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One-dimensional symmetry of periodic minimizers
for a mean field equation

CHANG-SHOU LIN AND MARCELLO LUCIA

Abstract. We consider on a two-dimensional flat torus T defined by a rectangular
periodic cell the following equation

�u + ρ

(
eu∫
T eu − 1

|T |
)

= 0,

∫
T

u = 0.

It is well-known that the associated energy functional admits a minimizer for
each ρ ≤ 8π . The present paper shows that these minimizers depend actually
only on one variable. As a consequence, setting λ1(T ) to be the first eigenvalue
of the Laplacian on the torus, the minimizers are identically zero whenever ρ ≤
min{8π, λ1(T )|T |}. Our results hold more generally for solutions that are Steiner
symmetric, up to a translation.

Mathematics Subject Classification (2000): 35J60 (primary); 35B10 (secondary).

1. Introduction

This paper is concerned with the following nonlinear equation on a two-dimensional
flat torus T :

�u + ρ

(
eu∫
T eu

− 1

|T |
)

= 0, u ∈ H1(T ), (1.1)

where ρ is a real parameter and H1(T ) denotes the classical Sobolev space. Since
the above equation is invariant by adding a constant to a solution, we define

◦
H(T ) :=

{
u ∈ H1(T ) :

∫
T

u = 0

}
,

and consider the equivalent problem

�u + ρ

(
eu∫
T eu

− 1

|T |
)

= 0, u ∈ ◦
H(T ). (1.2)
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As a consequence of the Moser-Trudinger inequality as established by Fontana on
compact manifolds [11], Problem (1.2) admits a variational formulation and is the
Euler-Lagrange equation of the functional:

Jρ : ◦
H(T ) → R, u �→ 1

2

∫
T

|∇u|2 − ρ log

(
1

|T |
∫

T
eu

)
. (1.3)

When ρ ≤ 0, it is easy to verify that zero is the only solution of (1.2) since in this
range of the parameter the functional is strictly convex. But for ρ > 0, the study
of existence and uniqueness of solutions becomes much more difficult. Using the
Moser-Trudinger inequality [11], one easily checks the existence of a minimizer in
the range ρ < 8π . At the critical value ρ = 8π the work of Ding et al. [10] and
Nolasco-Tarantello [19] prove that such a minimizer persists. More generally, it has
been proved in [6] that the solutions of (1.2) are uniformly bounded for ρ ≤ 8π .

But these existence results could give the solution u ≡ 0 which trivially sat-
isfies (1.2). Actually Struwe-Tarantello proved in [24] that u ≡ 0 is the unique
solution of (1.2) when the parameter ρ is close to zero. The arguments of [24] hold
in any torus but do not give the explicit range of the parameter where zero is the
unique solution. For torus defined by rectangular periodic cell (−a, a) × (−b, b)

with b
a ≤ 1

2 , it has been shown in [3] that u ≡ 0 is the unique solution of Prob-
lem (1.2) if and only if ρ ≤ λ1(T )|T | where λ1(T ) denotes the first non-zero
eigenvalue of the Laplacian on T . For other types of torus a uniqueness result is
contained in [17]. Typically when the periodic cell is a square, it is proved in [17]
that Problem (1.2) admits only the trivial solution when ρ ≤ 8π . This result is op-
timal since above 8π existence of non-trivial solutions is known by [24] and [23].
Both [3] and [17] give optimal results for a large class of torus, but do not cover
all cases. At the light of [3] and [17] we actually expect that u ≡ 0 is the unique
solution of (1.2) whenever ρ ≤ min{8π, λ1(T )|T |}.

A natural question related to the uniqueness is whether the solutions of (1.2)
are invariant under some translations. The present work addresses this question
when the torus is defined by a rectangular periodic cell. Henceforth we will make
the following assumption:

(H) T is a flat two-dimensional torus with periodic cell � = (−a, a) × (−b, b).

We shall say that u : T → R is one-dimensional if

∂u

∂x1
≡ 0 in � or

∂u

∂x2
≡ 0 in �.

In [3], it has been established that every solution depends only on one variable
when ρ ≤ ρ∗(T ), where ρ∗(T ) is an explicit positive constant depending on the
maximum conformal radius of the rectangle �. In particular such ρ∗(T ) is strictly
greater than 4π . From the work of [3], it is expected that actually ρ∗(T ) = 8π .

The main purpose of this paper is to show that any global minimizers of the
functional (1.3) must be one-dimensional whenever ρ ≤ 8π . As a consequence of
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our result, we derive that u ≡ 0 is the unique minimizer of (1.3) for a suitable range
of the parameter. Indeed, by setting λ1(T ) to be the first eigenvalue of the torus,
Ricciardi and Tarantello [23] proved that ρ > λ1(T )|T | is a necessary and suffi-
cient condition for the existence of at least one nonzero one-dimensional solution
for (1.2). Our main result reads more precisely as follows:

Theorem 1.1. Assume (H) holds and ρ ≤ 8π . Then

(a) any global minimizer of the functional Jρ is one-dimensional;

(b) for each ρ ≤ min{8π, λ1(T )|T |}, u ≡ 0 is the unique global minimizer of the
functional Jρ .

