u−δ in �;

u|∂� = 0, u > 0 in �.
(A.9)

After the substitution

v =
(

1 + λ−1‖u‖q+δ

L∞(�)

)−1/(p−1+δ)

u,
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inequality (A.9) is equivalent with{ −�pv ≤ λv−δ in �;
v|∂� = 0, v > 0 in �.

(A.10)

Now, in analogy with the proof of Lemma A.5, we apply the weak comparison
principle to problem (3.1) (with uλ in place of u) and to inequality (A.10) (with v),
thus arriving at v ≤ uλ a.e. in �. Thus, it remains to verify uλ ≤ c′

λ d a.e. in �,
where 0 < c′

λ < ∞ is a constant. This will imply u ≤ Kλ d a.e. in � with

Kλ = c′
λ

(
1 + λ−1‖u‖q+δ

L∞(�)

)1/(p−1+δ)

.

Thanks to � d(x) ≤ φ1(x) ≤ L d(x) for all x ∈ �, with some constants
0 < � < L < ∞, the inequality uλ ≤ c′

λ d in � is equivalent to uλ ≤ c′′
λφ1

in �, where 0 < c′′
λ < ∞ is a constant. We now construct a supersolution w to

problem (3.1) of the form w = β · �α ◦ φ1 in �. Here, α, β > 0 are suitable
numbers and �α : [0, Rα) → R+ is a C1 function (where 0 < Rα < ∞ and
R+ = [0, ∞)) that satisfies the initial value problem

 − d

dr

(
|�′

α(r)|p−2 �′
α(r)

)
= �α(r)−δ, 0 < r < Rα;

�α(0) = 0, �′
α(0) = α > 0.

(A.11)

The endpoint Rα is defined to be the supremum of all numbers s ∈ (0, ∞) such that
�′

α(r) > 0 holds for all r ∈ [0, s). We will see that 0 < Rα < ∞ together with
�′

α(r) ↘ 0 as r ↗ Rα .
Making use of the transformation


�α(r) = α

p
1−δ · �1(α

− p
p−1+δ r), 0 ≤ r ≤ Rα;

Rα = α
p

p−1+δ R1,

(A.12)

we conclude that it suffices to treat the case α = 1. Problem (A.11) with α = 1 has
the first integral


− p − 1

p
|�′

1(r)|p − 1

1 − δ
�1(r)1−δ + C = 0, 0 ≤ r < R1;

�1(0) = 0, �′
1(0) = 1 > 0,

(A.13)

where the constant C is given by C = (p − 1)/p. There exists precisely one C1

function �1 : [0, R1) → R+ that satisfies (A.13) together with �′
1(r) > 0 for all

r ∈ [0, R1); it is determined from∫ �1(r)

0

(
1 − p

(p − 1)(1 − δ)
θ1−δ

)−1/p

dθ = r, 0 ≤ r < R1, (A.14)
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where

R1 =
∫ [(p−1)(1−δ)/p]1/(1−δ)

0

(
1 − p

(p − 1)(1 − δ)
θ1−δ

)−1/p

dθ

=
(

(p − 1)(1 − δ)

p

)1/(1−δ) ∫ 1

0
(1 − t1−δ)−1/p dt < ∞

(A.15)

is the maximal number such that �′
1(r) > 0 for all r ∈ [0, R1).

Let us first fix α > 0 large enough, such that Rα > M
def= max � φ1 . In the

following calculations we make use of equations (2.2) and (A.11) for φ1 and �α ,
respectively. The function w(x) = β · �α(φ1(x)) of x ∈ � satisfies

∇w(x) = β · �′
α(φ1(x)) ∇φ1(x),

|∇w(x)|p−2∇w(x) = β p−1 [
�′

α(φ1(x))
]p−1 |∇φ1(x)|p−2∇φ1(x),

whence

−�pw = −β p−1
[(

(�′
α)p−1

)′ ◦ φ1

]
|∇φ1|p

+ β p−1
[(

(�′
α)p−1

)
◦ φ1

]
(−�pφ1)

= β p−1 (�α ◦ φ1)
−δ |∇φ1|p

+ β p−1 λ1

[(
(�′

α)p−1
)

◦ φ1

]
· φ

p−1
1

= β p−1+δ |∇φ1|p w−δ

+ β p−1 λ1

[(
(�′

α)p−1
)

◦ φ1

]
· φ

p−1
1 (β · �α ◦ φ1)

δ w−δ

= β p−1+δ
{
|∇φ1|p+λ1

[(
(�′

α)p−1
)

◦ φ1

]
·φ p−1

1 (�α ◦ φ1)
δ
}

w−δ.

