Addendum to: On volumes of arithmetic quotients of SO(1, n)

MIKHAIL BELOLIPETSKY

Abstract. There are errors in the proof of uniqueness of arithmetic subgroups of the smallest covolume. In this note we correct the proof, obtain certain results which were stated as a conjecture, and we give several remarks on further developments.

Mathematics Subject Classification (2000): 11E57 (primary); 22E40 (secondary).

1.1. Let us recall some notation and basic notions. Following [1] we will assume that *n* is even and $n \ge 4$. The group of orientation preserving isometries of hyperbolic *n*-space is isomorphic to SO(1, *n*)^{*o*}, the connected component of the identity of the special orthogonal group of signature (1, *n*), which can be identified with SO₀(1, *n*), the subgroup of SO(1, *n*) preserving the upper half space. This group is not Zariski closed in SL_{*n*+1} thus in order to construct arithmetically defined subgroups of SO(1, *n*)^{*o*} we consider arithmetic subgroups of the orthogonal group SO(1, *n*) or, more precisely, of groups G = SO(*f*) where *f* is an admissible quadratic form defined over a totally real number field *k* (see [1, Section 2.1]).

We have an exact sequence of *k*-isogenies:

$$1 \to C \to \widetilde{G} \xrightarrow{\phi} G \to 1, \tag{1.1}$$

where $\widetilde{G}(k) \simeq \operatorname{Spin}(f)$ is the simply connected cover of G and C $\simeq \mu_2$ is the center of \widetilde{G} . This induces an exact sequence in Galois cohomology (see [5, Section 2.2.3])

$$\widetilde{\mathbf{G}}(k) \xrightarrow{\phi} \mathbf{G}(k) \xrightarrow{\delta} \mathbf{H}^{1}(k, \mathbf{C}) \to \mathbf{H}^{1}(k, \widetilde{\mathbf{G}}).$$
(1.2)

The main idea of this note is that by using (1.2) certain questions about arithmetic subgroups of G can be reduced to questions about the Galois cohomology group $H^1(k, C)$.

A coherent collection of parahoric subgroups $P = (P_v)_{v \in V_f}$ of $\widetilde{G}(V_f = V_f(k))$ denotes the set of finite places of the field k) defines a principal arithmetic subgroup

Received October 16, 2006; accepted in revised form March 12, 2007.

 $\Lambda = \widetilde{G}(k) \cap \prod_{v \in V_f} P_v \subset \widetilde{G}(k)$ (see [2]). We fix an infinite place v of k for which $G(k_v) \simeq SO(1, n)$ and denote it by Id. The image of Λ under the central k-isogeny ϕ is an arithmetic subgroup of G and every maximal arithmetic subgroup of $G(k_{Id})$ can be obtained as a normalizer of some $\phi(\Lambda)$ [2, Proposition 1.4]. We will also consider the local stabilizers of P in the adjoint group $G(=\overline{G})$, defining \overline{P}_v to be the stabilizer of P_v in $G(k_v)$ and $\overline{P} = (\overline{P}_v)_{v \in V_f}$. Clearly, $\overline{P}_v \supset \phi(P_v)$. In the notation of [1] the subgroups $\phi(P_v)$ are called parahoric subgroups of G, however this terminology is non-standard and we will avoid using it here.

ACKNOWLEDGEMENTS. This article was written in Summer 2006 while I have been visiting MPIM in Bonn. I would like to thank Gopal Prasad for his remarks on a preliminary version of this note.

1.2. Given a totally real number field k with the group of units U, let

$$k_{\infty}^* = \{ a \in k^* \mid a_v > 0 \text{ for } v \in V_{\infty} \setminus Id \}, \ U_{\infty} = U \cap k_{\infty}^*.$$

Lemma 1.1. $Im(\delta) \simeq k_{\infty}^* / (k^*)^2$.

Proof. From (1.2) we have $\operatorname{Im}(\delta : G(k) \to H^1(k, \mu_2)) = \operatorname{Ker}(H^1(k, \mu_2) \to H^1(k, \widetilde{G}))$. The Hasse principle for simply connected k-groups implies that $H^1(k, \widetilde{G})$ is isomorphic to $\prod_{v \in V_{\infty}} H^1(k_v, \widetilde{G})$ [5, Theorem 6.6], and hence

Im(
$$\delta$$
) = Ker(H¹(k, μ_2) $\rightarrow \prod_{v \in V_{\infty}} H^1(k_v, \widetilde{G})$).