By setting ρ0 := min{8π, λ1(T )|T |} we derive in particular:

1

|T |
∫

T
eu ≤ e

1
2ρ0

∫
T |∇u|2

, ∀u ∈ ◦
H(T ), (1.4)

with equality if and only if u ≡ 0. Inequality (1.4) is sharp since an appropri-
ate choice of test functions shows that any minimizer of Jρ is nonzero whenever
λ1(T )|T | < ρ ≤ 8π . An optimal inequality like (1.4) has been previously de-
rived on the two-dimensional canonical sphere by Onofri [20], who proved that
in such a case u ≡ 0 is the unique minimizer of the functional (1.3). The same
conclusion was obtained via another method by Hong [13]. Solutions which are
non-zero do exist at 8π when the manifold is the sphere. But below this critical
value, the works of Chanillo-Kiessling [5] and Lin [15] have shown that u ≡ 0
is actually the unique solution of Problem (1.2) when the domain is the sphere.
Our Theorem 1.1 is the analogue of Onofri’s result on rectangular two-dimensional
torus.

In order to prove Theorem 1.1 we will first derive that, up to a translation, any
global minimizer u of the functional Jρ satisfies in the periodic cell � the following
symmetry and monotonicity properties

u(x1, x2) = u(−x1, x2) = u(x1, −x2), ∀(x1, x2) ∈ �,

∂u

∂x1
(x) ≤ 0, ∀x ∈ (0, a) × (−b, b),

∂u

∂x2
(x) ≤ 0, ∀x ∈ (−a, a) × (0, b),

(1.5)

namely u is Steiner symmetric in the rectangular periodic cell �. Actually we will
prove that (1.5) holds for any semi-stable critical point of Jρ , i.e. function u satis-
fying

D Jρ

(u) = 0 and D2 Jρ

(u) ≥ 0. (1.6)
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We will then investigate the one-dimensional property of any critical point u of the
functional Jρ satisfying (1.5). With this aim, we consider for t ∈ [0, 1] the family
of periodic functions

ϕt := t
∂u

∂x1
+ (1 − t)

∂u

∂x2
.

A careful analysis will show that for some t0 ∈ [0, 1], the nodal line of the periodic
function ϕt0 encloses a simply connected domain in R2. This is a crucial step in
order to apply the so-called Bol’s isoperimetric inequality. When ρ ≤ 8π , this in-
equality provides precious information on the invertibility of the linearized problem
and will imply

t0
∂u

∂x1
+ (1 − t0)

∂u

∂x2
≡ 0, when ρ ≤ 8π.

The fact that u is one-dimensional will follow immediately. Hence our main Theo-
rem 1.1 will be a consequence of the following stronger statement:

Theorem 1.2. Assume (H) holds. Then,

(a) up to a translation, any semi-stable critical point of Jρ is Steiner symmetric
(i.e. satisfies (1.5));

(b) any Steiner symmetric solution of (1.2) is one-dimensional when ρ ≤ 8π ;

(c) for each ρ ≤ min{8π, λ1(T )|T |}, u ≡ 0 is the unique Steiner symmetric solu-
tion of (1.2).

The article is organized as follows. In Section 2, we study the symmetry of
global minimizers and more generally of semi-stable critical point of the functional
(1.3). We show that they are always Steiner symmetric in the periodic cell of the
torus, up to a translation. In order to derive a stronger statement in the range of
parameter ρ ≤ 8π , we discuss in Section 3 Bol’s isoperimetric inequality, and a
Faber-Krahn inequality that is tightly related to it. These ingredients are crucially
used in Section 4 to prove that any Steiner symmetric solution of Problem (1.1) is
one-dimensional whenever ρ ≤ 8π . This will provide a complete proof of Theo-
rem 1.1.

ACKNOWLEDGEMENTS. The second author has been supported by an Alexander
von Humboldt fellowship. He is grateful to Prof. B. Kawohl and Prof. G. Tarantello
for very useful discussions. He also thanks the warm hospitality of the National
Center for Theoretical Sciences (Taiwan) where this work was started.
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2. Steiner symmetry

The following proposition is a particular case of a result due to Kawohl (see [14,
page 82]). It establishes that the global minimizers of the functional (1.3) are Steiner
symmetric in the periodic cell, up to a translation.

Proposition 2.1 (Kawohl, [14]). Let (H) be satisfied and u be a global minimizer
of Jρ with its maximum located at the origin. Then,{

u(x1, x2) = u(−x1, x2) = u(x1, −x2) ∀(x1, x2) ∈ �,

∂u
∂xi

(x) ≤ 0 ∀x ∈ (0, a) × (0, b), i = 1, 2.
(2.1)

Proof. The conclusion of this proposition holds for very general functional. It relies
on the Steiner symmetrization that has already been introduced by Pólya and Szegö
in [22] (see also [14]). Let us sketch quickly the arguments in our case. Consider a
function u defined in the rectangular periodic cell �. For each x1 ∈ [−a, a], let us
set

�c := {x ∈ � : u(x) ≥ c} and �c(x1) := �c ∩ ({x1} × R).

The Steiner symmetrization �∗
c of the level set �c with respect to the line {x2 = 0}

is defined by

�∗
c :=

⋃
x1∈[−a,a]

{
(x1, x2) ∈ R

2 : 0 ≤ |x2| ≤ L1(�c(x1))

2

}
,

where L1 denotes the Lebesgue-measure in R. The Steiner symmetrization u∗ of u
with respect to the line {x2 = 0} is then defined by

u∗(x1, x2) := sup{c ∈ R : (x1, x2) ∈ �∗
c} for (x1, x2) ∈ �.

By construction we have

u∗(x1, x2) = u∗(−x1, x2), ∀(x1, x2) ∈ �,

∂u∗
∂x1

(x) ≤ 0, ∀x ∈ (0, a) × (0, b).