(A.16)

Recall Rα > M = max � φ1 . The function �α being strictly increasing with
strictly decreasing derivative �′

α on the interval [0, Rα], and �α(0) = 0, �′
α(0) =

α > �′
α(Rα) = 0, we can estimate

(
(�′

α)p−1
)

◦ φ1 ≥ �′
α(M)p−1 > 0,

�α ◦ φ1 ≥ �′
α(M) φ1.

We combine these inequalities to estimate the second summand in the curly brackets
at the end of equation (A.16) above, thus obtaining

−�pw ≥ β p−1+δ
{
|∇φ1|p + λ1 (�′

α(M) φ1)
p−1+δ

}
w−δ. (A.17)
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Moreover, we have w ∈ C1(�) together with w = 0 on ∂�, w > 0 in �, and
∂w
∂ν

< 0 on ∂�. These claims follow from φ1 ∈ C1(�) combined with the strong

maximum and boundary point principles φ1 > 0 in � and ∂φ1
∂ν

< 0 on ∂� (see
Vázquez [43, Theorem 5, page 200]). The same arguments render

γ
def= min

�

{
|∇φ1|p + λ1 (�′

α(M) φ1)
p−1+δ

}
> 0.

We choose the number β > 0 large enough, such that β p−1+δ γ ≥ λ. In particular,
inequality (A.17) yields

−�pw ≥ λw−δ in �. (A.18)

Finally, we apply the weak comparison principle to problem (3.1) (with uλ in place
of u) and to inequality (A.18) (with w satisfying w = 0 on ∂�), thus arriving at
w ≥ uλ a.e. in �. We have thus verified

v ≤ uλ ≤ w = β · �α ◦ φ1 ≤ αβ φ1 ≤ c′
λ d a.e. in �,

where c′
λ ∈ (0, ∞) is a constant, as desired.

The proof of Lemma A.7 is now complete.

B. Appendix

Regularity of weak solutions to various types of degenerate elliptic partial differ-
ential equations is a broadly developed subject, with a number of general methods
and results. However, when a method is applied to a particular equation, this often
needs to be done in a way specific to this equation. In this appendix we consider
the following quasilinear elliptic boundary value problem,

−∇ · (a(x, ∇u)) = f (x) in �; u = 0 on ∂�, (B.1)

in a setting that is closely related to Lieberman’s in [33, Theorem 1, page 1203].
We assume that � is a (nonempty) bounded domain in RN whose boundary ∂� is a
compact C2 manifold. We denote by x = (x1, . . . , xN ) a generic point in � and by
u the unknown function of x , where u ∈ W 1,p

0 (�) for p ∈ (1, ∞). The quasilinear
elliptic operator (x, u) �→ ∇ · (a(x, ∇u)) is defined by

∇ · (a(x, ∇u))
def=

N∑
i=1

∂

∂xi
ai (x, ∇u(x)) for x ∈ � and u ∈ W 1,p

0 (�) (B.2)

with values in W −1,p′
(�), the dual space of W 1,p

0 (�), where 1
p + 1

p′ = 1. The

components ai of the vector field a : � × RN → RN , a = (a1, . . . , aN ), are
functions of x and η = ∇u ∈ RN , such that ai ∈ C0(� × RN ) and ∂ai/∂η j ∈
C0(�× (RN \ {0})). We assume that a satisfies the following ellipticity and growth
conditions:
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(H1) There exist some constants κ ∈ [0, 1], γ, � ∈ (0, ∞), and α ∈ (0, 1), such
that

ai (x, 0) = 0; i = 1, . . . , N , (B.3)
N∑

i, j=1

∂ai

∂η j
(x, η) · ξiξ j ≥ γ · (κ + |η|)p−2 · |ξ |2, (B.4)

N∑
i, j=1

∣∣∣∣ ∂ai

∂η j
(x, η)

∣∣∣∣ ≤ � · (κ + |η|)p−2, (B.5)

N∑
i=1

|ai (x, η) − ai (y, η)| ≤ � · (1 + |η|)p · |x − y|α, (B.6)

for all x, y ∈ �, all η ∈ RN \ {0}, and all ξ ∈ RN .

