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Holomorphic line bundles and divisors
on a domain of a Stein manifold
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Abstract. Let D be an open set of a Stein manifold X of dimension n such that
Hk(D, 0) =0for2 <k < n— 1. We prove that D is Stein if and only if
every topologically trivial holomorphic line bundle L on D is associated to some
Cartier divisor 0 on D.
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1. Introduction

For every holomorphic line bundle L on a reduced Stein space X there exists a
global holomorphic section o € TI'(X, &' (L)) such that the zero set {o = 0} is
nowhere dense in X. Therefore L is associated to the positive Cartier divisor div(o)
on X (see Gunning [9, pages 122—125]).

Conversely the author [1, Theorem 3] proved that an open set D of a Stein
manifold X of dimension two is Stein if every holomorphic line bundle L on D
is associated to some (not necessarily positive) Cartier divisor @ on D. Moreover
Ballico [4, Theorem 1] proved that an open set D of a Stein manifold X of dimen-
sion more than two of the form D = {¢ < ¢}, where ¢ : X — R is a weakly
2-convex function of class 4 2 in the sense of Andreotti-Grauert, is Stein if every
holomorphic line bundle L on D is associated to some Cartier divisor 0 on D.

In this paper we prove that an open set D of a Stein manifold X of dimen-
sion n such that H*(D, 0') = 0 for 2 < k < n — 1 is Stein if every topologi-
cally trivial holomorphic line bundle L on D is associated to some Cartier divisor
0 on D (see Theorem 4.3). This generalizes both results above (see Corollaries 4.4
and 4.5).

The proof is by induction on n = dim X and the induction hypothesis is
applied to the complex subspace (Y, (ﬁx/fﬁx) |y), where f € Ox(X) and
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Y = {[f] = 0}. Therefore it is inevitable to consider complex spaces which are
not necessarily reduced (see Theorem 4.1).

ACKNOWLEDGEMENT. The author would like to express his gratitude to the ref-
eree for his/her crucial remarks and valuable comments on earlier versions of the

paper.

2. Preliminaries

Throughout this paper complex spaces are always assumed to be second countable.
We always denote by & without subscript the reduced complex structure sheaf of
an arbitrary complex space. In other words we always set & := O x /Ny for a
complex space (X, € x), where .+ is the nilradical of the complex structure sheaf
Ox.

Let (X, Ox) be a (not necessarily reduced) complex space and (red, réd) :
(X,0) — (X, Ox) the reduction map. We denote by [ f] the valuation x +—
fe+my € Ox x/my =C,x € U, forevery f € 0 x(U), where U is an open set
of X. Then the assignment f +— [ f]is identified with red : & x(U) — O (U) (see
Grauert-Remmert [8, page 87]).

Let X be a reduced complex space and e : & — O* the homomorphism of
sheaves on X defined by ey (fy) := exp (271\/——1 fx) forevery f, € Oy and x €
X, where 0* denotes the multiplicative sheaf of invertible germs of holomorphic
functions. Then e induces the homomorphism e* : H' (X, 0) — H' (X, 0*). As
usual we identify the cohomology group H'(X, €*) with the set of holomorphic
line bundles on X.

Let 0 be a Cartier divisor on a reduced complex space X defined by the mero-
morphic Cousin-II distribution {(U;, m;)};c; on X (see Gunning [9, page 121]). We
denote by [0] the holomorphic line bundle on X defined by the cocycle {m i/m j} €
Zl({Ui},-E 1, 0*) and we say that [0] is the holomorphic line bundle associated to
0. We say that 0 is positive (or effective) if ® can be defined by a holomorphic
Cousin-II distribution.

Let (X, O x) be a (not necessarily reduced) complex space and D an open
set of X. Then D is said to be locally Stein at a point x € 9D if there exists a
neighborhood U of x in X such that the open subspace (D N U, O x|pny) is Stein.

Throughout this paper we use the following notation:

A(r) ={teC|lt] <r}forr >0, A:=A(l),
P(n,e) = A(l+¢)", and

H(n, ¢) :=A"U{(Z1,12,...,zn)e(cn 1—e<lz|<1+e,

2]l < 146, |z3sl < 1+e, ..., |zal < 1+8}

forn >2and 0 < ¢ < 1.
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The pair (P (n, ), H(n, ¢)) is said to be a Hartogs figure. We have the following
lemma which characterizes a Stein open set of C".

Lemma 2.1 (Kajiwara-Kazama [10, Lemmas 1 and 2]). Ler D be an open set of
C". Then the following two conditions are equivalent.

(1) D is Stein.