The group $H^1(k, \mu_2)$ is canonically isomorphic to $k^*/(k^*)^2$ [5, Lemma 2.6]. It is well known that for all $v \in V_\infty$ such that the group $G(k_v)$ is anisotropic, the map ϕ in (1.2) is surjective and hence for all such v, $Im(\delta_v) = Ker(H^1(k_v, \mu_2) \rightarrow$ $H^1(k_v, \widetilde{G}))$ is trivial. For the remaining one infinite place $v(=Id) \in V_\infty, \phi(\widetilde{G}(k_v))$ is a subgroup of index 2 in $G(k_v)$ which consists of the orthogonal transformations with the trivial spinor norm. Collecting this information together we obtain the required isomorphism.

1.3 The proof of the uniqueness part in [1, Theorem 4.1] contains errors but the result is correct. We will now give another argument for it. In order to do so we first establish a more general fact and then apply it to the cases considered in [1].

Let $P = (P_v)_{v \in V_f}$ and $P' = (P'_v)_{v \in V_f}$ be two coherent collections of parahoric subgroups of \widetilde{G} such that for all $v \in V_f$, P'_v is conjugate to P_v under an element of $G(k_v)$. For all but finitely many v, $P_v = P'_v$ hence there is an element $g \in G(\mathbb{A}_f)$ $(\mathbb{A}_f$ denotes the ring of finite adèles of k) such that P' is the conjugate of P under g. We have $\overline{P} = \prod_{v \in V_f} \overline{P_v}$ is the stabilizer of P in $G(\mathbb{A}_f)$. The number of distinct G(k)-conjugacy classes of coherent collections P' as above is the cardinality $c(\overline{P})$ of $C(\overline{P}) = G(k) \setminus G(\mathbb{A}_f) / \overline{P}$, which is called the class group of G relative to \overline{P} . The class number $c(\overline{P})$ is known to be finite (see *e.g.* [2, Proposition 3.9]). The following result can be used for obtaining further information about its value.

Proposition 1.2. Let G = SO(f), $\tilde{G} = Spin(f)$ for an admissible quadratic form f defined over k and let $P = (P_v)_{v \in V_f}$ a coherent collection of parahoric subgroups of \tilde{G} . The class number c(P) divides the order $h_{\infty,2}$ of a restricted 2-class group of k given by

$$h_{\infty,2} = \frac{2^{[k:\mathbb{Q}]-1}h_2}{[U:U_\infty]},$$

where h_2 is the order of the 2-class group of k.

Proof. Recall two isomorphisms (see [5, Proposition 8.8], a minor modification is needed in order to adjust the statement to our setting but the argument remains the same):

$$\begin{split} \mathbf{G}(k) \backslash \mathbf{G}(\mathbb{A}_f) / \overline{P} &\simeq \mathbf{G}(\mathbb{A}_f) / \overline{P} \mathbf{G}(k); \\ \mathbf{G}(\mathbb{A}_f) / \overline{P} \mathbf{G}(k) &\simeq \delta_{\mathbb{A}_f}(\mathbf{G}(\mathbb{A}_f)) / \delta_{\mathbb{A}_f}(\overline{P} \mathbf{G}(k)), \end{split}$$

where $\delta_{\mathbb{A}_f}$ is the restriction of the product map $\prod_v G(k_v) \rightarrow \prod_v H^1(k_v, C)$ to $G(\mathbb{A}_f)$.

For every finite place v, $H^1(k_v, \widetilde{G})$ is trivial (see [5, Theorem 6.4]) which implies $\delta_v : G(k_v) \to H^1(k_v, C)$ is surjective. Thus the image of $\delta_{\mathbb{A}_f}(G(\mathbb{A}_f))$ can be identified with the restricted direct product $\prod' H^1(k_v, C)$ with respect to the subgroups $\delta_v(\overline{P}_v)$. Also $\delta_{\mathbb{A}_f}(G(k))$ naturally identifies with the image of $\delta(G(k))$ in $H^1(k, C)$ under the embedding $\psi : H^1(k, C) \to \prod' H^1(k_v, C)$. Hence we have an isomorphism

$$\delta_{\mathbb{A}_f}(\mathbf{G}(\mathbb{A}_f))/\delta_{\mathbb{A}_f}(\overline{P}\mathbf{G}(k)) \simeq \prod' \mathrm{H}^1(k_v, \mathbf{C})/\left(\prod_v \delta_v(\overline{P}_v) \cdot \psi(\mathrm{Im}\,\delta(\mathbf{G}(k)))\right).$$