The two additional main properties of this symmetrization are∫
�

|∇u|2 ≥
∫

�

|∇u∗|2 and
∫

�

eu =
∫

�

eu∗
,

furthermore the Dirichlet integral decreases strictly unless u and u∗ coincide up to
a translation (see [14]). Hence Jρ(u) > Jρ(u∗) unless, up to a translation, u = u∗.

Similarly, we can define the Steiner symmetrization of a function with respect
to the line {x1 = 0}. By doing successively a Steiner symmetrization of u with re-
spect to {x2 = 0} and then {x1 = 0}, we construct a function u∗∗ which fulfills (2.1)
and is such that J (u) > J (u∗∗) unless u = u∗∗, modulo a translation.
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Remark 2.2. A function satisfying (2.1) is said to be “Steiner symmetric”. Let us
emphasize that for any Steiner symmetric solution of (1.2) the following alternative
holds for i = 1, 2:

(a) either
∂u

∂xi
≡ 0 in �, (b) or

∂u

∂xi
(x) < 0 ∀x ∈ (0, a) × (0, b). (2.2)

This follows easily by applying Hopf’s lemma to the equation

�

(
∂u

∂xi

)
+ ρ

eu∫
�

eu

∂u

∂xi
= 0.

In our setting, Proposition 2.1 can also be proved by using a variant of the “moving
planes method” and admits the following extension:

Proposition 2.3. Assume (H) holds and let u be a semi-stable critical point of Jρ

(i.e. satisfying (1.6)) with its maximum located at the origin. Then

u(x1, x2) = u(−x1, x2) = u(x1, −x2), ∀(x1, x2) ∈ �. (2.3)

Furthermore, for each i = 1, 2, the alternative (2.2) holds.

Proof. The proof of (2.3) follows the arguments of [8, Lemma 2.2]. We only prove
that u(x1, x2) = u(−x1, x2) because the same arguments yield the other identity.
By assumption the second variation of Jρ at u is a nonnegative-definite bilinear
form, namely∫

T
|∇ξ |2 − ρ

{∫
T

eu∫
T eu

ξ2 −
(∫

T

eu∫
T eu

ξ

)2
}

≥ 0, ∀ξ ∈ ◦
H(T ). (2.4)

Since the left hand-side of (2.4) is invariant by replacing ξ with ξ +c for any c ∈ R,
we actually have∫

T
|∇ξ |2 − ρ

{∫
T

eu∫
T eu

ξ2 −
(∫

T

eu∫
T eu

ξ

)2
}

≥ 0, ∀ξ ∈ H1(T ). (2.5)

Consider on the rectangular periodic cell �, the functions u	 and w defined as:

u	(x1, x2) := u(−x1, x2), w := u − u	.

The function w satisfies the linear problem

�w + c(x)w = 0, with c(x) := ρ∫
�

eu

eu − eu	

u − u	
. (2.6)
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By defining �+ := {x ∈ � : x1 > 0}, we claim that exactly one of the following
alternative holds:

(i) w > 0 in �+, (ii) w < 0 in �+, (iii) w ≡ 0 in �+. (2.7)

To prove this claim, assume by contradiction that w changes sign in �+. Therefore,
since w(x1, x2) = −w(−x1, x2), the following two sets have positive measure:

D+ := {x ∈ �+ : w(x) > 0} D− := {x ∈ � \ �+ : w(x) > 0}.
We define a new function in � defined by

φ(x) =


w(x) if x ∈ D+,

−tw(x) if x ∈ D−,

0 otherwise,

where t is a positive constant such that∫
�

euφ(x)dx = 0. (2.8)

Note that this choice of t is made possible because D+, D− are assumed to have
positive measure. From the convexity of the exponential function, we note that the
following inequality holds in the open set D+ ∪ D−:

c(x) = ρ∫
�

eu

eu − eu	

u − u	
(x) <

ρ∫
�

eu
eu(x), ∀x ∈ D+ ∪ D−. (2.9)

By using (2.9), we deduce that

0 = �w + c(x)w < �w + ρ
eu∫
�

eu
w, in D+ ∪ D−. (2.10)

By (2.10), the fact that w > 0 in D+ ∪ D− and the definition of φ imply∫
�

|∇φ|2 − ρ

∫
�

eu∫
�

eu
φ2 < 0. (2.11)

Recalling the choice done in (2.8), we see that (2.11) yields a contradiction to (2.5).
Therefore w cannot change sign in �+, namely

w(x) ≥ 0 ∀x ∈ �+ or w(x) ≤ 0 ∀x ∈ �+. (2.12)

By applying the strong maximum principle, the alternative (2.7) follows.
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Let us see now why cases (i) and (ii) in (2.7) can be excluded. Since both
functions u, u	 coincide when x1 = 0 and achieve their maximum at the origin, we
also have

w(0, x2) = 0 ∀x2 ∈ (−b, b),
∂w

∂x1
(0, 0) = 0. (2.13)

By applying to Equation (2.6) Hopf’s lemma at the point (0, 0) (in the domain �+)
together with properties (2.12) and (2.13), we deduce that w ≡ 0. This proves that
u(x1, x2) = u(−x1, x2) for all (x1, x2) ∈ �. Arguing in the same way, we can also
prove that u(x1, x2) = u(x1, −x2), and so (2.3) holds.

The proof of the alternative (2.2) is inspired by some arguments found in [12,
Section 3]. We give the arguments for ∂u

∂x1
, since the same proof holds for ∂u

∂x2
.