We remark that conditions (B.3) through (B.6) are motivated by the elliptic bound-
ary value problem

−�pu = f (x) in �; u = 0 on ∂�, (B.7)

with the p-Laplacian defined by �pu
def= ∇ · (|∇u|p−2∇u).

Finally, we impose the following growth condition on the function f ∈ L∞
loc(�):

(H2) There exist constants c and δ, 0 < c < ∞ and 0 < δ < 1, such that

0 ≤ f (x) ≤ c d(x)−δ holds for almost all x ∈ �. (B.8)

It is readily seen that

|d(x) − d(y)| ≤ |x − y| for x, y ∈ �.

Since the boundary ∂� is of class C2, d is a C2 function in a neighborhood of ∂�.

More precisely, we have d ∈ C2(�µ) where �µ
def= {x ∈ � : d(x) < µ}, for some

µ > 0, by Gilbarg and Trudinger [28, Lemma 14.16, page 355].
We will show the following analogue of a well-known regularity result for

problem (B.1) due to Lieberman [33, Theorem 1, page 1203] (regularity near the
boundary). Interior regularity was established earlier independently by DiBenedetto
[19, Theorem 2, page 829] and Tolksdorf [42, Theorem 1, page 127].

Theorem B.1. Assume that a(x,η) satisfies the structural hypotheses (B.3) through
(B.6), and f (x) satisfies the growth hypothesis (B.8). Let u ∈ W 1,p

0 (�) be the
(unique) weak solution of problem (B.1). In addition, assume

0 ≤ u(x) ≤ C d(x) for almost all x ∈ �, (B.9)
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where C is a constant, 0 ≤ C < ∞. Then there exist constants β and M, 0 < β <

α and 0 ≤ M < ∞, depending solely on �, N , p, on the constants γ , �, α in (B.4)
through (B.6), on the constants c, δ in (B.8), and on the constant C in (B.9), but not
on κ ∈ [0, 1], such that u satisfies u ∈ C1,β(�) and

‖u‖C1,β (�) ≤ M. (B.10)

It is well-known that the existence and uniqueness of a weak solution in W 1,p
0 (�)

are guaranteed by the Minty-Browder theorem for (nonlinear) monotone operators;
see e.g. Deimling [16, Theorem 12.1, page 117].

We need to modify the proof of Theorem 1 from Lieberman’s work [33]. In
what follows we employ Lemma 5, page 1211, from [33] as it stands there, but adapt
the remaining part of the proof of Theorem 1, pages 1212–1213, to our setting, in
particular, equations (3.5) through (3.8).

Proof of Theorem B.1. We “flatten” the boundary ∂� locally by a C2 diffeo-
morphism �. Such a local transformation of coordinates, x̃ = �(x), leaves all
structural conditions for ai unchanged. The same remark is valid also for f and u
in inequalities (B.8) and (B.9). In particular, we can adjust this transformation (by
rotation and translation of coordinate axes) in order to achieve d(x̃) = x̃N for all
x̃ ∈ RN from an open ball centered at the origin and such that x̃N ≥ 0. Therefore,
writing

x = (x1, . . . , xN ) ∈ RN , x ′ = (x1, . . . , xN−1) ∈ RN−1, and x = (x ′, xN ),

let us consider only an open ball

Br (y)
def= {x ∈ RN : |x − y| < r} for some y ∈ RN and 0 < r < ∞

and the corresponding open half-ball

B+
r (y)

def= {x ∈ Br (y) : xN − yN > 0}
with the flat boundary portion

B0
r (y)

def= {x ∈ Br (y) : xN − yN = 0}.
Finally, let us introduce the half-sphere

S+
r (y)

def= ∂ B+
r (y) \ B0

r (y)