(2) There do not exist a biholomorphic map ¢ : C" — C", ¢ € (0,1) and b =
(b1, ba, ..., by)€C" such that o(H (n, €)) C D, |b1| < 1—¢&, maxo<y<, |by|=
1 and ¢(b) € 3D.!

3. Lemmas

In this section we denote by ®(x ¢ ,) the composition of the induced homomor-
phisms

H'(X,0x) =% H'(X, 0) -5 H'(X, 0%)
for every complex space (X, O x).

Lemma 3.1. Ler (X, O x) be a Stein space of pure dimension 2 and D an open set
of X. Let 8,0) : (X, Ox) — C2 be a holomorphic map, R and W open sets of
X, e€(0,1)andb = (b1, by) € C?> suchthat R € W C X \ Sing(X, O x), (W)
is an open set of C?, the restriction 0|y : W — 6(W) is biholomorphic, 0(R) =
P2,¢), Olw) " (HQ2,8)) C D, |bi| <1 —¢, |bs] = 1and O|w)"" (b) € dD.
Then there exists a cohomology class @ € HY (D, O x|p) such that the holomorphic

line bundle ® (p ¢ |, (@)|pnr on D N R is not associated to any Cartier divisor
on DNR.

Proof. Let 6, := 6z, for v = 1,2, where z; and 7z, are the coordinates of C2. Let
E, :={[6y] # by} for v = 1,2. Since (E,, O x|g,) is Stein and 1/ ([6,] — b)) €
O (E,), there exists u,, € O x(E,) such that [u,] = 1/ ([6,] — b)) on E, forv =
1,2, Let T := {|[01]] < 1+¢e}and T1 := {|[01]] < 1+¢, [[62]] > 1+¢/2} U
(T \ R). Then (T, O'x|r) is Stein and {R, T1} is an open covering of 7. Since
H'({R, T}, Ox|r) =0and RN T; C E», there exist vg € O x(R) = O (R) and
vy € O x(T)) such that up = vy —vgon RNTy. Let F := (E,NR)UT. Let
v € O x(F) be defined by v = vg + up on E; N R and v = vy on T}. Let Dy :=
DNEjand Dy :== DN ((E;NT)U (T \ R)). Then {Dy, D,} is an open covering
of Dand DN D, C E;NF. Leta € H'({Dy, Dy}, O x|p) be the cohomology
class defined by (u1v) |p,np, € € x(D1 N Dy) = Z'({Dy, D2}, O x|p). Then by

I An open set D of C" satisfies condition (2) in Lemma 2.1 if and only if D is p-convex in the
sense of Kajiwara-Kazama [10, page 2]. Note that the sentence “¢(D) is a subset of 2 ...”
should be “g&(lo)) is a subset of €2 ...” in the definition of a boundary mapping in Kajiwara-
Kazama [10, page 2].
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the argument in Abe [1, page 271] the holomorphic line bundle ®p 4 ,|,)(®)|pnr
is not associated to any Cartier divisor on D N R.

A zero set N(/) of alinear function /(z1, 22, ..., 2n) = >y akzk + bon C",
where a1, ay,...,a,,b € Cand (a1, ay,...,a,) # (0,0,...,0), is said to be a
hyperplane of C",

Lemma 3.2. Let D be an open set of C" and H a hyperplane of C". Let Z =
D N H. Then for every Cartier divisor 0 on D there exists a Cartier divisor 0’ on
D such that the support |D/| of 0 is nowhere dense in Z and [0]|z7 = [0'|z].

Proof. As usual we identify a Cartier divisor on a complex manifold with a Weil
divisor. Let 0 = er A @1 Ay, where A; is an irreducible analytic set of dimension
n —1and o, € Z for every A € A, be the expression of 9 as a Weil divisor. Let A”
be the set of & € A such that A, is a connected component of Z. Let A’ := A\ A",
0 =) cn Ay andd” := ), v @Ay, Then the support }D’| = Usepr As of

0’ is nowhere dense in Z. Let {Zﬂ}ue - Where M C N, be the set of connected

components of Z. There exists a system {U “}u < ©of mutually disjoint open sets
of D such that U, is a neighborhood of Z,, for every u € M. Let Uy := D\ Z. We
choose a non-constant linear function / on C" such that {{ = 0} = H. If there exists
A € A” such that Z, = A,, then let B, := ;. Otherwise let 8, := 0. Then ?”
as a Cartier divisor is defined by the system {(Up, 1)} U {(U , lﬂ#)}ueM. It follows
that [0”] is holomorphically trivial on U := {J,,c s Uy Since U is a neighborhood

of Z in D, the restriction [0”]|z is also holomorphically trivial. Then we have that
Pllz =0 +3"z= (P10 10") Iz =[1z® "z = [¥z]. O

A complex space (X, O'x) is said to be Cohen-Macaulay if the local C-algebra
O x . x is Cohen-Macaulay for every x € X (see Raimondo-Silva [12]).