Assume first by contradiction that ∂u
∂x1

changes sign in �+. In this case both the
following sets have positive measure:

E+ :=
{

x ∈ �+ : ∂u

∂x1
(x) > 0

}
E− :=

{
x ∈ �+ : ∂u

∂x1
≤ 0

}
. (2.14)

Let us introduce in � the function

ϕ(x) =


∂u

∂x1
(x) if x ∈ E+,

−t
∂u

∂x1
(x) if x ∈ E−,

0 otherwise,

(2.15)

where t is a positive constant chosen such that∫
�

euϕ(x)dx = 0. (2.16)

Due to the symmetry property (2.3) satisfied by u, we have ∂u
∂x1

(0, x2) = 0 and

therefore the function ϕ is a periodic H1
loc(R

2)-function. From the fact that

�

(
∂u

∂x1

)
+ ρ

eu∫
�

eu

∂u

∂x1
= 0 in �, (2.17)

we easily deduce that ∫
�

|∇ϕ|2 − ρ

∫
�

eu∫
�

eu
ϕ2 = 0. (2.18)

Hence (2.18) together with (2.16) show that the function ϕ realizes the equality
in (2.5). So ϕ satisfies the equation

�ϕ + ρ
eu∫
�

eu

(
ϕ −

∫
�

eu∫
�

eu
ϕ

)
= 0 in �,
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and because of (2.16), we actually get

�ϕ + ρ
eu∫
�

eu
ϕ = 0 in �.

Since by construction ϕ vanishes when x1 ≤ 0, the unique continuation principle
shows that ϕ ≡ 0, and therefore ∂u

∂x1
≡ 0. This is in contradiction with the fact

that E+, E− have positive measure. Therefore, by also taking into account that u
achieves its maximum point at 0, we deduce that ∂u

∂x1
≤ 0 in �+. By applying the

strong maximum principle to (2.17), the alternative (2.2) follows.

We conclude this section with some observations on the critical points of solu-
tions of Problem (1.2) which are Steiner symmetric in the periodic cell.

Remark 2.4. Consider any solution u of Problem (1.2) which satisfies the addi-
tional properties:

(a) the function u is Steiner symmetric in �, i.e. it enjoys properties (2.1),

(b) ∂u
∂xi


≡ 0 for i = 1, 2.

Then the set of critical points of the periodic solution u : R2 → R is exactly given
by C := {(ma, nb) : m, n ∈ Z}. Since ∂u

∂x1
(0, x2) = 0 and ∂u

∂x2
(x1, 0) = 0, we also

derive
∂2u

∂x1∂x2
(c) = 0, ∀c ∈ C. (2.19)

Since for i = 1, 2 we have

�

(
∂u

∂xi

)
+ ρ

eu∫
�

eu

∂u

∂xi
= 0,

∂u

∂xi
≤ 0 in (0, a) × (0, b),

an application of Hopf’s lemma yields for i = 1, 2

∂2u

∂x2
i

(c) 
= 0, ∀c ∈ C. (2.20)

Therefore (2.19) and (2.20) show that each critical point of u (Steiner symmetric in
�) is non-degenerate. By Proposition 2.3, this remark applies in particular to any
global or local minimizers of the functional Jρ .

3. Bol’s Isoperimetric Inequality

Let us start by recalling the following isoperimetric inequality which goes back to
Bol [2].
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Proposition 3.1 (Bol’s inequality). Let � be a simply-connected domain of R2

and v ∈ C2(�) satisfying

−�v ≤ ev and
∫

�

ev ≤ 8π. (3.1)

Then, for any ω ⊂⊂ � of class C1 the following inequality holds:(∫
∂ω

ev/2
)2

≥ 1

2

(∫
ω

ev

) (
8π −

∫
ω

ev

)
. (3.2)

Above result with ω ⊂⊂ � simply-connected and v analytic can be found in Ban-
dle [1]. In [25], the proof given by Suzuki assumes only the function v to be of class
C2 but ω to be simply connected. In Chang et al. [4, Lemma 4.2], it was noted that
the assumption on ω to be simply connected is not necessary. But let us emphasize
that the assumption on the domain � to be simply connected is crucial. Indeed,
consider for each t > 0 the radial harmonic function

v(x) = −2 log(t |x |), x 
= 0.

On the annulus A := {1 < |x | < R}, we have∫
∂ A

ev/2 = 4π

t
and

∫
A

ev = 2π

t2
log R,

and in particular(∫
∂ A ev/2

)2(∫
A ev

) (
8π − ∫

A ev
) = 8π(log R)−1

(
8π − 2π

t2
log R

)−1

. (3.3)

Hence by choosing t2 = log R, we see that the assumptions (3.1) are satisfied. But,
letting R → ∞, the ratio (3.3) tends to zero, and therefore Bol’s inequality (3.2)
cannot hold.

In order to handle in Problem (1.2) the case ρ = 8π , we shall need the Bol’s
isoperimetric inequality in the following form:

Proposition 3.2. Let � be a simply-connected domain of R2 and v ∈ C2( � ) sat-
isfying

−�v < ev in � and
∫

�

ev ≤ 8π. (3.4)

Then, for any ω ⊂⊂ � of class C1 the following strict inequality holds:(∫
∂ω

ev/2
)2

>
1

2

(∫
ω

ev

) (
8π −

∫
ω

ev

)
. (3.5)
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Proof. By (3.4) we can find ε ∈ (0, 1) such that −�v(x) ≤ (1 − ε)ev(x) for all
x ∈ �. Therefore the function ṽ := v + log(1 − ε) satisfies assumptions (3.1).
Hence, by applying Bol’s inequality (3.2) to the function ṽ we get:(∫

∂ω

ev/2
)2

≥ 1

2

(∫
ω

ev

) (
8π − (1 − ε)

∫
ω

ev

)
,

and so the conclusion (3.5) follows.

