
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. VI (2007), 323-330

Holomorphic line bundles and divisors
on a domain of a Stein manifold
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Abstract. Let D be an open set of a Stein manifold X of dimension n such that
Hk(D, O ) = 0 for 2 ≤ k ≤ n − 1. We prove that D is Stein if and only if
every topologically trivial holomorphic line bundle L on D is associated to some
Cartier divisor d on D.
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1. Introduction

For every holomorphic line bundle L on a reduced Stein space X there exists a
global holomorphic section σ ∈ �(X,O (L)) such that the zero set {σ = 0} is
nowhere dense in X . Therefore L is associated to the positive Cartier divisor div(σ )

on X (see Gunning [9, pages 122–125]).
Conversely the author [1, Theorem 3] proved that an open set D of a Stein

manifold X of dimension two is Stein if every holomorphic line bundle L on D
is associated to some (not necessarily positive) Cartier divisor d on D. Moreover
Ballico [4, Theorem 1] proved that an open set D of a Stein manifold X of dimen-
sion more than two of the form D = {ϕ < c}, where ϕ : X → R is a weakly
2-convex function of class C 2 in the sense of Andreotti-Grauert, is Stein if every
holomorphic line bundle L on D is associated to some Cartier divisor d on D.

In this paper we prove that an open set D of a Stein manifold X of dimen-
sion n such that Hk(D,O ) = 0 for 2 ≤ k ≤ n − 1 is Stein if every topologi-
cally trivial holomorphic line bundle L on D is associated to some Cartier divisor
d on D (see Theorem 4.3). This generalizes both results above (see Corollaries 4.4
and 4.5).

The proof is by induction on n = dim X and the induction hypothesis is
applied to the complex subspace

(
Y,

(
O X/ f O X

) |Y
)
, where f ∈ O X (X) and
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Y := {[ f ] = 0}. Therefore it is inevitable to consider complex spaces which are
not necessarily reduced (see Theorem 4.1).

ACKNOWLEDGEMENT. The author would like to express his gratitude to the ref-
eree for his/her crucial remarks and valuable comments on earlier versions of the
paper.

2. Preliminaries

Throughout this paper complex spaces are always assumed to be second countable.
We always denote by O without subscript the reduced complex structure sheaf of
an arbitrary complex space. In other words we always set O := O X/N X for a
complex space (X,O X ), where N X is the nilradical of the complex structure sheaf
O X .

Let (X,O X ) be a (not necessarily reduced) complex space and (red, ˜red) :
(X,O ) → (X,O X ) the reduction map. We denote by [ f ] the valuation x �→
fx + mx ∈ O X, x/mx = C, x ∈ U , for every f ∈ O X (U ), where U is an open set
of X . Then the assignment f �→ [ f ] is identified with ˜red : O X (U ) → O (U ) (see
Grauert-Remmert [8, page 87]).

Let X be a reduced complex space and e : O → O ∗ the homomorphism of
sheaves on X defined by ex ( fx ) := exp

(
2π

√−1 fx
)

for every fx ∈ O x and x ∈
X , where O ∗ denotes the multiplicative sheaf of invertible germs of holomorphic
functions. Then e induces the homomorphism e∗ : H1(X,O ) → H1(X,O ∗). As
usual we identify the cohomology group H1(X,O ∗) with the set of holomorphic
line bundles on X .

Let d be a Cartier divisor on a reduced complex space X defined by the mero-
morphic Cousin-II distribution {(Ui , mi )}i∈I on X (see Gunning [9, page 121]). We
denote by [d] the holomorphic line bundle on X defined by the cocycle

{
mi/m j

} ∈
Z1({Ui }i∈I ,O ∗) and we say that [d] is the holomorphic line bundle associated to
d. We say that d is positive (or effective) if d can be defined by a holomorphic
Cousin-II distribution.

Let (X,O X ) be a (not necessarily reduced) complex space and D an open
set of X . Then D is said to be locally Stein at a point x ∈ ∂ D if there exists a
neighborhood U of x in X such that the open subspace (D ∩ U,O X |D∩U ) is Stein.