Lemma 3.3. Let (X, O x) be a Cohen-Macaulay Stein space of pure dimension
n > 2. Let D be an open set of X such that HX(D, Ox|p) = Ofor2 <k<n-—1.
Let (6,0) : (X,0x) — C" be a holomorphic map, R and W open sets of X,
e € (0,1)andb = (b1,by,...,by) € C" suchthat R € W C X \ Sing(X, Ox),
O(W) is an open set of C", the restriction 0|y : W — 0(W) is biholomorphic,
O(R) = P(n,¢), Olw)"' (H(n,e)) C D, |bi] < 1—c¢, maxo<y<p |by| = 1 and
(0|W)*1 (b) € 0D. Then there exists a cohomology class o € HY(D, O x|p) such
that the holomorphic line bundle ®(p ¢ |, (@) pnr on D N R is not associated to
any Cartier divisor on D N R.

Proof. The proof proceed by induction on n = dim X. By Lemma 3.1 the assertion
is true if n = 2. We consider the case when n > 3. Let 6§, := 0z, forv =
1,2,...,n, where z1, 22, . .., z, are the coordinates of C". We replace W by the
connected component of W which contains R. Let X¢ be the irreducible component
of X which contains W. Since (X, O x) is Stein, there exists f € € x(X) such that
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[f] = [6,] — b, on Xo and [f] # O on any irreducible component of X. Let
Y :={[f] =0} = Supp (ﬁx/fﬁx) and Oy = (ﬁx/fﬁx) ly. By the active

lemma (see Grauert-Remmert [8, page 100]) we have that
dimOx  /fxOx y =dimyY =n—1=dim0x , — 1

for every x € Y. Therefore f is not a zero divisor of &' x , for every x € Y and
(Y, Oy) is a Cohen-Macaulay Stein space of pure dimension n — 1 (see Grauert-
Remmert [6, page 141] or Serre [15, page 85]). Let m : &' x — O x be the homo-
morphism defined by my (hy) := fih, forevery hy € Ox , and x € X. Since the
sequence

0 Ox 2 Oy Ox/fOx —0

is exact, we have the long exact sequence of cohomology groups
- = HYD, Ox|p) > H'(DNY, Oylpny) - H'(D, Ox|p) — -

Since by assumption HX(D,Ox|p) = 0for2 < k < n — 1, we have that
HY(DNY,Ox|pny) = 0for2 < k < n — 2 and that the homomorphism
*:HYD,Ox|p) — H(DNY, Oy|pny) is surjective. Let (6, 60') : (Y, Oy) —
C"1 be the holomorphic map such that é’zv = {0, |y forv=12,....n—1
(see Grauert-Remmert [8, page 22]). Let " := RNY, W = WNY and
b := (b1,by,...,by_1). Then 6(x) = (0'(x), b,) foreveryx € W, R' € W' C
Y \ Sing(Y, Oy), 0’ (W’) is an open set of C"~! and the restriction 6’|y : W' —
0’(W’) is biholomorphic. We have that

0'(R') x (b} = O(R) = P(n, &) N{za = by} = P(n — 1, &) x {by},

@'lw) ™ Hn—1.2) = @lw) " (Hn—1,8) x {20 = by})
=@lw) " (Hn,e)NW cDNY, and
@1w) " @) =0@w) by eadNY),

where o (D NY) denotes the boundary of D N Y in Y. By induction hypothe-
sis there exists o’ € H 1(D NY, Oy|pny) such that the holomorphic line bundle
D (pny, yipay) (@) pnrr on DNR' is not associated to any Cartier divisor on DNR'.
Since i* is surjective, there exists @ € H' (D, 0 x|p) such that 7* («) = . Assume
that there exists a Cartier divisor 0 on D N R such that ®p ¢, (@)|pnr = [0].
By Lemma 3.2 there exists a Cartier divisor ¢ on D N R such that the support |¢| is
nowhere dense in D N R’ and [0]|pnr’ = [¢|pnr’]. Then we have that

@ pny, oy 1) @) Dar = Pb, 6 x1p) (@) | pArr = Ol DR = [¢lpnr’]

and it is a contradiction. It follows that ®p ¢ ,|,)(@)|pnr is not associated to any
Cartier divisor on D N R. O]
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4. Theorems

Theorem 4.1. Letr (X, O x) be a (not necessarily reduced) Cohen-Macaulay Stein
space of pure dimension n and D an open set of X. Assume that the following two
conditions are satisfied.

i) HY(D,Ox|p) =0for2 <k <n— 1.
ii) For every holomorphic line bundle L on D which is an element of the image of
the composition @ of the homomorphisms

~ K
red

H'(D, Ox|p) — H'(D, 0) — H'(D, 0*)
there exists a Cartier divisor 0 on D such that L = [0].
Then D is locally Stein at every point x € 3D \ Sing (X, O'x).