Bol’s inequality will be used to derive the following.

Proposition 3.3. Let � be a simply-connected domain of R2 and v ∈ C2(�) such
that −�v < ev in �. Assume there exists ϕ ∈ C1(�) such that

�ϕ + evϕ = 0 in �, ϕ = 0 on ∂�, ϕ 
≡ 0. (3.6)

Then
∫
�

ev > 4π .

Proof. Assume
∫
�

ev ≤ 4π , we shall prove that any ϕ ∈ C1(�) with ϕ 
≡ 0
satisfies the following type of Faber-Krahn inequality:∫

�
|∇ϕ|2∫

�
evϕ2

> 1.

Note that since ϕ is continuous up to the boundary the following property on the
upper level sets holds:

�t := {|ϕ| > t} ⊂⊂ �, ∀t ≥ 0.

The following arguments are borrowed from [1] and [25]. We give it for the sake

of completeness. Set U (x) = −2 log(1 + |x |2
8 ) which satisfies �U + eU = 0 in

R2. Note that this function realizes the equality in (3.2) when ω is a ball centered
at the origin. We shall make a rearrangement of the function |ϕ| with respect to the
measure eU and ev . To this end, define first the balls �∗ and �∗

t centered at the
origin as follows:∫

�∗
eU (x)dx =

∫
�

ev(x),

∫
�∗

t

eU (x)dx =
∫

�t

ev(x).

The balls �∗
t can be seen geometrically as geodesic balls on the two-dimensional

sphere having same measure as the set {|ϕ| > t} endowed with the measure evdx .
Define the symmetrization ϕ∗ : �∗ → R of the function |ϕ| as follows:

ϕ∗(x) = sup{t ∈ R : x ∈ �∗
t }.
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We define in this way an equimeasurable rearrangement with respect to the mea-
sures eU dx and evdx , i.e.∫

{ϕ∗>t}
eU =

∫
�t

ev, ∀t > 0. (3.7)

In particular, we have (Cavalieri’s principle):∫
�∗

eU |ϕ∗|2 =
∫

�

ev|ϕ|2. (3.8)

Let us prove that the Dirichlet integral decreases by making such an arrangement.
By applying coarea formula, Schwarz inequality, Bol’s inequality (3.4) and also
(3.7), we get:

− d

dt

∫
�t

|∇|ϕ||2 =
∫

{|ϕ|=t}
|∇ϕ|

≥
(∫

{|ϕ|=t}
ev/2

)2 (∫
{|ϕ|=t}

ev

|∇ϕ|
)−1

=
(∫

{|ϕ|=t}
ev/2

)2 (
− d

dt

∫
�t

ev

)−1

>
1

2

(∫
�t

ev

) (
8π −

∫
�t

ev

) (
− d

dt

∫
�t

ev

)−1

= 1

2

(∫
�∗

t

ev

) (
8π −

∫
�∗

t

ev

) (
− d

dt

∫
�∗

t

ev

)−1

, (3.9)

for almost every t ≥ 0. Furthermore, since eU realizes on each ball ω the equality
in (3.2), we check easily that:

− d

dt

∫
�∗

t

|∇ϕ∗|2 = 1

2

(∫
�∗

t

ev

) (
8π −

∫
�∗

t

ev

) (
− d

dt

∫
�∗

t

ev

)−1

. (3.10)

Hence, (3.9) and (3.10) yield:

− d

dt

∫
�t

|∇ϕ|2 > − d

dt

∫
�∗

t

|∇ϕ∗|2 a.e. t ≥ 0. (3.11)

By integrating (3.11) with respect to t , we obtain∫
�

|∇ϕ|2 >

∫
�∗

|∇ϕ∗|2. (3.12)
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Hence, from (3.8) and (3.12), we deduce that∫
�

|∇ϕ|2∫
�

ev|ϕ|2 >

∫
�∗ |∇ϕ∗|2∫
�∗ eU |ϕ∗|2 ≥ λ1(e

U , �∗), (3.13)

where we set whenever B ⊂⊂ R2:

λ1(e
U , B) = inf

{∫
B |∇ξ |2∫
B eU ξ2

: ξ ∈ H1
0 (B), ξ 
≡ 0

}
. (3.14)

Under the assumption that
∫
�

ev ≤ 4π , we claim that λ1(eU , �∗) ≥ 1. Indeed, on

the one hand a straightforward computation shows that ψ = 8−r2

8+r2 solves

−�ψ = eU ψ, ψ > 0 in B√
8, ψ ∈ H1

0 (B√
8),

where B√
8 denotes the ball B(0,

√
8). Therefore, we get λ1(eU , B√

8) = 1. On the
other hand, from (3.7), we know that

∫
�

eU ≤ 4π . By explicit calculation, we get
�∗ ⊆ B√

8. Hence, we deduce

λ1(e
U , �∗) ≥ λ1

(
eU , B√

8

)
= 1. (3.15)

Inequalities (3.13) and (3.15) allow to conclude the proof of the theorem.

