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A regularity theory for scalar local minimizers
of splitting-type variational integrals

MICHAEL BILDHAUER, MARTIN FUCHS AND XIAO ZHONG

Abstract. Starting from Giaquinta’s counterexample [12] we introduce the class
of splitting functionals being of (p, q)-growth with exponents p ≤ q < ∞ and
show for the scalar case that locally bounded local minimizers are of class C1,µ.
Note that to our knowledge the only C1,µ-results without imposing a relation
between p and q concern the case of two independent variables as it is outlined
in Marcellini’s paper [15], Theorem A, and later on in the work of Fusco and
Sbordone [10], Theorem 4.2.
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1. Introduction

In 1987 Giaquinta [12] showed that the function

u0(x) :=
√

n − 4

24
x2

n

/√
x2

1 + . . . + x2
n−1 ,

x ∈ B1(0) = {
y ∈ R

n : |y| < 1
}
,

is a local minimizer of the energy

J [w] =
∫

B1(0)

[ n−1∑
i=1

(∂iw)2 + 1

2
(∂nw)4

]
dx , (1.1)

provided that n ≥ 6. Since u0 is unbounded, Giaquinta’s example clearly demon-
strates that for anisotropic variational integrals in general no regularity results for
local minimizers can be expected, and this even concerns the scalar situation! So
one may ask for an admissible range of anisotropy implying that local minimizers
are locally bounded (and even share a higher degree of regularity) or one may try
to compensate the anisotropic structure of the integrand by adding certain natural
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hypotheses on the behaviour of the local minimizer leading to its regularity. But
let us first have a closer look at Giaquinta’s energy J . If we write z = (z̃, zn),
z̃ := (z1, . . . , zn−1), for elements z of Rn , n ≥ 2, then the energy density occurring
in (1.1) is of splitting form, i.e. we have an integrand F : Rn → [0, ∞) such that

F(z) = f (z̃) + g(zn) (1.2)

with C2-functions f : Rn−1 → [0, ∞), g : R → [0, ∞) satisfying with exponents
1 < p ≤ q < ∞ and with constants λ, � > 0 the ellipticity conditions (y, z ∈ Rn)

λ(1 + |z̃|2) p−2
2 |ỹ|2 ≤ D2 f (z̃)(ỹ, ỹ) ≤ �(1 + |z̃|2) p−2

2 |ỹ|2 , (1.3)

λ(1 + |zn|2) q−2
2 |yn|2 ≤ D2g(zn)(yn , yn) ≤ �(1 + |zn|2) q−2

2 |yn|2 . (1.4)

Of course (1.4) could be stated in a simpler form but (1.2) just serves as a model
case: in fact we could consider any decomposition z = (z(1), z(2)) of the vec-
tor z and replace (1.2) by F(z) = f (z(1)) + g(z(2)) with f and g satisfying the
appropriate versions of (1.3) and (1.4). We also like to remark that for p ≥ 2 the
degenerate variants of (1.3), (1.4) can be considered so that Giaquinta’s energy (1.1)
is included. Now, if � is an open set in Rn , we let

I [w, �] =
∫

�

F(∇w) dx , (1.5)

and since (1.3), (1.4) imply the growth estimate

a|z|p − b ≤ F(z) ≤ A|z|q + B , z ∈ R
n , (1.6)

with constants a, A > 0, b, B ≥ 0, it is natural to call a function u from the local
Sobolev space W 1

p,loc(�) (see [1] for a definition) a local minimizer of I from (1.5)
iff I [u, �′] < ∞ and I [u, �′] ≤ I [w, �′] for any open set �′ s.t. �′ � � and for
all w ∈ W 1

p,loc(�) such that spt(u − w) � �′ .
Coming back to the regularity problem for local minimizers u, it turns out that

conditions of the form
q ≤ c(n)p (1.7)

are sufficient for the local boundedness of the function u and also for its higher
regularity. Here c(n) is a constant depending on n giving rather large values if
n is small but with the unpleasant property c(n) → 1 as n → ∞. We mention
the contributions of Fusco and Sbordone [10], Marcellini [15, 16] and Hong [14],
where one also finds further references. It should be remarked that results of this
type usually do not refer to a splitting structure of the integrand F as stated in
(1.2): in place of this one works with (1.6) combined with an appropriate ellipticity
condition, or one just requires that

λ(1 + |z|2) p−2
2 |y|2 ≤ D2 F(z)(y, y) ≤ �(1 + |z|2) q−2

2 |y|2 , (1.8)
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which obviously implies the validity of (1.6). The reader should note that for in-
tegrands F satisfying (1.2) the conditions (1.3), (1.4) do not imply (1.8), and that
conversely (1.3), (1.4) can not be deduced from (1.8).