The group $\mathrm{H}^1(k_v, \mu_2)$ is canonically isomorphic to $k_v^* / (k_v^*)^2$, by Lemma 1.1 Im $\delta(\mathrm{G}(k)) \simeq k_\infty^* / (k^*)^2$, so we obtain

$$\frac{\prod' \mathrm{H}^{1}(k_{v}, \mathrm{C})}{\prod_{v} \delta_{v}(\overline{P}_{v}) \cdot \psi(\mathrm{Im}\,\delta(\mathrm{G}(k)))} \simeq \frac{\prod' k_{v}^{*}/(k_{v}^{*})^{2}}{\delta_{P} \cdot k_{\infty}^{*}/(k^{*})^{2}} \simeq \frac{J_{f}}{\delta_{P} \cdot J_{f}^{2}k^{*}} \cdot \frac{k^{*}}{k_{\infty}^{*}},$$

where J_f is the ring of finite idèles of k and δ_P denotes $\prod_v \delta_v(\overline{P}_v)$.

Now, $\#(J_f/J_f^2k^*) = h_2$, the group k^*/k_{∞}^* splits as a product of local factors and $\#(k^*/k_{\infty}^*) = 2^{[k:\mathbb{Q}]-1}/[U:U_{\infty}]$ (see [4, Chapter 6]). This implies the proposition.

In order to give a precise formula for the class number c(P) one has to analyze the image of $\prod_v \delta_v(\overline{P}_v)$ in $\prod' H^1(k_v, \mathbb{C})$. Still in many practical cases this appears to be unnecessary. Thus in order to prove the uniqueness of the minimal hyperbolic orbifolds we need to consider $k = \mathbb{Q}[\sqrt{5}]$ (in the compact case) and $k = \mathbb{Q}$ (for the non-compact orbifolds). In both cases $h_2 = h = 1$. For $k = \mathbb{Q}[\sqrt{5}]$, $U_{\infty} =$ $\{1, \frac{1-\sqrt{5}}{2}\}$ and thus $[U : U_{\infty}] = 2$ which implies $h_{\infty,2} = 1$. For $k = \mathbb{Q}$, clearly, $h_{\infty,2} = 1$ as well. So in all the cases c(P) = 1 which implies that the corresponding arithmetic subgroups are defined uniquely up to a conjugation by $g \in SO(1, n)$. It is clear that we can always chose $g \in SO_0(1, n)$ and therefore the smallest orbifolds constructed in [1] are unique up to an (orientation preserving) isometry.

1.4. We now turn to Conjecture 4.1 and its analogue for the non-cocompact orbifolds in [1, Section 4.4]. Recall that in [1] the numbers N(r), N'(r) were defined for every $r \ge 2$ and estimated from above. These numbers are related to the index of the principal arithmetic subgroups in their normalizers. We now prove

Proposition 1.3. For every $r \ge 2$, N(r) = N'(r) = 1.

Proof. Let Λ be a principal arithmetic subgroup of \widetilde{G} which corresponds to a compact or non-compact hyperbolic *n*-orbifold of the minimal volume, $\Lambda' = \phi(\Lambda)$ and $\Gamma = N_{\mathrm{G}}(\Lambda')$.

From [2, Proposition 2.9], which in turn follows from the work of J. Rohlfs, using the fact that the center of our group G is trivial, we obtain:

$$[\Gamma : \Lambda'] = \#(\operatorname{H}^{1}(k, \mu_{2})_{\Theta} \cap \delta(\operatorname{G}(k))) = \#\operatorname{Im}(\delta : \operatorname{G}(k) \to \operatorname{H}^{1}(k, \mu_{2})).$$

By Lemma 1.1 we can identify the image of δ . The cases we are interested in are

$$k = \mathbb{Q} : \operatorname{Im}(\delta) = \left\{ k^{*2}, (-1)k^{*2} \right\};$$

$$k = \mathbb{Q}[\sqrt{5}] : \operatorname{Im}(\delta) = \left\{ k^{*2}, \frac{1 - \sqrt{5}}{2}k^{*2} \right\}$$