Proof. We may assume that n > 2. Assume that there exists a point xo € 9D \
Sing (X, O x) such that D is not locally Stein at xg. Since X is Stein, there exist

a holomorphic map (f, f ) : (X, Ox) — C" and an open set W of X such that
xo € W C X\Sing(X, Ox), f(W)isanopensetof C" and f|w : W — f(W)is
biholomorphic (see Grauert-Remmert [7, page 151]). Take a Stein open set V of C"
such that f(xg) € V @ f(W). LetU := (flw)_l(V). Then U is Stein, xg € U &
W and f(U) = V. Since D is not locally Stein at x¢, the open set f(DNU) of C" is
not Stein. By Lemma 2.1 there exist a biholomorphic map ¢ : C* — C", ¢ € (0, 1)
and b = (b1, by, ..., by) € C" such that p(H(n,e)) C f(DNU), |b1| < 1—e¢,
maxo<y<y |by| = 1 and @(b) € 9 (f(DNU)). Let (8,0) = o lo £, ) :
(X,0x) — C". We have that (W) = ¢~ '(f(W)) is an open set of C* and
Olw : W — 0(W) is biholomorphic. Let P := P(n,¢) and H := H(n, ¢). Since
V is Stein and p(H) C f(DNU) C V, we have that p(P) C V C f(W).
Let R := (0|w)~' (P). Then we have that (R) = P, (0|w)"' (H) c U and
C w) "L (b) € aD. By Lemma 3.3 there exists a holomorphic line bundle L € im &
such that L|png is not associated to any Cartier divisor on D N R. On the other
hand by assumption there exists a Cartier divisor 0 on D such that L = [0] and
therefore L|png = [0|pnr], which is a contradiction. It follows that D is locally
Stein at every point x € D \ Sing (X, O'x). O

Remark 4.2. Condition i) in Theorem 4.1 can be replaced by the following weaker
one:

i)’ The dimension of H*(D, O x|p) is at most countably infinite for every integer
ksuchthat2 <k <n—1.

/

Proof. If condition i)’ is satisfied, then by Ballico [3, Proposizione 7], which
generalizes Siu [16, Theorem A], we have that dim H*(D, 0 x|p) < +oo for
2 <k < n—1. We also have that H"(D, Ox|p) = 0 for k > n by Siu [17]
and by Reiffen [13, page 277]. It follows that HK(D, Os|p) = 0 fork > 2 by
Raimondo-Silva [12]. ]
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Every complex manifold is Cohen-Macaulay (see Grauert-Remmert [6, page 142]).
The image of H'(D, ) — H'(D, 0*) coincides with the set of topologically
trivial holomorphic line bundles on D. Therefore by Theorem 4.1 and by Docquier-
Grauert [5] we obtain the following theorem.

Theorem 4.3. Let X be a Stein manifold of dimension n and D an open set of X
such that H*(D, 0) = 0 for 2 < k < n — 1. Then the following four conditions
are equivalent.

(1) D is Stein.

(2) For every holomorphic line bundle L on D there exists a positive Cartier divi-
sor 0 on D such that L = [0].

(3) For every holomorphic line bundle L on D there exists a Cartier divisor 0 on
D such that L = [0].

(4) For every topologically trivial holomorphic line bundle L on D there exists a
Cartier divisor 0 on D such that L = [0].

Corollary 4.4 (Abe [1, Theorem 3]). Let X be a Stein manifold of dimension 2
and D an open set of X. Then the four conditions in Theorem 4.3 are equivalent.

Let X be a complex manifold of dimension n and ¢ : X — R a function of
class € 2. Then ¢ is said to be weakly 2-convex if for every x € X the Levi form of
@ at x has at most one negative eigenvalue. By the theorem of Andreotti-Grauert [2]
we have the following corollary.

Corollary 4.5 (Ballico [4, Theorem 1]). Let X be a Stein manifold and ¢ : X —
R a weakly 2-convex function of class €. Let D := {¢ < c}, where ¢ € Risa
constant. Then the four conditions in Theorem 4.3 are equivalent.

We also have the following corollary (see Serre [14, page 65]).

Corollary 4.6 (Laufer [11, Theorem 4.1]). Let X be a Stein manifold of dimen-
sion n and D an open set of X. Then the following two conditions are equivalent.

(1) D is Stein.
(2) HX(D,0)=0for1 <k <n—1.
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