Let us now look at a special situation for which it is possible to improve (1.7):
if � is a bounded domain and if u is an I [·, �]-minimizer for boundary data u ∈
L∞(�), which means that we are given u ∈ W 1

p(�) ∩ L∞(�) such that I [u, �] <

∞ and where the boundary condition has to be understood in the sense that u −
u ∈ ◦

Wp
1(�), then the maximum-principle implies u ∈ L∞(�). From this point of

view it makes sense to study local minimizers from the space L∞
loc(�). Assuming

this together with (1.8), Choe [7] proved the smoothness of u under the dimension-
less condition q < p +1, which was replaced by q < p +2 in [2] and [3]. We wish
to remark that the bound q < p + 2 was first introduced by Esposito, Leonetti and
Mingione in the paper [8]. If the integrand F is of splitting type satisfying (1.3),
(1.4) with q ≤ 2p, then in the recent paper [6] we could show the differentiability
of local minimizers u ∈ L∞

loc(�) which leads to a partial improvement of earlier
results of Ural’tseva and Urdaletova [19]. In the present note we are going to apply
new methods leading to the following results:

Theorem 1.1. Let 1 < p ≤ q < ∞, and let F satisfy (1.2), (1.3) and (1.4).
Consider a local I [·, �]-minimizer u of class W 1

p,loc(�) ∩ L∞
loc(�). Then we have:

i) ∇u ∈ Lm
loc(�; Rn) for any finite exponent m.

ii) If in addition p ≥ 2, then u ∈ C1,µ(�) holds for all µ < 1.

Remark 1.2. If the case of degenerate ellipticity is considered in (1.3) and (1.4),
i.e. if the 1 in these inequalities is replaced by 0, then we have Theorem 1.1, i)
under the restriction that p ≥ 2. We like to mention that for the non-splitting
but degenerate case higher integrability of ∇u has been established earlier in [9]
working with the bound q < p(n + 1)/n, we also refer to [5].

Remark 1.3. We want to emphasize again that our results are not limited to the
specific decomposition (1.2). With minor modifications we can also discuss the
integrand

F(z) =
n∑

i=1

(1 + z2
i )

pi /2, z ∈ R
n ,

with exponents 1 < pi < ∞. Alternatively we may consider a decomposition

F(z) := F (1)(z(1)) + F (2)(z(2)) ,

where for example z(1) := (z1, . . . , zk), z(2) := (zk+1, . . . zn) with 1 ≤ k < n
and where F (1) and F (2) satisfy ellipticity conditions like (1.3) and (1.4) with
exponents p1 and p2. Another possible extension concerns the decomposition
F(z) = f (z) + g(zn), where now f depends on the full gradient. In addition
we can include the dependence of g on more than one partial derivative provided
we have the appropriate variants of (1.3) and (1.4).
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Remark 1.4. Going through the proof of Theorem 1.1 one easily checks that the
explicit additive structure of F itself formulated in (1.2) is not really needed. In
fact, if we drop (1.2) and replace (1.3) and (1.4) by the assumption

λ
[
(1+|z̃|2) p−2

2 |ỹ|2+(1 + |zn|2) q−2
2 |yn|2

]
≤D2 F(z)(y, y)

≤�
[
(1+|z̃|2) p−2

2 |ỹ|2+(1+|zn|2) q−2
2 |yn|2

]
,

then we still have our results stated above.

Remark 1.5. It is easy to extend Theorem 1.1 to non-autonomous energies F(x, z),
x ∈ �, z ∈ Rn , provided Dx Dz F(x, z) satisfies a natural growth condition.

Remark 1.6. In the case of vector-valued functions we have much weaker results
which are summarized in [4]. However, if n = 2, then Theorem 1.1, ii) is true.

As an application of Theorem 1.1 we consider the following variant of Gi-
aquinta’s energy which was introduced by Fusco and Sbordone (see [10], formula
(3.4)): for q > 2 and a positive constant c let

Jq [w] :=
∫

B1(0)

[
n−1∑
i=1

(∂iw)2 + 2c

q
|∂nu|q

]
dx .