Throughout this paper we use the following notation:

�(r) := {t ∈ C | |t | < r} for r > 0, � := �(1),

P(n, ε) := �(1 + ε)n, and

H(n, ε) := �n ∪
{
(z1, z2, . . . , zn) ∈ C

n | 1 − ε < |z1| < 1 + ε,

|z2| < 1 + ε, |z3| < 1 + ε, . . . , |zn| < 1 + ε
}

for n ≥2 and 0 < ε < 1.
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The pair (P(n, ε), H(n, ε)) is said to be a Hartogs figure. We have the following
lemma which characterizes a Stein open set of Cn .

Lemma 2.1 (Kajiwara-Kazama [10, Lemmas 1 and 2]). Let D be an open set of
Cn. Then the following two conditions are equivalent.

(1) D is Stein.
(2) There do not exist a biholomorphic map ϕ : Cn → Cn, ε ∈ (0, 1) and b =

(b1, b2, . . . , bn)∈Cn such that ϕ(H(n, ε))⊂ D, |b1| ≤ 1−ε, max2≤ν≤n |bν |=
1 and ϕ(b) ∈ ∂ D.1

3. Lemmas

In this section we denote by 	(X, O X ) the composition of the induced homomor-
phisms

H1(X,O X )
˜red

∗
−→ H1(X,O )

e∗−→ H1(X,O ∗)

for every complex space (X,O X ).

Lemma 3.1. Let (X,O X ) be a Stein space of pure dimension 2 and D an open set
of X. Let (θ, θ̃) : (X,O X ) → C2 be a holomorphic map, R and W open sets of
X, ε ∈ (0, 1) and b = (b1, b2) ∈ C2 such that R � W ⊂ X \ Sing(X,O X ), θ(W )

is an open set of C2, the restriction θ |W : W → θ(W ) is biholomorphic, θ(R) =
P(2, ε), (θ |W )−1 (H(2, ε)) ⊂ D, |b1| ≤ 1 − ε, |b2| = 1 and (θ |W )−1 (b) ∈ ∂ D.
Then there exists a cohomology class α ∈ H1(D,O X |D) such that the holomorphic
line bundle 	(D,O X |D)(α)|D∩R on D ∩ R is not associated to any Cartier divisor
on D ∩ R.

Proof. Let θν := θ̃ zν for ν = 1, 2, where z1 and z2 are the coordinates of C2. Let
Eν := {[θν] �= bν} for ν = 1, 2. Since (Eν,O X |Eν ) is Stein and 1/ ([θν] − bν) ∈
O (Eν), there exists uν ∈ O X (Eν) such that [uν] = 1/ ([θν] − bν) on Eν for ν =
1, 2. Let T := {|[θ1]| < 1 + ε} and T1 := {|[θ1]| < 1 + ε, |[θ2]| > 1 + ε/2} ∪(
T \ R̄

)
. Then (T,O X |T ) is Stein and {R, T1} is an open covering of T . Since

H1({R, T1},O X |T ) = 0 and R ∩ T1 ⊂ E2, there exist v0 ∈ O X (R) = O (R) and
v1 ∈ O X (T1) such that u2 = v1 − v0 on R ∩ T1. Let F := (E2 ∩ R) ∪ T1. Let
v ∈ O X (F) be defined by v = v0 + u2 on E2 ∩ R and v = v1 on T1. Let D1 :=
D ∩ E1 and D2 := D ∩ (

(E2 ∩ T ) ∪ (
T \ R̄

))
. Then {D1, D2} is an open covering

of D and D1 ∩ D2 ⊂ E1 ∩ F . Let α ∈ H1({D1, D2} ,O X |D) be the cohomology
class defined by (u1v) |D1∩D2 ∈ O X (D1 ∩ D2) = Z1({D1, D2} ,O X |D). Then by

1 An open set D of C
n satisfies condition (2) in Lemma 2.1 if and only if D is p-convex in the

sense of Kajiwara-Kazama [10, page 2]. Note that the sentence “ϕ(D) is a subset of � . . . ”
should be “ϕ(D̊) is a subset of � . . . ” in the definition of a boundary mapping in Kajiwara-
Kazama [10, page 2].
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the argument in Abe [1, page 271] the holomorphic line bundle 	(D,O X |D)(α)|D∩R
is not associated to any Cartier divisor on D ∩ R.

A zero set N (l) of a linear function l(z1, z2, . . . , zn) = ∑n
k=1 ak zk + b on Cn ,

where a1, a2, . . . , an, b ∈ C and (a1, a2, . . . , an) �= (0, 0, . . . , 0), is said to be a
hyperplane of Cn .