= {x ∈ RN : |x − y| = r and xN − yN ≥ 0}.
This means that we have replaced a general domain � by an open half-ball; we fix
and normalize this half-ball to be B+

1 (0) ⊂ RN .
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We recall that the vector field

a : (x, ∇u) �→ a(x, ∇u) : B+
1 (0) × RN → RN

satisfies the structural hypotheses (B.3) through (B.6), and the function f : B+
1 (0)

→ RN verifies (B.8), i.e.,

0 ≤ f (x) ≤ c x−δ
N holds for almost all x = (x ′, xN ) ∈ B+

1 (0). (B.11)

Hypothesis (B.9) for u reads

0 ≤ u(x) ≤ C xN for almost all x ∈ B+
1 (0). (B.12)

Following Lieberman’s proof of C1,β regularity near the boundary in [33], we will
prove that the (unique) weak solution u ∈ W 1,p(B+

1 (0)) of the partial differential
equation

−∇ · a(x, ∇u) = f (x) in B+
1 (0); u = 0 on B0

1 (0), (B.13)

which is assumed to obey (B.12), satisfies u ∈ C1,β(B+
1/2(0)) for some β ∈ (0, α).

We do not specify the boundary data of u on the half-sphere S+
1 (0), but assume

u ∈ W 1,p(B+
1 (0)) instead. The method of proof is based on a standard perturbation

argument using the Dirichlet boundary value problem{ − ∇ · a(x, ∇v) = 0 in B+
R (y);

v = 0 on B0
R(y), v = u on S+

R (y),
(B.14)

for any y ∈ B+
1/2(0) and any 0 < R < 1/2; notice that B+

R (y) ⊂ B+
1 (0). This prob-

lem possesses a unique weak solution v ≡ vR in W 1,p(B+
R (y)). We will estimate an

expression for a Campanato norm of the difference u−v in B+
R (y) depending on the

radius R (0 < R < 1/2). Using the equivalence of Campanato and Hölder norms,

we will thus be able to conclude that u is in C1,β(B+
1/2(0)) for some β ∈ (0, α).

In order to establish the desired estimate for the Campanato expression for
u − v in B+

R (y), it suffices to consider the “normalized” case y = 0 ∈ RN and
0 < R < 1. In other words, the Dirichlet boundary value problem (B.14) becomes{ − ∇ · a(x, ∇v) = 0 in B+

R (0);
v = 0 on B0

R(0), v = u on S+
R (0),

(B.15)

with a unique weak solution v ∈ W 1,p(B+
R (0)), for any 0 < R < 1.

First of all, we have 0 ≤ v ≤ u in B0
R(0), by the weak comparison principle.

Hypothesis (B.12) on u thus forces

0 ≤ u(x) − v(x) ≤ C xN for all x = (x ′, xN ) ∈ B+
R (0). (B.16)
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Subtracting equation (B.15) from (B.13), multiplying the difference by u − v, and
finally integrating over B+

R (0), we arrive at∫
B+

R (0)

[a(x, ∇u) − a(x, ∇v)] · ∇(u − v) dx

=
∫

B+
R (0)

f (x) (u − v) dx ≤ c C
∫

B+
R (0)

x1−δ
N dx = c1 RN+1−δ,

(B.17)

for any 0 < R < 1, by (B.11) and (B.16). The constant c1 = c C c0 ≥ 0 has been
obtained using∫

B+
R (0)

x1−δ
N dx = RN+1−δ

∫
B+

1 (0)

z1−δ
N dz

= RN+1−δ ωN−1

∫ 1

0
(1 − z2

N )(N−1)/2 z1−δ
N dzN ≡ c0 RN+1−δ.

We estimate the left-hand side of inequality (B.17) from below as follows, applying
ellipticity condition (B.4). For almost every x ∈ B+

R (0) we have

[a(x, ∇u) − a(x, ∇v)] · ∇(u − v)

=
[(∫ 1

0
∇a (x, ∇(v + θ(u − v))) dθ

)
∇(u − v)

]
· ∇(u − v)

≥ γ

(∫ 1

0
|∇(v + θ(u − v))|p−2 dθ

)
|∇(u − v)|2.