4. One-dimensional symmetry

To study the one-dimensional properties of a solution u of Problem (1.2), we con-
sider for each t ∈ [0, 1], the periodic function ϕt : R2 → R defined by

ϕt := t
∂u

∂x1
+ (1 − t)

∂u

∂x2
. (4.1)

In [21], Payne was considering a similar family in order to prove that the first eigen-
function of the Dirichlet Laplacian in a strictly convex domain has at most one crit-
ical point. But in our case, the purpose and the way how we are going to exploit the
family (4.1) differs notably from [21].

By differentiating with respect to each variable the equation (1.2) satisfied by
u, we note that

�ϕt + ρ
eu∫
T eu

ϕt = 0, ϕt ∈ ◦
H(T ).

Therefore, by setting v := u + log(
ρ∫

T eu ), the function ϕt is a solution of the linear

problem

�ϕt + evϕt = 0, ϕt ∈ ◦
H(T ), (4.2)
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i.e., ϕt is an eigenfunction of the linear operator � + ev . Let us set

Zt =
{

x ∈ R
2 : ϕt (x) = 0

}
.

Let us restrict our attention only to solutions u which are Steiner symmetric in the
periodic cell �, i.e. satisfying

u(x1, x2) = u(−x1, x2) = u(x1, −x2) ∀(x1, x2) ∈ �,

∂u

∂xi
(x) ≤ 0 ∀x ∈ (0, a) × (0, b), i = 1, 2.

(4.3)

The following proposition will be the crucial point to derive our one-dimensional
symmetry results.

Proposition 4.1. Let (H) be satisfied and (ρ, u) be a solution of Problem (1.2)
with u Steiner symmetric. Then, by considering the family of functions ϕt defined
by (4.1), the following alternative holds:

(a) either ∂u
∂xi

≡ 0 for some i = 1, 2;

(b) or else, for some t0 ∈ [0, 1] we can find a bounded simply connected domain
Dt0 ⊂ R2 such that

∂ Dt0 ⊂ Zt0 and
∫

Dt0

eu ≤ 1

2

∫
�

eu . (4.4)

Proof. Assume ∂u
∂x1


≡ 0 and ∂u
∂x2


≡ 0. We need to show the existence of a simply
connected domain satisfying alternative (b). The main idea rests on the observation
that the nodal lines of ϕ0 and ϕ1 are respectively parallel to the x1-axis and x2-axis.
So as t varies the nodal lines of ϕt must come into contact and create a simply
connected region in R2. This idea can be made rigorous by arguing as follows.

Consider the points P1 = (0, 0), P2 = (a, 0) and introduce the set

T := {t ∈ [0, 1] : P1, P2 are in the same connected component of Zt },
Note first that

0 ∈ T and 1 
∈ T . (4.5)

Indeed for t = 0 we have: ϕ0(x1, 0) = ∂u
∂x2

(x1, 0) = 0 for all x1 ∈ R, and therefore
P1, P2 belong to the same connected component of Z0 (see Figure 4.1).

When t = 1, we have ϕ1 ≡ ∂u
∂x1

. Since ∂u
∂x1

(x) < 0 for x1 ∈ (0, a) (see
Remark 2.2) we see that Z1 = ⋃

m∈Z
({ma}×R). Hence P1, P2 belong to different

connected components of Z1 (see Figure 4.2).
Consider the C1 function F(t, x) := t ∂ϕt

∂x1
+ (1 − t) ∂ϕt

∂x2
defined in [0, 1] × T .

By applying to this family the results of the Appendix A, we deduce that the set T
is closed in [0, 1] (see Lemma A.1) and also open in [0, 1] if (see Lemma A.2)

∇ϕt (x) 
= 0, ∀x ∈ Zt , ∀t ∈ [0, 1]. (4.6)
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Figure 4.1. Nodal lines of ϕ0 in �.

Figure 4.2. Nodal lines of ϕ1 in �.

As a consequence, if (4.6) holds then T must coincide with [0, 1]. This would be a
contradiction because 1 
∈ T (see (4.5)). Hence

for some t0 ∈ [0, 1], ϕt0 has at least one critical point in Zt0 .

In order to study further the structure of Zt0 , note that the solution u is assumed to
be Steiner symmetric in the periodic cell �. As a consequence

ϕt0 is odd and Zt0 ∩ � ⊆ {0} ∪ R ∪ (−R),

where R := (0, a) × (−b, 0). Therefore we may restrict the study of Zt0 to the
rectangular domain R. We distinguish two cases.

Case I: There exists a connected set � ⊆ Zt0 ∩ R homeomorphic to a circle S1.
In such a case, by the Jordan’s and Schoenflies’ Theorem (see Thm. 10.2 and

Thm. 17.1 in [18]), the bounded component Dt0 of R2 \ � is contained in R and is
simply connected. Since u is axis-symmetric in � we also have∫

Dt0

eu ≤
∫

R
eu = 1

4

∫
�

eu,

and therefore (4.4) holds.
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Case II: None of the connected sets in Zt0 ∩ R is homeomorphic to S1.
Since ϕt0 is an eigenfunction of the linear problem (4.2), the results of [9] show

that ϕt0 has only finite number of critical points in Zt0 ∩ R: c1, · · · , cn . Hence

(Zt0 ∩ R) \ {c1, . . . , cn} = γ1 ∪ · · · ∪ γm,

where each γ i is a C∞ one-dimensional connected manifold. It is well-known that
γ i is either homeomorphic to a closed interval of R (a “simple arc”) or to a circle
S1 (a “simple closed curve”). The second possibility has been considered in Case I
above, and so we only consider the situation where each γi is a simple arc. In this
case, each end-point of γ i is

(i) either on ∂ R and therefore coincides with one of the points

P1 = (0, 0), P2 = (a, 0), P3 = (0, −b), P4 = (a, −b), (4.7)

(ii) or coincides with one of the critical points c1, . . . , cn .