Lemma 3.2. Let D be an open set of Cn and H a hyperplane of Cn. Let Z :=
D ∩ H. Then for every Cartier divisor d on D there exists a Cartier divisor d′ on
D such that the support

∣∣d′∣∣ of d′ is nowhere dense in Z and [d]|Z = [d′|Z ].
Proof. As usual we identify a Cartier divisor on a complex manifold with a Weil
divisor. Let d = ∑

λ∈� αλ Aλ, where Aλ is an irreducible analytic set of dimension
n − 1 and αλ ∈ Z for every λ ∈ �, be the expression of d as a Weil divisor. Let �′′
be the set of λ ∈ � such that Aλ is a connected component of Z . Let �′ := �\�′′,
d′ := ∑

λ∈�′ αλ Aλ and d′′ := ∑
λ∈�′′ αλ Aλ. Then the support

∣∣d′∣∣ = ⋃
λ∈�′ Aλ of

d′ is nowhere dense in Z . Let
{

Zµ

}
µ∈M , where M ⊂ N, be the set of connected

components of Z . There exists a system
{
Uµ

}
µ∈M of mutually disjoint open sets

of D such that Uµ is a neighborhood of Zµ for every µ ∈ M . Let U0 := D \ Z . We
choose a non-constant linear function l on Cn such that {l = 0} = H . If there exists
λ ∈ �′′ such that Zµ = Aλ, then let βµ := αλ. Otherwise let βµ := 0. Then d′′
as a Cartier divisor is defined by the system {(U0, 1)} ∪ {

(Uµ, lβµ)
}
µ∈M . It follows

that [d′′] is holomorphically trivial on U := ⋃
µ∈M Uµ. Since U is a neighborhood

of Z in D, the restriction [d′′]|Z is also holomorphically trivial. Then we have that

[d]|Z = [d′ + d
′′]|Z = ([d′] ⊗ [d′′]) |Z = [d′]|Z ⊗ [d′′]|Z = [d′|Z ].

A complex space (X,O X ) is said to be Cohen-Macaulay if the local C-algebra
O X, x is Cohen-Macaulay for every x ∈ X (see Raimondo-Silva [12]).

Lemma 3.3. Let (X,O X ) be a Cohen-Macaulay Stein space of pure dimension
n ≥ 2. Let D be an open set of X such that Hk(D,O X |D) = 0 for 2 ≤ k ≤ n − 1.
Let (θ, θ̃) : (X,O X ) → Cn be a holomorphic map, R and W open sets of X,
ε ∈ (0, 1) and b = (b1, b2, . . . , bn) ∈ Cn such that R � W ⊂ X \ Sing(X,O X ),
θ(W ) is an open set of Cn, the restriction θ |W : W → θ(W ) is biholomorphic,
θ(R) = P(n, ε), (θ |W )−1 (H(n, ε)) ⊂ D, |b1| ≤ 1 − ε, max2≤ν≤n |bν | = 1 and
(θ |W )−1 (b) ∈ ∂ D. Then there exists a cohomology class α ∈ H1(D,O X |D) such
that the holomorphic line bundle 	(D,O X |D)(α)|D∩R on D ∩ R is not associated to
any Cartier divisor on D ∩ R.

Proof. The proof proceed by induction on n = dim X . By Lemma 3.1 the assertion
is true if n = 2. We consider the case when n ≥ 3. Let θν := θ̃ zν for ν =
1, 2, . . . , n, where z1, z2, . . . , zn are the coordinates of Cn . We replace W by the
connected component of W which contains R̄. Let X0 be the irreducible component
of X which contains W . Since (X,O X ) is Stein, there exists f ∈ O X (X) such that
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[ f ] = [θn] − bn on X0 and [ f ] �≡ 0 on any irreducible component of X . Let
Y := {[ f ] = 0} = Supp

(
O X/ f O X

)
and O Y := (

O X/ f O X
) |Y . By the active

lemma (see Grauert-Remmert [8, page 100]) we have that

dim O X, x/ fxO X, x = dimx Y = n − 1 = dim O X, x − 1

for every x ∈ Y . Therefore fx is not a zero divisor of O X, x for every x ∈ Y and
(Y,O Y ) is a Cohen-Macaulay Stein space of pure dimension n − 1 (see Grauert-
Remmert [6, page 141] or Serre [15, page 85]). Let m : O X → O X be the homo-
morphism defined by mx (hx ) := fx hx for every hx ∈ O X, x and x ∈ X . Since the
sequence

0 → O X
m→ O X

ι̃→ O X/ f O X → 0

is exact, we have the long exact sequence of cohomology groups

· · · → Hk(D,O X |D) → Hk(D ∩ Y,O Y |D∩Y ) → Hk+1(D,O X |D) → · · · .