(B.18)

If 2 ≤ p < ∞, we obtain immediately

[a(x, ∇u) − a(x, ∇v)] · ∇(u − v) ≥ γ κp |∇(u − v)|p (B.19)

where κp > 0 is the constant from the inequality

κp |w|p−2 ≤
∫ 1

0
|v + θw|p−2 dθ for all v, w ∈ RN ,

κp
def= min

v,w∈R
N

|w|=1

∫ 1

0
|v + θw|p−2 dθ > 0.

We combine (B.17), (B.18), and (B.19) to get∫
B+

R (0)

|∇(u − v)|p dx ≤ c2 RN+1−δ (B.20)

with the constant c2 = (γ κp)
−1 c1 ≥ 0 independent from 0 < R < 1.
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If 1 < p < 2, we use the (trivial) inequality

(|v| + |w|)p−2 ≤
∫ 1

0
|v + θw|p−2 dθ for all v, w ∈ RN

to obtain

[a(x, ∇u)−a(x, ∇v)] ·∇(u −v) ≥ γ (|∇v|+|∇(u −v)|)p−2 |∇(u −v)|2. (B.21)

Next, by Hölder’s inequality, we have∫
B+

R (0)

|∇(u − v)|p dx

≤
(∫

B+
R (0)

(|∇v| + |∇(u − v)|)p−2 |∇(u − v)|2 dx

)p/2

×
(∫

B+
R (0)

(|∇v| + |∇(u − v)|)p dx

)(2−p)/2

,

and then, applying (B.21) followed by Minkowski’s inequality,∫
B+

R (0)

|∇(u − v)|p dx

≤ γ −p/2

(∫
B+

R (0)

[a(x, ∇u) − a(x, ∇v)] · ∇(u − v) dx

)p/2

×
(∫

B+
R (0)

(|∇v| + |∇(u − v)|)p dx

)(2−p)/2

≤
(

c1 RN+1−δ

γ

)p/2 (∫
B+

R (0)

(|∇v| + |∇(u − v)|)p dx

)(2−p)/2

≤
(

c1 RN+1−δ

γ

)p/2

(∫

B+
R (0)

|∇v|pdx

)1/p

+
(∫

B+
R (0)

|∇(u−v)|pdx

)1/p



(2−p)p/2

.

With the notation

J (u − v; R) =
∫

B+
R (0)

|∇(u − v)|p dx and J (v; R) =
∫

B+
R (0)

|∇v|p dx,

this inequality simplifies to

J (u − v; R)
2

(2−p)p = J (u − v; R)
1
p + 1

2−p

≤
(

c3 RN+1−δ
)1/(2−p) (

J (u − v; R)1/p + J (v; R)1/p
)
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whenever 0 < R < 1, where we have introduced c3 = γ −1 c1 ≥ 0. Substituting

J (u − v; R) = c3 RN+1−δ J̃ (u − v; R) and J (v; R) = c3 RN+1−δ J̃ (v; R)

in the last inequality, we obtain

J̃ (u − v; R)
1
p + 1

2−p ≤ J̃ (u − v; R)1/p + J̃ (v; R)1/p

whenever 0 < R < 1. Examining the alternatives

J̃ (u − v; R) ≥ J̃ (v; R)1/p and J̃ (u − v; R) ≤ J̃ (v; R)1/p,

from this inequality we deduce further

J̃ (u − v; R) ≤ max
{

22−p, 2(2−p)p/2 J̃ (v; R)(2−p)/2
}

,

whenever 0 < R < 1, and consequently

J (u − v; R)

≤ c3 RN+1−δ · max

{
22−p, 2(2−p)p/2

(
c3 RN+1−δ

)−(2−p)/2
J (v; R)(2−p)/2

}

= c3 RN+ (1−δ)p
2 · max

{
22−p R

(1−δ)(2−p)
2 , 2(2−p)p/2

(
c−1

3 R−N J (v; R)
)(2−p)/2

}

which yields

R−N J (u − v; R) ≤ c4 R(1−δ)p/2 · max

{
1,

(
R−N J (v; R)