If n ≤ 3, then according to Theorem 3.1 in [10] any local Jq -minimizer is lo-
cally bounded independent of the value of q, whereas Fusco and Sbordone obtain
C1,α-regularity for the non-degenerate variant of Jq if q ≤ 2n/(n − 2) is satisfied
(see Theorem 4.2 in [10]), i.e. they require the bound q ≤ 6 in the 3D-case. But
Theorem 1.1 combined with the local boundedness result of [10] shows

Corollary 1.7. If n ≤ 3 and if q ≥ 2 is arbitrary, then all local minima of the
functional Jq belong to the class C1,α(B1(0)) for an exponent α > 0.

We leave it to the reader to give a version of this corollary valid for more
general functionals on three-dimensional domains.

Finally, we look at the global minimization problem for which we can state

Corollary 1.8. Under the hypotheses of Theorem 1.1 or of Corollary 1.7 consider
a function ū ∈ L∞(�) with finite energy. Then, if u denotes the unique minimizing
map for boundary values ū, we have smoothness of u in the interior of �.
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2. Proof of Theorem 1.1

Obviously Theorem 1.1, ii) follows from part i) combined with Lemma 3.1. To
prove i) we fix a ball B := BR(x0) with compact closure in � and consider the
mollification (u)ε with a small radius ε > 0. Let uε denote the unique Lipschitz
function minimizing I [·, B] in the class of all Lipschitz mappings B → R for
boundary values (u)ε , i.e. uε denotes the Hilbert-Haar solution (see, e.g., [17], The-
orem 4, page 162). The main properties of this approximation are summarized in

Lemma 2.1. i) Passing to the limit ε → 0 we have

uε ⇁ u in W 1
p(B) ,

∫
B

F(∇uε) dx →
∫

B
F(∇u) dx .

ii) ‖uε‖L∞(B) is bounded independent of ε.

Proof. i) The minimality of uε implies∫
B

F(∇uε) dx ≤
∫

B
F(∇(u)ε) dx ,

and from Jensen’s inequality we deduce∫
B

F(∇(u)ε) dx ≤
∫

B
F(∇u) dx + O(ε)

with O(ε) → 0 as ε → 0. Due to the growth of F we find supε>0 ‖uε‖W 1
p(B) <

∞, so that uε ⇁ ū in W 1
p(B) for some function ū from this class. By lower

semicontinuity it holds∫
B

F(∇ū) dx ≤ lim inf
ε→0

∫
B

F(∇uε) dx ,

hence ∫
B

F(∇ū) dx ≤
∫

B
F(∇u) dx .

On the other hand we have uε − (u)ε ∈ ◦
Wp

1(B), which means ū − u ∈ ◦
Wp

1(B).
Clearly u minimizes I [·, B] w.r.t. its own boundary values, and the strict convexity
of F implies ū = u.

ii) Let v := min{uε, sup∂ B(u)ε}. Then v is Lipschitz on B with trace (u)ε ,
thus

I [uε, B] ≤ I [v, B]
and in conclusion uε ≤ sup∂ B(u)ε . In the same way we obtain uε ≥ min∂ B(u)ε ,
and since u ∈ L∞(B), the claim follows from these estimates.
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Lemma 2.2. The functions uε are of class C1,µ(B) ∩ W 2
2,loc(B) for any µ < 1.

Proof. This result is standard and can be found in the textbook of Massari and
Miranda, [17], Theorem 5, page 166. The first lines of the proof of Lemma 3.1
summarize the idea observing that by definition of uε we here already have ∇uε ∈
L∞(B; Rn).

Lemma 2.3 (Variants of Caccioppoli’s inequality). For any numbers α, β ≥ 0
and for all η ∈ C∞

0 (B) s.t. 0 ≤ η ≤ 1 we have∫
B

D2 F(∇uε)(∂n∇uε, ∂n∇uε)

α
2
n,εη

2 dx

≤ c(α)

∫
�

D2 F(∇uε)(∇η, ∇η)

α+2

2
n,ε dx,

(2.1)

∫
B

D2 F(∇uε)(∂γ ∇uε, ∂γ ∇uε)
̃
β
2
ε η2 dx

≤ c(β)

∫
B

D2 F(∇uε)(∇η, ∇η)
̃
β+2

2
ε dx .

(2.2)

In (2.2) (and in what follows) we always take the sum w.r.t. γ from 1 to n − 1.
c(α), c(β) denote positive constants independent of ε, and we have set: 
n,ε =
1 + (∂nuε)

2, 
̃ε = 1 + |∇̃uε |2, ∇̃ := (∂1, . . . , ∂n−1).