Since by assumption Hk(D,O X |D) = 0 for 2 ≤ k ≤ n − 1, we have that
Hk(D ∩ Y,O X |D∩Y ) = 0 for 2 ≤ k ≤ n − 2 and that the homomorphism
ι̃∗ : H1(D,O X |D) → H1(D ∩Y,O Y |D∩Y ) is surjective. Let (θ ′, θ̃ ′) : (Y,O Y ) →
Cn−1 be the holomorphic map such that θ̃ ′zν = (ι̃θν) |Y for ν = 1, 2, . . . , n − 1
(see Grauert-Remmert [8, page 22]). Let R′ := R ∩ Y , W ′ := W ∩ Y and
b′ := (b1, b2, . . . , bn−1). Then θ(x) = (θ ′(x), bn) for every x ∈ W ′, R′ � W ′ ⊂
Y \ Sing(Y,O Y ), θ ′(W ′) is an open set of Cn−1 and the restriction θ ′|W ′ : W ′ →
θ ′(W ′) is biholomorphic. We have that

θ ′(R′) × {bn} = θ(R′) = P(n, ε) ∩ {zn = bn} = P(n − 1, ε) × {bn} ,
(
θ ′|W ′

)−1
(H(n − 1, ε)) = (θ |W )−1 (H(n − 1, ε) × {zn = bn})

= (θ |W )−1 (H(n, ε)) ∩ W ′ ⊂ D ∩ Y, and
(
θ ′|W ′

)−1
(b′) = (θ |W )−1 (b) ∈ ∂ (D ∩ Y ) ,

where ∂ (D ∩ Y ) denotes the boundary of D ∩ Y in Y . By induction hypothe-
sis there exists α′ ∈ H1(D ∩ Y,O Y |D∩Y ) such that the holomorphic line bundle
	(D∩Y,O Y |D∩Y )(α

′)|D∩R′ on D∩R′ is not associated to any Cartier divisor on D∩R′.
Since ι̃∗ is surjective, there exists α ∈ H1(D,O X |D) such that ι̃∗(α) = α′. Assume
that there exists a Cartier divisor d on D ∩ R such that 	(D, O X |D)(α)|D∩R = [d].
By Lemma 3.2 there exists a Cartier divisor c on D ∩ R such that the support |c| is
nowhere dense in D ∩ R′ and [d]|D∩R′ = [c|D∩R′ ]. Then we have that

	(D∩Y, O Y |D∩Y )(α
′)|D∩R′ = 	(D, O X |D)(α)|D∩R′ = [d]|D∩R′ = [c|D∩R′ ]

and it is a contradiction. It follows that 	(D, O X |D)(α)|D∩R is not associated to any
Cartier divisor on D ∩ R.
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4. Theorems

Theorem 4.1. Let (X,O X ) be a (not necessarily reduced) Cohen-Macaulay Stein
space of pure dimension n and D an open set of X. Assume that the following two
conditions are satisfied.

i) Hk(D,O X |D) = 0 for 2 ≤ k ≤ n − 1.
ii) For every holomorphic line bundle L on D which is an element of the image of

the composition 	 of the homomorphisms

H1(D,O X |D)
˜red

∗
−→ H1(D,O )

e∗−→ H1(D,O ∗)

there exists a Cartier divisor d on D such that L = [d].
Then D is locally Stein at every point x ∈ ∂ D \ Sing (X,O X ).