)(2−p)/2
}

(B.22)

where c4 ≥ 0 is a constant independent from 0 < R < 1.
Applying certain estimates on suitable norms of v from [33, Lemma 5, page

1211], Lieberman has derived the following inequality for J (v; ·): (0, 1) → [0, ∞),
see [33, Inequality (3.6), page 1212]:

J (v; r) ≤ C0

{
RN + (r/R)N J (v; R)

}
for all 0 < r < R ≤ R0, (B.23)

where C0 ≥ 0 and 0 < R0 < 1 are constants independent from both r and R. By
Lemma B.2 below, this implies

sup
0<R≤R0

R−N+η J (v; R) = sup
0<R≤R0

1

RN−η

∫
B+

R (0)

|∇v|p dx ≡ C(η) < ∞ (B.24)

for any number 0 < η < N . Finally, we apply this inequality to (B.22), thus
arriving at

J (u − v; R) ≤ c5 RN+µ(1−δ) (B.25)
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where c5 ≡ c5(R0) ≥ 0 is a constant independent from 0 < R ≤ R0, µ =
1
2

(
p − (2−p)η

1−δ

)
satisfies 0 < µ < p/2, and η needs to be taken such that 0 < η <

p
2−p (1 − δ) in order to guarantee µ > 0.

Inequality (B.24) holds for any 1 < p < ∞. We summarize inequalities (B.20)
and (B.25) to obtain, for any 1 < p < ∞,

J (u − v; R) ≤ c5 RN+µ(1−δ) (B.26)

where µ = 1 if 2 ≤ p < ∞, 0 < µ < p/2 if 1 < p < 2, and c5 ≡ c5(R0) ≥ 0 is a
constant independent from 0 < R ≤ R0.

The proof of regularity of u, i.e., u ∈ C1,β(B+
1/2(0)), can now be completed

exactly as in the work of Lieberman [33, page 1213] or DiBenedetto [19, page 849],
again with a help from certain estimates on suitable norms of v obtained in [33,
Lemma 5, page 1211].

It remains to prove (B.23) =⇒ (B.24). This is an easy consequence of the
following lemma. We denote R+ = [0, ∞).

Lemma B.2. Let J : [0, 1] → R+ be a function which satisfies the following in-
equality

J (r) ≤ C
{

RN +
[
θ(R) + (r/R)N

]
J (R)

}
(B.27)

for all 0 ≤ r < R ≤ 1, where C ≥ 0 and N > 0 are some constants, and
θ : [0, 1] → R+ is a monotone decreasing function with θ(R) ↘ 0 as R ↘ 0.
Then, for any 0 < η < N, there exists a constant C(η) ≥ 0 such that

J (R) ≤ C(η) RN−η for all 0 < R ≤ 1. (B.28)

Proof. Fix any number η with 0 < η < N . We choose 0 < R0 ≤ 1 and 0 < t0 ≤ 1
such that

C
[
θ(R0) + t N

0

]
≤ 1

2
t N−η

0 .

Hence, by our hypothesis on the function θ , we have

C
[
θ(R) + t N

]
≤ 1

2
t N−η

for all t and R with 0 < t ≤ t0 and 0 < R ≤ R0. We infer from inequality (B.27)
that

J (t R) ≤ C RN + 1

2
t N−η J (R)

and therefore also
J (t R)

(t R)N−η
≤ C Rη

t N−η
+ 1

2

J (R)

RN−η
(B.29)



154 JACQUES GIACOMONI, IAN SCHINDLER AND PETER TAKÁČ

whenever 0 < t ≤ t0 and 0 < R ≤ R0. Replacing R by t j R for j = 0, 1, . . . , k −1
in this estimate, we obtain by induction on k = 1, 2, . . . that

J (tk R)

(tk R)N−η
≤ C Rη

t N−η

k−1∑
j=0

2− j + 1

2k

J (R)

RN−η
≤ 2C Rη

t N−η
+ J (R)

2RN−η

whenever 0 < t ≤ t0 and 0 < R ≤ R0. Fixing t = t0 and R = R0 we arrive at

J (tk
0 R0)