Proof. See, e.g., the beginnings of Section 3 and Section 4 of [6]. We like to remark
that by Lemma 2.2 any first partial derivative of uε is a solution of an uniformly
elliptic equation with continuous coefficients so that by standard potential theory
we get ∂kuε ∈ W 1

m,loc(B) for any m < ∞ and all k = 1, . . . , n, i.e. uε ∈ W 2
m,loc(B)

for all m < ∞. For this reason the calculations leading to (2.1) and (2.2), which
were carried out in [6] for a different type of approximation, can be justified in the
present setting.

Now, with α ≥ 0 and η ∈ C∞
0 (B), 0 ≤ η ≤ 1, being fixed for the moment we

consider the expression∫
B

η2

q+2+α

2
n,ε dx =

∫
B

η2

q+α

2
n,ε dx +

∫
B

∂nuε∂nuεη
2


q+α
2

n,ε dx (2.3)

which is well defined by the Lipschitz continuity of uε , and according to Lemma 2.2
we are allowed to integrate by parts in the second term on the r.h.s. of (2.3), i.e.∫

B
∂nuε∂nuεη

2

q+α

2
n,ε dx = −

∫
B

uε∂n

[
∂nuεη

2

q+α

2
n,ε

]
dx .
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Using Lemma 2.1 ii), we see that∫
B

η2

q+α+2

2
n,ε dx

≤ c

[ ∫
B

η2

q+α

2
n,ε dx +

∫
B

η|∇η||∂nuε |

q+α

2
n,ε dx +

∫
B

η2|∂n∂nuε |

q+α

2
n,ε dx

]
=: c

[ ∫
B

η2

q+α

2
n,ε + I1 + I2

] (2.4)

with a constant c depending also on α but being independent of ε and η. In order
to handle I1 and I2 we will apply Young’s inequality with small parameter τ which
enables us to absorb terms in the l.h.s. of (2.4). We have

I1 ≤
∫

B
η|∇η|


q+1+α
2

n,ε dx ≤ τ

∫
B

η2

q+2+α

2
n,ε dx + c(τ )

∫
B

|∇η|2

q+α

2
n,ε dx ,

I2 =
∫

B
η2|∂n∂nuε |


q−2+α
4

n,ε 

q+2+α

4
n,ε dx

≤ τ

∫
B



q+2+α

2
n,ε η2 dx + c(τ )

∫
B

η2|∂n∂nuε |2

q−2+α

2
n,ε dx ,

which implies by (2.4)∫
B

η2

q+2+α

2
n,ε dx ≤ c

[ ∫
B

(
η2 + |∇η|2)
 q+α

2
n,ε dx + J

]
,

J : =
∫

B
η2|∂n∂nuε |2


q−2+α
2

n,ε dx .

(2.5)

Then we use (1.3), (1.4) and (2.1) to obtain

J ≤ c
∫

B
η2 D2 F(∇uε)(∂n∇uε, ∂n∇uε)


α
2
n,ε dx

≤ c
∫

B
D2 F(∇uε)(∇η, ∇η)


α+2
2

n,ε dx

≤ c

[ ∫
B


̃
p−2

2
ε 


α+2
2

n,ε |∇η|2 dx +
∫

B
|∇η|2


q+α
2

n,ε dx

]
.

Inserting this into (2.5) it follows∫
B

η2

q+2+α

2
n,ε dx ≤ c

[ ∫
B

(
η2 + |∇η|2)
 q+α

2
n,ε dx +

∫
B


̃
p−2

2
ε 


α+2
2

n,ε |∇η|2 dx

]
. (2.6)

Next we let β ≥ 0 and fix η as above. Then (recall that the sum is taken w.r.t.
γ = 1, . . . , n − 1) we consider the expression∫

B
η2
̃

p+2+β
2

ε dx ,
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perform an integration by parts in

∫
B

∂γ uε∂γ uεη
2
̃

p+β
2

ε dx

and carry out analogous calculations leading to the following variant of (2.5):

∫
B

η2
̃
p+2+β

2
ε dx ≤ c

[ ∫
B
(η2 +|∇η|2)
̃

p+β
2

ε dx +
∫

B
η2|∇̃2uε |2
̃

p−2+β
2

ε dx

]
. (2.7)

The second item on the r.h.s. of (2.7) is handled in the same manner as J from
above, i.e. this expression is bounded by

c
∫

B
η2 D2 F(∇uε)(∂γ ∇uε, ∂γ ∇uε)
̃

β
2
ε dx

≤ c

[ ∫
B

|∇η|2
̃
p+β

2
ε dx +

∫
B

|∇η|2

q−2

2
n,ε 
̃

β+2
2

ε dx

]
,

thus we get

∫
B

η2
̃
p+2+β

2
ε dx ≤ c

[ ∫
B
(η2 + |∇η|2)
̃

p+β
2

ε dx +
∫

B
|∇η|2


q−2
2

n,ε 
̃
β+2

2
ε dx

]
. (2.8)