Proof. We may assume that n ≥ 2. Assume that there exists a point x0 ∈ ∂ D \
Sing (X,O X ) such that D is not locally Stein at x0. Since X is Stein, there exist
a holomorphic map ( f, f̃ ) : (X,O X ) → Cn and an open set W of X such that
x0 ∈ W ⊂ X \ Sing (X,O X ), f (W ) is an open set of Cn and f |W : W → f (W ) is
biholomorphic (see Grauert-Remmert [7, page 151]). Take a Stein open set V of Cn

such that f (x0) ∈ V � f (W ). Let U := ( f |W )−1(V ). Then U is Stein, x0 ∈ U �
W and f (U ) = V . Since D is not locally Stein at x0, the open set f (D∩U ) of Cn is
not Stein. By Lemma 2.1 there exist a biholomorphic map ϕ : Cn → Cn , ε ∈ (0, 1)

and b = (b1, b2, . . . , bn) ∈ Cn such that ϕ(H(n, ε)) ⊂ f (D ∩ U ), |b1| ≤ 1 − ε,
max2≤ν≤n |bν | = 1 and ϕ(b) ∈ ∂ ( f (D ∩ U )). Let (θ, θ̃) := ϕ−1 ◦ ( f, f̃ ) :
(X,O X ) → Cn . We have that θ(W ) = ϕ−1( f (W )) is an open set of Cn and
θ |W : W → θ(W ) is biholomorphic. Let P := P(n, ε) and H := H(n, ε). Since
V is Stein and ϕ(H) ⊂ f (D ∩ U ) ⊂ V , we have that ϕ(P) ⊂ V ⊂ f (W ).
Let R := (θ |W )−1 (P). Then we have that θ(R) = P , (θ |W )−1 (H) ⊂ U and
(θ |W )−1 (b) ∈ ∂ D. By Lemma 3.3 there exists a holomorphic line bundle L ∈ im 	

such that L|D∩R is not associated to any Cartier divisor on D ∩ R. On the other
hand by assumption there exists a Cartier divisor d on D such that L = [d] and
therefore L|D∩R = [d|D∩R], which is a contradiction. It follows that D is locally
Stein at every point x ∈ ∂ D \ Sing (X,O X ).

Remark 4.2. Condition i) in Theorem 4.1 can be replaced by the following weaker
one:

i)′ The dimension of Hk(D,O X |D) is at most countably infinite for every integer
k such that 2 ≤ k ≤ n − 1.

Proof. If condition i)′ is satisfied, then by Ballico [3, Proposizione 7], which
generalizes Siu [16, Theorem A], we have that dim Hk(D,O X |D) < +∞ for
2 ≤ k ≤ n − 1. We also have that Hk(D,O X |D) = 0 for k ≥ n by Siu [17]
and by Reiffen [13, page 277]. It follows that Hk(D,O S|D) = 0 for k ≥ 2 by
Raimondo-Silva [12].
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Every complex manifold is Cohen-Macaulay (see Grauert-Remmert [6, page 142]).
The image of H1(D,O ) → H1(D,O ∗) coincides with the set of topologically
trivial holomorphic line bundles on D. Therefore by Theorem 4.1 and by Docquier-
Grauert [5] we obtain the following theorem.

Theorem 4.3. Let X be a Stein manifold of dimension n and D an open set of X
such that Hk(D,O ) = 0 for 2 ≤ k ≤ n − 1. Then the following four conditions
are equivalent.

(1) D is Stein.
(2) For every holomorphic line bundle L on D there exists a positive Cartier divi-

sor d on D such that L = [d].
(3) For every holomorphic line bundle L on D there exists a Cartier divisor d on

D such that L = [d].
(4) For every topologically trivial holomorphic line bundle L on D there exists a

Cartier divisor d on D such that L = [d].
Corollary 4.4 (Abe [1, Theorem 3]). Let X be a Stein manifold of dimension 2
and D an open set of X. Then the four conditions in Theorem 4.3 are equivalent.

Let X be a complex manifold of dimension n and ϕ : X → R a function of
class C 2. Then ϕ is said to be weakly 2-convex if for every x ∈ X the Levi form of
ϕ at x has at most one negative eigenvalue. By the theorem of Andreotti-Grauert [2]
we have the following corollary.

Corollary 4.5 (Ballico [4, Theorem 1]). Let X be a Stein manifold and ϕ : X →
R a weakly 2-convex function of class C 2. Let D := {ϕ < c}, where c ∈ R is a
constant. Then the four conditions in Theorem 4.3 are equivalent.

We also have the following corollary (see Serre [14, page 65]).

Corollary 4.6 (Laufer [11, Theorem 4.1]). Let X be a Stein manifold of dimen-
sion n and D an open set of X. Then the following two conditions are equivalent.

(1) D is Stein.
(2) Hk(D,O ) = 0 for 1 ≤ k ≤ n − 1.
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