(tk
0 R0)N−η

≤ C0(η)
def= 2C Rη

0

t N−η

0

+ 1

RN−η

0

· sup
0<R≤R0

J (R) < ∞ (B.30)

for every k = 0, 1, 2, . . . .
Finally, if tk

0 R0 ≤ r < tk−1
0 R0 for some k ≥ 1, we first apply inequality (B.27)

with tk−1
0 R0 in place of R to get

J (r) ≤ C

{
(tk−1

0 R0)
N +

[
θ(tk−1

0 R0) +
(

r

tk−1
0 R0

)N
]

J (tk−1
0 R0)

}

and then combine the result with inequality (B.30) to obtain

J (r) ≤ C
{
(tk−1

0 R0)
N + [θ(tk−1

0 R0) + 1] C(η) (tk−1
0 R0)

N−η
}

≤ C
{
(r/t0)

N + [θ(R0) + 1] C(η) (r/t0)
N−η

}

= C (r/t0)
N−η

{
(r/t0)

η + C(η) [θ(R0) + 1]
}

≤ C
{
(R0/t0)

η + C(η) [θ(R0) + 1]
}
(r/t0)

N−η .

(B.31)

The desired estimate (B.28) follows immediately.

C. Appendix

The following result is a standard argument which gives sufficient conditions guar-
anteeing that a weakly convergent Palais-Smale sequence in W 1,p

0 (�) is also
strongly convergent.

Lemma C.1. Let 1 < p < ∞ and let F : W 1,p
0 (�) → W −1,p′

(�) be a map-
ping, such that both functionals u �→ 〈F(u), u〉 and u �→ ‖F(u)‖W−1,p′

(�)
are
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weakly lower semicontinuous on W 1,p
0 (�). Define the mapping T : W 1,p

0 (�) →
W −1,p′

(�) :

T (u)
def= −�pu + F(u), u ∈ W 1,p

0 (�).

Finally, assume that {uk}∞k=1 ⊂ W 1,p
0 (�) is a sequence satisfying, as k → ∞,

(i) ‖T (uk)‖W−1,p′
(�)

→ 0;
(ii) ‖uk‖W 1,p

0 (�)
→ � > 0.

Then {uk}∞k=1 possesses a strongly convergent subsequence.

Proof. Owing to (ii), {uk}∞k=1 possesses a weakly convergent subsequence, denoted

again by {uk}∞k=1, uk ⇀ u0 weakly in W 1,p
0 (�) as k → ∞. Next, we employ the

identity

〈T (u) − F(u), u〉 = 〈−�pu, u〉 =
∫

�

|∇u|p dx

= ‖ − �pu‖W−1,p′
(�)

‖u‖
W 1,p

0 (�)

= ‖T (u) − F(u)‖W−1,p′
(�)

‖u‖
W 1,p

0 (�)

for u ∈ W 1,p
0 (�). We take u = uk and let k → ∞, thus obtaining

−〈F(u0), u0〉 ≥ − lim sup
k→∞

〈F(uk), uk〉 = lim inf
k→∞ 〈−F(uk), uk〉

= lim inf
k→∞ 〈T (uk) − F(uk), uk〉 = lim inf

k→∞

∫
�

|∇uk |p dx

=
(

lim inf
k→∞ ‖T (uk) − F(uk)‖W−1,p′

(�)

) (
lim

k→∞ ‖uk‖W 1,p
0 (�)

)

= � · lim inf
k→∞ ‖F(uk)‖W−1,p′

(�)
≥ � · ‖F(u0)‖W−1,p′

(�)
,

by (i). It follows that ‖u0‖W 1,p
0 (�)

≥ � provided we can show F(u0) 	= 0 in

W −1,p′
(�). Indeed, ‖F(u0)‖W−1,p′

(�)
= 0 would force

lim inf
k→∞ ‖uk‖p

W 1,p
0 (�)

= lim inf
k→∞

∫
�

|∇uk |p dx = 0,

thus contradicting � > 0 in (ii).
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Finally, we combine uk ⇀ u0 in W 1,p
0 (�) with the inequalities

0 < � ≤ ‖u0‖W 1,p
0 (�)

≤ lim inf
k→∞ ‖uk‖W 1,p

0 (�)
= �

to conclude that uk → u0 strongly in W 1,p
0 (�).
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