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Addendum to: On volumes of arithmetic quotients of SO (1, n)

MIKHAIL BELOLIPETSKY

Abstract. There are errors in the proof of uniqueness of arithmetic subgroups
of the smallest covolume. In this note we correct the proof, obtain certain re-
sults which were stated as a conjecture, and we give several remarks on further
developments.

Mathematics Subject Classification (2000): 11E57 (primary); 22E40 (second-
ary).

1.1. Let us recall some notation and basic notions. Following [1] we will as-
sume that n is even and n ≥ 4. The group of orientation preserving isometries
of hyperbolic n-space is isomorphic to SO(1, n)o, the connected component of the
identity of the special orthogonal group of signature (1, n), which can be identified
with SO0(1, n), the subgroup of SO(1, n) preserving the upper half space. This
group is not Zariski closed in SLn+1 thus in order to construct arithmetically de-
fined subgroups of SO(1, n)o we consider arithmetic subgroups of the orthogonal
group SO(1, n) or, more precisely, of groups G = SO( f ) where f is an admissible
quadratic form defined over a totally real number field k (see [1, Section 2.1]).

We have an exact sequence of k-isogenies:

1 → C → G̃
φ→ G → 1, (1.1)

where G̃(k) � Spin( f ) is the simply connected cover of G and C � µ2 is the center
of G̃. This induces an exact sequence in Galois cohomology (see [5, Section 2.2.3])

G̃(k)
φ→ G(k)

δ→ H1(k, C) → H1(k, G̃). (1.2)

The main idea of this note is that by using (1.2) certain questions about arithmetic
subgroups of G can be reduced to questions about the Galois cohomology group
H1(k, C).

A coherent collection of parahoric subgroups P = (Pv)v∈V f of G̃ (V f = V f (k)

denotes the set of finite places of the field k) defines a principal arithmetic subgroup
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� = G̃(k) ∩ ∏
v∈V f

Pv ⊂ G̃(k) (see [2]). We fix an infinite place v of k for which
G(kv) � SO(1, n) and denote it by I d . The image of � under the central k-isogeny
φ is an arithmetic subgroup of G and every maximal arithmetic subgroup of G(kI d)

can be obtained as a normalizer of some φ(�) [2, Proposition 1.4]. We will also
consider the local stabilizers of P in the adjoint group G(= G), defining Pv to be
the stabilizer of Pv in G(kv) and P = (Pv)v∈V f . Clearly, Pv ⊃ φ(Pv). In the
notation of [1] the subgroups φ(Pv) are called parahoric subgroups of G, however
this terminology is non-standard and we will avoid using it here.

ACKNOWLEDGEMENTS. This article was written in Summer 2006 while I have
been visiting MPIM in Bonn. I would like to thank Gopal Prasad for his remarks
on a preliminary version of this note.

1.2. Given a totally real number field k with the group of units U , let

k∗∞ = {a ∈ k∗ | av > 0 for v ∈ V∞ \ I d }, U∞ = U ∩ k∗∞.

Lemma 1.1. Im(δ) � k∗∞/(k∗)2.

Proof. From (1.2) we have Im(δ : G(k) → H1(k, µ2)) = Ker(H1(k, µ2) →
H1(k,G̃)). The Hasse principle for simply connected k-groups implies that H1(k,G̃)

is isomorphic to
∏

v∈V∞ H1(kv, G̃) [5, Theorem 6.6], and hence

Im(δ) = Ker(H1(k, µ2) → ∏
v∈V∞H1(kv, G̃)).

The group H1(k, µ2) is canonically isomorphic to k∗/(k∗)2 [5, Lemma 2.6]. It is
well known that for all v ∈ V∞ such that the group G(kv) is anisotropic, the map
φ in (1.2) is surjective and hence for all such v, Im(δv) = Ker(H1(kv, µ2) →
H1(kv, G̃)) is trivial. For the remaining one infinite place v(= I d) ∈ V∞, φ(G̃(kv))

is a subgroup of index 2 in G(kv) which consists of the orthogonal transformations
with the trivial spinor norm. Collecting this information together we obtain the
required isomorphism.

1.3 The proof of the uniqueness part in [1, Theorem 4.1] contains errors but the
result is correct. We will now give another argument for it. In order to do so we
first establish a more general fact and then apply it to the cases considered in [1].