We return to (2.6) replacing η by ηk for a large number k ∈ N, apply Young’s

inequality on the r.h.s. in order to get terms of the form τ
∫

B η2k

q+2+α

2
n,ε dx which

can be absorbed in the l.h.s. and get

∫
B
η2k


q+2+α
2

n,ε dx ≤ c

[∫
B

(
η2k + |∇η|q+2+αη2k−(q+2+α)

)
dx

+
∫

B
|∇η| 2

q (α+q+2)
η

2k− 2
q (α+q+2)


̃

p−2
2

α+q+2
q

ε dx

]
.

(2.9)

In the same way (2.8) implies

∫
B

η2k
̃
p+2+β

2
ε dx ≤ c

[∫
B

(
η2k + |∇η|p+2+βη2k−(p+2+β)

)
dx

+
∫

B
|∇η| 2

p (β+2+p)
η

2k− 2
p (p+2+β)




q−2
2

p+2+β
p

n,ε dx

]
.

(2.10)
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Let us introduce the quantities

a(α, ρ) :=
∫

Bρ



q+2+α

2
n,ε dx ,

A(α, ρ) :=
∫

Bρ


̃

p−2
2

α+q+2
q

ε dx ,

b(β, ρ) :=
∫

Bρ


̃
p+2+β

2
ε dx,

B(β, ρ) :=
∫

Bρ




q−2
2

p+2+β
p

n,ε dx ,

where Bρ := Bρ(x0) with ρ < R. If p ≤ 2, then (2.9) immediately implies
the uniform local integrability of ∂nuε for any finite exponent m, and using this
information in (2.10) we get the same result for ∇̃uε . So le us assume p > 2. Then
we have

A(α0, ρ) ≤ c(ρ) < ∞ (2.11)

for a constant c(ρ) going to infinity as ρ ↑ R but being independent of ε, provided
we require

p − 2

2

q + α0 + 2

q
≤ p

2
(2.12)

and quote Lemma 2.1 i). Note that on account of (p − 2)(q + 2) < pq (2.12) holds
for suitable positive numbers α0 and we may choose

α0 := pq

p − 2
− (q + 2) > 0 . (2.13)

(2.11) combined with (2.9) shows that

a(α0, ρ) ≤ c(ρ) . (2.14)

Now we select β0 such that

q − 2

2

p + β0 + 2

p
= q + 2 + α0

2
, (2.15)

hence B(β0, ρ) ≤ c(ρ) on account of (2.14) and the definition of B(β, ρ). Note
that by the definition of α0 we have

q − 2

2

p + 2

2
<

q + α0 + 2

2

which is equivalent to −4q − 2p2 + 8 < 0 (recall that we assume p > 2), thus the
solution β0 of (2.15) is a positive number. Returning to (2.11) we have shown that

A(αl , ρ) + B(βl , ρ) ≤ cl(ρ) (2.16l )
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at least for l = 0. Suppose that l ≥ 1 and that (2.16l−1) is valid. We then like to
prove (2.16l ) for suitable exponents αl , βl . First, B(βl−1, ρ) ≤ cl−1(ρ) together
with (2.10) gives b(βl−1, ρ) ≤ c(ρ) for a new constant (depending on �) so that

A(αl , ρ) ≤ c(ρ) , (2.17)

provided
p − 2

2

αl + q + 2

q
≤ p + 2 + βl−1

2
,

and we may define

αl = q

p − 2
(βl−1 + p + 2) − (q + 2)

= q

p − 2
βl−1 + q(p + 2)

p − 2
− (q + 2)

= q

p − 2
βl−1 + 4q − 2p + 4

p − 2

(2.18)

to ensure (2.17). (2.17) together with (2.9) implies a(αl , ρ) ≤ c(ρ) so that

B(βl , ρ) ≤ c(ρ) ,

if βl satisfies
q − 2

2

p + 2 + βl

p
= q + 2 + αl

2
,

which means

βl = p

q − 2
αl + 1

q − 2
[4p + 4 − 2q] . (2.19)

Inserting (2.18) in (2.19) we see

βl = pq

(p − 2)(q − 2)
βl−1 + ξ

ξ : = 1

q − 2
[4p + 4 − 2q] + 1

q − 2

1

p − 2
p[4q − 2p + 4]