In both cases $[\Gamma : \Lambda'] = \#Im(\delta) = 2$. Now it is easy to see that $\Lambda' = \phi(\Lambda) \subset$ SO₀(1, *n*). From the other side there always exists $g \in$ SO(1, *n*) \ SO₀(1, *n*) which normalizes $\phi(\Lambda)$. For example take g = diag(-1, -1, 1, ..., 1). As in all the cases under consideration the quadratic form associated to Λ is diagonal [1, Sections 4.3, 4.4], *g* stabilizes Λ and clearly $g \in$ SO(1, *n*) \ SO₀(1, *n*). From these facts it follows that Λ' is a maximal arithmetic subgroup in SO₀(1, *n*) and thus N(r)(or N'(r))=1.

This proposition makes *precise* the statements of Theorem 4.1 and 4.4 of [1]. It also implies that Table 2 of *loc. cit.* gives the precise values of the covolumes of the smallest *n*-dimensional hyperbolic orbifolds in even dimensions up to 18.

One other corollary is that cocompact and non-cocompact arithmetic subgroups of SO(1, 2r)^o of the smallest covolumes can be obtained as the stabilizers of certain lattices described in [1, Section 4.3]. We remark that since the fields of definition of the groups have class number 1, the lattices in both cases are free as \mathcal{O}_k -modules.

1.5. Correction: on p. 765, l. 9 one should read "grow super-exponentially" instead of "grow exponentially". (It follows from [1] that the Euler characteristic is bounded from below by const $(\prod_{i=1}^{r} \frac{(2i-1)!}{(2\pi)^{2i}})^{[k:\mathbb{Q}]}$ which for large enough r is $\geq \text{const} \cdot (2r-1)!$)

We conclude this addendum with a few remarks on related results which appeared after the paper was published.

1.6. In [1, Section 4.5] we observed that for r > 2 the minimal covolume among the arithmetic lattices in SO(1, 2r) is attained on a non-uniform lattice. This interesting phenomenon was first discovered by A. Lubotzky for SL₂ over local fields of positive characteristic. Recently, in [6] A. Salehi Golsefidy proved that lattices of minimal covolume in classical Chevalley groups over local fields of characteristic p > 7 are all non-uniform. This result gives further support to a **conjecture** that *generically (i.e. for groups of high enough rank or fields of large enough positive characteristic) the minimal covolume is always attained on a non-uniform lattice.*

1.7. In [3] M. Conder and C. Maclachlan constructed a compact orientable hyperbolic 4-manifold which has Euler characteristic 16. The previously known smallest example which was used in order to formulate the main result in [1, Section 5] had $\chi = 26$. The construction of [3] agrees with our Theorem 5.5 and it also allows us to give a more precise formulation of the theorem:

Theorem 5.5'. If there exists a compact orientable arithmetic hyperbolic 4-manifold M with $\chi(M) \leq 16$, then M is defined over $\mathbb{Q}[\sqrt{5}]$ and has the form $\Gamma_M \setminus \mathcal{H}^4$ with Γ_M being a torsion-free subgroup of index $7200\chi(M)$ of the group Γ_1 of the smallest arithmetic hyperbolic 4-orbifold.

References

- M. BELOLIPETSKY, On volumes of arithmetic quotients of SO(1, n), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2004), 749–770.
- [2] A. BOREL and G. PRASAD, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119–171; Addendum, ibid. 71 (1990), 173–177.
- [3] M. CONDER and C. MACLACHLAN, Compact hyperbolic 4-manifolds of small volume, Proc. Amer. Math. Soc. 133 (2005), 2469–2476.
- [4] S. LANG, "Algebraic Number Theory", Graduate Texts in Mathematics, Vol. 110. Springer-Verlag, New York, 1994.

MIKHAIL BELOLIPETSKY

- [5] V. P. PLATONOV and A. S. RAPINCHUK, "Algebraic Groups and Number Theory", Pure and Applied Mathematics, Vol. 139. Academic Press, Inc., Boston, MA, 1994.
- [6] A. SALEHI GOLSEFIDY, *Lattices of minimum covolume in Chevalley groups over positive characteristic local fields*, preprint.

Department of Mathematical Sciences Durham University Durham DH1 3LE, UK and Sobolev Institute of Mathematics Koptyuga 4 630090 Novosibirsk, Russia Mikhail.Belolipetsky@durham.ac.uk