Let P = (Pv)v∈V f and P ′ = (P ′
v)v∈V f be two coherent collections of parahoric

subgroups of G̃ such that for all v ∈ V f , P ′
v is conjugate to Pv under an element of

G(kv). For all but finitely many v, Pv = P ′
v hence there is an element g ∈ G(A f )

(A f denotes the ring of finite adèles of k) such that P ′ is the conjugate of P under
g. We have P = ∏

v∈V f
Pv is the stabilizer of P in G(A f ). The number of distinct



ADDENDUM TO: ON VOLUMES OF ARITHMETIC QUOTIENTS OF SO (1,n) 265

G(k)-conjugacy classes of coherent collections P ′ as above is the cardinality c(P)

of C(P) = G(k)\G(A f )/P , which is called the class group of G relative to P .
The class number c(P) is known to be finite (see e.g. [2, Proposition 3.9]). The
following result can be used for obtaining further information about its value.

Proposition 1.2. Let G = SO( f ), G̃ = Spin( f ) for an admissible quadratic form
f defined over k and let P = (Pv)v∈V f a coherent collection of parahoric sub-

groups of G̃. The class number c(P) divides the order h∞,2 of a restricted 2-class
group of k given by

h∞,2 = 2[k:Q]−1h2

[U : U∞] ,

where h2 is the order of the 2-class group of k.

Proof. Recall two isomorphisms (see [5, Proposition 8.8], a minor modification is
needed in order to adjust the statement to our setting but the argument remains the
same):

G(k)\G(A f )/P � G(A f )/PG(k);

G(A f )/PG(k) � δA f (G(A f ))/δA f (PG(k)),

where δA f is the restriction of the product map
∏

v G(kv) → ∏
v H1(kv, C) to

G(A f ).
For every finite place v, H1(kv, G̃) is trivial (see [5, Theorem 6.4]) which im-

plies δv : G(kv) → H1(kv, C) is surjective. Thus the image of δA f (G(A f )) can be
identified with the restricted direct product

∏′ H1(kv, C) with respect to the sub-
groups δv(Pv). Also δA f (G(k)) naturally identifies with the image of δ(G(k)) in
H1(k, C) under the embedding ψ : H1(k, C) → ∏′ H1(kv, C). Hence we have an
isomorphism

δA f (G(A f ))/δA f (PG(k)) � ∏′ H1(kv, C)/
(∏

vδv(Pv) · ψ(Im δ(G(k)))
)
.

The group H1(kv, µ2) is canonically isomorphic to k∗
v / (k∗

v )2, by Lemma 1.1
Im δ(G(k)) � k∗∞/(k∗)2, so we obtain∏′ H1(kv, C)∏

v δv(Pv) · ψ(Im δ(G(k)))
�

∏′ k∗
v/(k∗

v )2

δP · k∗∞/(k∗)2
� J f

δP · J 2
f k∗ · k∗

k∗∞
,

where J f is the ring of finite idèles of k and δP denotes
∏

v δv(Pv).
Now, #(J f /J 2

f k∗) = h2, the group k∗/k∗∞ splits as a product of local fac-

tors and #(k∗/k∗∞) = 2[k:Q]−1/[U : U∞] (see [4, Chapter 6]). This implies the
proposition.
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In order to give a precise formula for the class number c(P) one has to analyze
the image of

∏
v δv(Pv) in

∏′ H1(kv, C). Still in many practical cases this appears
to be unnecessary. Thus in order to prove the uniqueness of the minimal hyperbolic
orbifolds we need to consider k = Q[√5] (in the compact case) and k = Q (for
the non-compact orbifolds). In both cases h2 = h = 1. For k = Q[√5], U∞ =
{1, 1−√

5
2 } and thus [U : U∞] = 2 which implies h∞,2 = 1. For k = Q, clearly,

h∞,2 = 1 as well. So in all the cases c(P) = 1 which implies that the corresponding
arithmetic subgroups are defined uniquely up to a conjugation by g ∈ SO(1, n). It
is clear that we can always chose g ∈ SO0(1, n) and therefore the smallest orbifolds
constructed in [1] are unique up to an (orientation preserving) isometry.

1.4. We now turn to Conjecture 4.1 and its analogue for the non-cocompact orb-
ifolds in [1, Section 4.4]. Recall that in [1] the numbers N (r), N ′(r) were defined
for every r ≥ 2 and estimated from above. These numbers are related to the index
of the principal arithmetic subgroups in their normalizers. We now prove

Proposition 1.3. For every r ≥ 2, N (r) = N ′(r) = 1.

Proof. Let � be a principal arithmetic subgroup of G̃ which corresponds to a com-
pact or non-compact hyperbolic n-orbifold of the minimal volume, �′ = φ(�) and
� = NG(�′).