= 2p2 + 2pq + 4q − 8

(q − 2)(p − 2)
> 0 ,

(2.20)

hence the sequence βl consists of strictly positive numbers. Altogether we have
shown the validity of (2.16l ) for any l provided {αl}, {βl} are defined according
to (2.18), (2.20) with the initial values from (2.13) and (2.15). Moreover, since

pq

(p − 2)(q − 2)
> 1 ,
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we see from (2.20) that βl → ∞ as l → ∞, and (2.18) gives the same for αl which
means that ∫

Bρ

|∇uε |m dx ≤ c(m, ρ) (2.21)

for any ρ < R and all m < ∞, the constant being independent of ε. Now the claim
of Theorem 1.1, i) follows from (2.21) combined with Lemma 2.1, i).

3. Some auxiliary results

In this section we will establish a regularity result which might be known but which
we could not trace in the literature. As already remarked it will enable us to deduce
part ii) of Theorem 1.1 from part i).

Lemma 3.1. Let 2 ≤ s ≤ t < ∞ and suppose that our integrand functions f :
Rn−1 → [0, ∞), g: R → [0, ∞) satisfy (1.3) and (1.4) with exponents s and
t respectively. Suppose also that u ∈ W 1

s,loc(�) locally minimizes the functional

I [·, �]. Then, if ∇u ∈ Lρ
loc(�, Rn) for any ρ < ∞, we have that u ∈ C1,µ(�) for

all µ < 1.

Proof of Lemma 3.1. It is enough to show that ∇u is locally bounded. Then, pass-
ing to difference quotients, it is easy to see that �hu is a solution of a uniformly
elliptic equation with bounded measurable coefficients, all bounds being indepen-
dent of h. The De Giorgi-Moser-Nash theory (see [13]) implies �hu ∈ C0,µ̃(�)

uniformly in h for some exponent µ̃ > 0 so that u ∈ C1,µ̃(�). Then we differenti-
ate the Euler equation (via difference quotients) and get for v := ∂γ u, γ = 1, . . . ,
n the validity of∫

�

A(x)(∇v, ∇ϕ) dx = 0 for every ϕ ∈ C∞
0 (�) ,

where A(x) is the parameter dependent bilinear form D2 F(∇u(x)). Since ∇u is
Hölder continuous with exponent µ̃, we have the continuity and local uniform el-
lipticity of A(x). From this u ∈ C1,µ(�) for all µ < 1 follows with the help of a
standard pertubation argument, compare, e.g., [11].

We first use our assumption

∇u ∈ Lρ
loc(�; R

n) for all ρ < ∞ (3.1)

to show that ∇u is weakly differentiable. Let eγ denote a coordinate direction,
γ = 1, . . . , n, and let

�
γ

h �(x) := 1

h

(
�(x + heγ ) − �(x)

)
, h �= 0 ,
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denote the corresponding difference quotient of a function �. The minimality of u
implies the Euler-equation (�′ � �)∫

�′
DF(∇u) · ∇ϕ dx = 0 (3.2)

valid for ϕ ∈ C∞
0 (�′) but according to (3.1) ϕ can be taken from any space

◦
Wτ

1(�′),
τ > 1, in particular we may choose ϕ = �

γ

−h(η2�
γ

h u), where η ∈ C∞
0 (�) is fixed

and |h| 
 1 is sufficiently small. From (3.2) we get∫
�

�
γ

h

(
DF(∇u)

) · ∇(η2�
γ

h u) dx = 0 , (3.3)

and if we introduce the bilinear form

Bγ

h :=
∫ 1

0
D2 F(∇u + t h�

γ

h ∇u) dt ,

then (3.3) takes the form (no summation w.r.t. γ )∫
�

Bγ

h

(
�

γ

h ∇u, �
γ

h ∇u
)
η2 dx = −2

∫
�

ηB
(
�

γ

h ∇u, ∇η
)
�

γ

h u dx . (3.4)

Using on the r.h.s. the Cauchy-Schwarz inequality for the bilinear form B together
with Young’s inequality we deduce from (3.4) the estimate∫

�

Bγ

h

(
�

γ

h ∇u, �
γ

h ∇u
)
η2 dx ≤ c

∫
�

Bγ

h

(∇η, ∇η
)|�γ

h u|2 dx . (3.5)

Elementary properties of the difference quotients in combination with (3.1) show
that ∫

�

Bγ

h (∇η, ∇η)|�γ

h u|2 dx −→
∫

�

D2 F(∇u)(∇η, ∇η)|∂γ u|2 dx

as h → 0, the limit of course being finite on acount of (3.1). Since s ≥ 2 the l.h.s.
of (3.5) is bounded from below by c

∫
�

η2|�γ

h ∇u|2 dx , hence∫
�

η2|�γ

h ∇u|2 dx ≤ c(η) < ∞ (3.6)

for |h| 
 1, and since (3.6) holds for any direction and arbitrary η ∈ C∞
0 (�), it

follows that u is in the space W 2
2,loc(�), in particular it holds �

γ

h ∇u −→ ∂γ ∇u a.e.