Consider then a critical point c ∈ R of ϕt0 on Zt0 . It follows easily from Remark 2.4
that actually c ∈ R. By applying Hopf’s lemma to equation (4.2), we deduce that
the nodal sets {ϕt0 > 0} and {ϕt0 < 0} cannot satisfy the interior ball boundary
condition at c ∈ Zt0 . Therefore, for some ball B(c, ε) ⊂ R, the set (Zt0 \ {c}) ∩
B(c, ε) has at least 4 connected components γ1, · · · , γ4. Consider now in (Zt0 \
{c})∩ R the connected components �1, · · · , �4 containing respectively γ1, · · · , γ4.
If �i = � j for some i 
= j , then �i ∪ {c} is a simple closed curve, the situation
considered in Case I. So (Zt0 \{c})∩R has at least 4 different connected components
�i , each of which being a finite union of Jordan arcs. Hence �i ∩ ∂ R 
= ∅ and
therefore we may numerate each of this component in such a way that �i ∩ ∂ R =
{Pi } (with Pi defined in (4.7)).

Consider then the sets: −�1, −�2, �3 − 2a, �4 − 2a (subsets of Zt0 ). Since
ϕt is odd and periodic, we derive that

�̃ := (−�1) ∪ (−�2) ∪ (�3 − 2a) ∪ (�4 − 2a),

is a simple closed curve in R2 (see Figure 4.3) contained in Zt0 .
By applying Jordan-Schoenflies Theorem [18], we deduce that the bounded con-
nected component Dt0 of R2 \ �̃ is simply connected and ∂ Dt0 = �̃. Moreover let
Ri be the subsets of R defined by:

∂ R1 := �1 ∪ �2 ∪ {(x, 0) ∈ R
2 : x ∈ [0, a]},

∂ R2 := �2 ∪ �3 ∪ {(a, y) ∈ R
2 : y ∈ [0, −b]},

∂ R3 := �3 ∪ �4 ∪ {(x, −b) ∈ R
2 : x ∈ [0, a]},

∂ R4 := �4 ∪ �1 ∪ {(a, y) ∈ R
2 : y ∈ [0, −b]},
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Figure 4.3. Nodal lines of ϕt0 .

Since u is axis-symmetric and ϕt0 is odd we also have∫
Dt0

eu =
∫

R4

eu +
∫

−R1

eu +
∫

R2−2a
eu +

∫
−R3

eu +
∫

(−a,0)×(−b,0)

eu

=
∫

R4

eu +
∫

R1

eu +
∫

R2

eu +
∫

R3

eu +
∫

(−a,0)×(−b,0)

eu

= 2
∫

R
eu = 1

2

∫
�

eu .

Therefore the set Dt0 fulfills the conditions (4.4).

We are now able to prove that any Steiner symmetric solution is one-dimensional
whenever ρ ≤ 8π .

Proof of Theorem 1.2. The proof of part (a) is the content of Proposition 2.3. To
prove the statement (b) of the theorem, let u be a Steiner symmetric solution and
assume that ∂u

∂xi

≡ 0 for i = 1, 2. Choose t0 ∈ (0, 1), ϕt0 and the simply connected

domain Dt0 as given by Proposition 4.1. By setting v := u + log(
ρ∫

� eu ), note first

−�v = ev − ρ

|T | < ev in Dt0 and
∫

Dt0

ev ≤ 4π. (4.8)

Furthermore in Dt0 , ϕt0 satisfies

−�ϕt0 = evϕt0, ϕt0 ∈ C1(Dt0), ϕt0 = 0 in ∂ Dt0 . (4.9)
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Hence (4.8), (4.9) together with Proposition 3.3 show that ϕt0 ≡ 0. Therefore

∇u(x) = ∂u
∂x2

(x)

(
1 − t−1

0
1

)
, i.e. the level sets of u are parallel straight lines.

Since u is axis symmetric in the periodic cell �, the level sets must actually be
parallel to either the x1 or x2-axis. This would contradict ∂u

∂xi

≡ 0 for i = 1, 2. So

we deduce that u is one-dimensional.
To prove the last statement of the theorem, we note that for ρ ≤ λ1(T )|T | a

result of [23] shows that u ≡ 0 is the unique one-dimensional solution of Prob-
lem (1.2).

Clearly Theorem 1.1 stated in the introduction follows immediately from The-
orem 1.2. As a consequence we derive the inequality

1

2

∫
T

|∇u|2 − ρ0 log

(
1

|T |
∫

T
eu

)
≥ 0, ∀u ∈ ◦

H(T ), (4.10)

with equality holding if and only if u ≡ 0. The above inequality can also be rewrit-
ten as (1.4) stated in the introduction, and holds for ρ0 replaced by any ρ ≤ ρ0. To
see the sharpness of inequality (4.10), we notice the following:

(a) For ρ > 8π , test functions of the type δµ(x) = log 8µ2

(1+µ2|x |2)2 can be used to

show that inf{Jρ(u) : u ∈ ◦
H(T )} = −∞ (see [24]);

(b) When λ1(T )|T | < 8π and ρ ∈ (λ1(T )|T |, 8π), by taking the function ε�1
with �1 an eigenfunction associated to the first eigenvalue of the Laplacian
λ1(T ), we see easily that Jρ(ε�1) < 0 when ε is small enough.