From [2, Proposition 2.9], which in turn follows from the work of J. Rohlfs,
using the fact that the center of our group G is trivial, we obtain:

[� : �′] = #(H1(k, µ2)� ∩ δ(G(k))) = #Im(δ : G(k) → H1(k, µ2)).

By Lemma 1.1 we can identify the image of δ. The cases we are interested in are

k = Q : Im(δ) =
{

k∗2, (−1)k∗2
}

;

k = Q[√5] : Im(δ) =
{

k∗2,
1 − √

5

2
k∗2

}
.

In both cases [� : �′] = #Im(δ) = 2. Now it is easy to see that �′ = φ(�) ⊂
SO0(1, n). From the other side there always exists g ∈ SO(1, n) \ SO0(1, n) which
normalizes φ(�). For example take g = diag(−1, −1, 1, . . . , 1). As in all the
cases under consideration the quadratic form associated to � is diagonal [1, Sec-
tions 4.3, 4.4], g stabilizes � and clearly g ∈ SO(1, n) \ SO0(1, n). From these
facts it follows that �′ is a maximal arithmetic subgroup in SO0(1, n) and thus N (r)

(or N ′(r))=1.

This proposition makes precise the statements of Theorem 4.1 and 4.4 of [1].
It also implies that Table 2 of loc. cit. gives the precise values of the covolumes of
the smallest n-dimensional hyperbolic orbifolds in even dimensions up to 18.
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One other corollary is that cocompact and non-cocompact arithmetic subgroups
of SO(1, 2r)o of the smallest covolumes can be obtained as the stabilizers of certain
lattices described in [1, Section 4.3]. We remark that since the fields of definition of
the groups have class number 1, the lattices in both cases are free as Ok-modules.

1.5. Correction: on p. 765, l. 9 one should read “grow super-exponentially” in-
stead of “grow exponentially”. (It follows from [1] that the Euler characteristic
is bounded from below by const · (

∏r
i=1

(2i−1)!
(2π)2i )[k:Q] which for large enough r is

≥ const · (2r − 1)!)

We conclude this addendum with a few remarks on related results which ap-
peared after the paper was published.

1.6. In [1, Section 4.5] we observed that for r > 2 the minimal covolume among
the arithmetic lattices in SO(1, 2r) is attained on a non-uniform lattice. This inter-
esting phenomenon was first discovered by A. Lubotzky for SL2 over local fields of
positive characteristic. Recently, in [6] A. Salehi Golsefidy proved that lattices of
minimal covolume in classical Chevalley groups over local fields of characteristic
p > 7 are all non-uniform. This result gives further support to a conjecture that
generically (i.e. for groups of high enough rank or fields of large enough positive
characteristic) the minimal covolume is always attained on a non-uniform lattice.

1.7. In [3] M. Conder and C. Maclachlan constructed a compact orientable hyper-
bolic 4-manifold which has Euler characteristic 16. The previously known smallest
example which was used in order to formulate the main result in [1, Section 5] had
χ = 26. The construction of [3] agrees with our Theorem 5.5 and it also allows us
to give a more precise formulation of the theorem:

Theorem 5.5′. If there exists a compact orientable arithmetic hyperbolic 4-manifold
M with χ(M) ≤ 16, then M is defined over Q[√5] and has the form �M\H4

with �M being a torsion-free subgroup of index 7200χ(M) of the group �1 of the
smallest arithmetic hyperbolic 4-orbifold.

References

[1] M. BELOLIPETSKY, On volumes of arithmetic quotients of SO(1, n), Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (5) 3 (2004), 749–770.

[2] A. BOREL and G. PRASAD, Finiteness theorems for discrete subgroups of bounded co-
volume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119–171;
Addendum, ibid. 71 (1990), 173–177.

[3] M. CONDER and C. MACLACHLAN, Compact hyperbolic 4-manifolds of small volume,
Proc. Amer. Math. Soc. 133 (2005), 2469–2476.

[4] S. LANG, “Algebraic Number Theory”, Graduate Texts in Mathematics, Vol. 110. Springer-
Verlag, New York, 1994.



268 MIKHAIL BELOLIPETSKY

[5] V. P. PLATONOV and A. S. RAPINCHUK, “Algebraic Groups and Number Theory”, Pure
and Applied Mathematics, Vol. 139. Academic Press, Inc., Boston, MA, 1994.

[6] A. SALEHI GOLSEFIDY, Lattices of minimum covolume in Chevalley groups over positive
characteristic local fields, preprint.

Department of Mathematical Sciences
Durham University
Durham DH1 3LE, UK
and
Sobolev Institute of Mathematics
Koptyuga 4
630090 Novosibirsk, Russia
Mikhail.Belolipetsky@durham.ac.uk