Since Bγ

h (�
γ

h ∇u, �
γ

h ∇u) ≥ 0 we may therefore apply Fatou’s lemma on the l.h.s.
of (3.5) leading to the inequality∫

�

η2 D2 F(∇u)(∂γ ∇u, ∂γ ∇u) dx ≤ c
∫

�

D2 F(∇u)(∇η, ∇η)|∂γ u|2 dx . (3.7)
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Note that (3.7) can also be established if s < 2, we refer to [2], page 56. Now we
fix a ball B := BR(x0) with compact closure in �. Let 0 < r < r̂ < R (all balls
are centered at x0), k > 0, and define


n := 1 + |∂nu|2 , 

(h)
n := 1 + |�n

hu|2 ,


̃ := 1 + |∇̃u|2 , ∇̃u := (∂1u, . . . , ∂n−1u) .

Then, choosing η ∈ C∞
0 (Br̂ ) , ϕ := �n−h

(
η2�n

hu[
(h)
n − k]+)

is admissible in (3.2)
leading to

0 =
∫

Br̂

Bn
h

(
∇�n

hu, ∇(η2�n
hu[
(h)

n − k]+)
)

dx

=
∫

Br̂

η2[
(h)
n − k]+Bn

h

(∇�n
hu, ∇�n

hu
)

dx

+
∫

Br̂ ∩[
(h)
n ≥k]

η2Bn
h(∇�n

hu, ∇
(h)
n )�n

hu dx

+
∫

Br̂

2ηBn
h(∇�n

hu, ∇η)[
(h)
n − k]+�n

hu dx

=: T1 + T2 + T3 .

T1 is non-negative, and clearly

T2 = 1

2

∫
Br̂ ∩[
(h)

n ≥k]
η2Bn

h(∇
(h)
n , ∇
(h)

n ) dx ,

T3 =
∫

Br̂ ∩[
(h)
n ≥k]

ηBn
h(∇
(h)

n , ∇η)(
(h)
n − k) dx ,

hence ∫
Br̂ ∩[
(h)

n ≥k]
η2Bn

h(∇
(h)
n , ∇
(h)

n ) dx

≤ −2
∫

Br̂ ∩[
(h)
n ≥k]

ηBn
h(∇
(h)

n , ∇η)(
(h)
n − k) dx .

The same arguments leading from (3.4) to (3.5) then show∫
Br̂ ∩[
(h)

n ≥k]
η2Bn

h

(
∇
(h)

n , ∇
(h)
n

)
dx

≤ c
∫

Br̂ ∩[
(h)
n ≥k]

Bn
h(∇η, ∇η)(
(h)

n − k)2 dx .

(3.8)
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Again by (3.1) it is immediate that

r.h.s. of (3.8) −→
h→0

c
∫

Br̂ ∩[
n≥k]
D2 F(∇u)(∇η, ∇η)(
n − k)2 dx ,

whereas on the l.h.s. of (3.8) we observe that the integrand is ≥ 0 and pointwise
convergent (since u ∈ W 2

2,loc(�)), thus Fatou’s lemma is applicable, and we deduce
from (3.8) ∫

Br̂ ∩[
n≥k]
η2 D2 F(∇u)(∇
n, ∇
n) dx

≤ c
∫

Br̂ ∩[
n≥k]
D2 F(∇u)(∇η, ∇η)(
n − k)2 dx .

(3.9)

Recalling the ellipticity estimates for f and g we get from (3.9) the Caccioppoli-
type inequality∫

Br̂ ∩[
n≥k]
η2|∇
n|2 dx ≤ c

[ ∫
Br̂ ∩[
n≥k]


̃
s−2

2 (
n − k)2|∇η|2 dx

+
∫

Br̂ ∩[
n≥k]



t−2
2

n (
n − k)2|∇η|2 dx

]
.

(3.10)

Let η = 1 on Br , |∇η| ≤ c/(r̂ − r ), 0 ≤ η ≤ 1. Let us further abbreviate

A(k, r) := Br ∩ [
n ≥ k] .