This shows that inequality (1.4) is sharp.

A. Appendix: Two connectedness properties

Consider a C1-manifold M of dimension m compact without boundary and a family
of functions F : [0, 1] × M → R. Under suitable assumptions, we prove in this
appendix that the property for two fixed points of being connected in the sets:

Zt := {x ∈ M : F(t, x) = 0}, (A.1)

is preserved as t varies from t = 0 to t = 1. Such a result is used in Section 4 when
the manifold is a two dimensional torus.

Let us first recall some known facts. We say that two points A, B ∈ Zt
are “connected in Zt ” if there is a connected set � ⊆ Zt containing both A, B.
Given a sequence {�n}n∈N of subsets of a topological space X , we define the sets
lim sup{�n} and lim inf{�n} as follows:
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(a) x ∈ lim sup{�n} if and only if each neighborhood of x intersects �n for infinitely
many indices n ∈ N,

(b) x ∈ lim inf{�n} if and only if each neighborhood of x intersects �n but for
finitely many indices n ∈ N.

If {�n}n∈N is a sequence of connected sets in a metric space satisfying

lim inf{�n} 
= ∅ and
⋃
n∈N

�n is relatively compact, (A.2)

then lim sup{�n} is a nonempty connected set (see [26, Theorem 9.1], or [27, p. 39]).

Lemma A.1. Let F : [0, 1]× M → R be a family of continuous maps. Assume two
points A, B ∈ M are connected in Ztn with lim

n→∞ tn = t̂ . Then A, B are connected

in Zt̂ .

Proof. For each n ∈ N, consider a connected set �n ⊆ Ztn containing A, B. Clearly
A, B ∈ lim inf{�n}, �n is connected and since M is compact the set

⋃
n∈N

�n
is relatively compact in M . Thus (A.2) holds in the metric space M . Therefore
lim sup{�n} is connected (by [26, 27]) and contains the points A, B. Furthermore
by continuity of F , we check easily that lim sup{�n} ⊆ Zt̂ . Therefore A, B are
connected in Zt̂ .

The above result may fail if M is not compact. For example in R2 consider the
family of functions F(t, x) = x1(1 − x1) − t x2

2 . For each t > 0 the set of zeros
of F(t, ·) connects the points (0, 0) and (1, 0), but this is not anymore the case at
t = 0.

The following lemma is a consequence of the implicit function theorem.

Lemma A.2. Let A, B ∈ M and F : [0, 1] × M → R be a C1-mapping such that

A, B ∈ Zt , ∀t ∈ [0, 1], (A.3)

Assume that for some t̂ ∈ [0, 1] the points A, B are connected in Zt̂ and

∂2 F(t̂, z) 
= 0, ∀z ∈ Zt̂ . (A.4)

Then there exists an interval Î = (t̂ −ε, t̂ +ε)∩[0, 1] such that A, B are connected
in Zt for any t ∈ Î .

Proof. By using assumption (A.4), at each point p ∈ Zt̂ there is a neighborhood
Up and a homeomorphism ϕp : (−1, 1)m → Up such that

∂(Ft ◦ ϕp)

∂xm
(x) 
= 0, ∀x ∈ ϕ−1

p (Zt̂ ∩ Up).
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By applying the implicit function theorem to the mapping

F̃p : [0, 1] × (−1, 1)m−1 × (−1, 1) → R, (t, x ′, xm) �→ F(t, ϕp(x ′, xm)),

we can find an interval Ip := (t̂ − εp, t̂ + εp) ∩ [0, 1] and a unique C1-mapping

�p : Ip × (−δp, δp)
m−1 → R

such that:

F̃p(t, x ′, �p(t, x ′)) = 0, ∀(t, x ′) ∈ Ip × (−δp, δp)
m−1.

Hence by setting Ũp := ϕp((−δp, δp)
m−1 × (−1, 1)), we deduce that Zt ∩ Ũp is

connected whenever t ∈ Ip.

Consider the family F = {(Ũp, Ip, �p) : p ∈ Zt̂ } and let �t̂ ⊆ Zt̂ be a com-
pact connected set containing the points A, B. By compactness and connectedness
we can find a finite number of points p1, · · · , pk ∈ �t̂ such that

�t̂ ⊆
k⋃

i=1

Ũpi , Ũpi ∩ Ũpi+1 
= ∅, (A, B) ∈ Ũp1 × Ũpk , (A.5)

Zt ∩ Ũpi connected ∀t ∈ Ipi , i = 1, · · · , k. (A.6)

Furthermore by using the continuity of each function �pi , we may choose a smaller
interval Î ⊆ ∩k

i=1 Ipi in order to also have

Zt ∩ (Ũpi ∩ Ũpi+1) 
= ∅, ∀t ∈ Î , i = 1, · · · , k − 1.

Hence with this choice of open sets Ũpi ⊂ M and of interval Î ⊆ [a, b], the
following conditions are satisfied for each t ∈ Î ,

{
Zt ∩ Ũpi is connected, Zt ∩ (Ũpi ∩ Ũpi+1) 
= ∅ (for i = 1, · · · , k − 1),

A ∈ Zt ∩ Ũp1, B ∈ Zt ∩ Ũpk .

We infer that
⋃k

i=1(Zt ∩ Ũpi ) is a connected set containing A, B whenever
t ∈ Î .
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