We proceed similar to [2], proof of Theorem 5.22: we have∫
A(k,r)

(
n − k)
n

n−1 dx ≤
∫

Br̂

[
η(
n − k)+

] n
n−1

dx

≤ c

[ ∫
Br̂

|∇(η(
n − k)+)| dx

] n
n−1

≤ c
[
I

n
n−1

1 + I
n

n−1
2

]
,

(3.11)

I
n

n−1
1 :=

[ ∫
A(k,r)

|∇η|(
n − k) dx

] n
n−1

≤c(r̂ −r)−
n

n−1

[ ∫
A(k,r̂)



t−2

4
n (
n − k)


2−t
4

n

] n
n−1

≤c(r̂ −r)−
n

n−1

[ ∫
A(k,r̂)



t−2

2
n (
n −k)2 dx

] 1
2

n
n−1

[ ∫
A(k,r̂)



2−t

2
n dx

] 1
2

n
n−1

,

(3.12)
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I
n

n−1
2 : =

[ ∫
A(k,r̂)

η|∇
n| dx

] n
n−1

≤ c

[ ∫
A(k,r̂)

η2|∇
n|2 dx

] 1
2

n
n−1 ∣∣A(k, r̂)

∣∣ 1
2

n
n−1 ,

(3.13)

where in (3.11) we made use of Sobolev’s inequality, whereas (3.12) and (3.13) just
follow from Hölder’s inequality. Inserting (3.10) into the r.h.s. of (3.13), we get

∫
A(k,r)

(
n − k)
n

n−1 dx

≤c(r̂ −r)−
n

n−1

{[ ∫
A(k,r̂)



t−2

2
n (
n −k)2dx

] 1
2

n
n−1

[ ∫
A(k,r̂)



2−t

2
n dx

] 1
2

n
n−1

+
[∫

A(k,r̂)



t−2

2
n (
n −k)2dx+

∫
A(k,r̂)


̃
s−2

2 (
n −k)2dx

] 1
2

n
n−1 ∣∣A(k, r̂)

∣∣ 1
2

n
n−1

}
.

(3.14)

Let ν , κ > 1 be arbitrary for the moment. We recall (3.1) and apply Hölder’s
inequality to obtain

∫
A(k,r)



t−2

2
n (
n − k)2 dx ≤

∫
A(k,r)

(
n − k)
n

n−1
1
ν 


2− n
n−1

1
ν

n 

t−2

2
n dx

≤ c1(ν)

[ ∫
A(k,r)

(
n − k)
n

n−1 dx

] 1
ν

,

(3.15)

∫
A(k,r)


̃
s−2

2 (
n − k)2 dx =
∫

A(k,r)

(
n − k)
n

n−1
1
ν (
n − k)2− n

n−1
1
ν 
̃

s−2
2 dx

≤
∫

A(k,r)

(
n − k)
n

n−1
1
ν 


2− n
n−1

1
ν

n 
̃
s−2

2 dx

≤ c1(ν)

[ ∫
A(k,r)

(
n − k)
n

n−1 dx

] 1
ν

,

(3.16)
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c1(ν) denoting a local constant depending on our fixed ball BR(x0). In the same
way it follows

∫
A(k,r̂)



2−t

2
n dx =

∫
A(k,r̂)



1
κ

t−2
2

n 

2−t

2 − 1
κ

t−2
2

n dx ≤c2(κ)

[∫
A(k,r̂)



t−2

2
n dx

] 1
κ

, (3.17)

|A(k, r̂)|≤
∫

A(k,r̂)



1
κ

t−2
2

n dx ≤ c2(κ)

[ ∫
A(k,r̂)



t−2

2
n dx

] 1
κ

. (3.18)

This gives

τ(k, r) : =
∫

A(k,r)

(



t−2
2

n (
n − k)2 + 
̃
s−2

2 (
n − k)2
)

dx

≤ c1(ν)

[ ∫
A(k,r)

(
n − k)
n

n−1 dx

] 1
ν

≤ c3(ν, κ)(r̂ − r)−
1
ν

n
n−1 τ(k, r̂)

1
ν

1
2

n
n−1

[ ∫
A(k,r̂)



t−2

2
n dx

] 1
κν

1
2

n
n−1

,

where we made use of (3.15), (3.16) to obtain the first inequality, (3.14), (3.17) and
(3.18) imply the second one. If we abbreviate

a(k, r) :=
∫

A(k,r)



t−2

2
n dx ,

then it is shown that for any k > 0 and for all ν, κ > 1, 0 < r < r̂ ≤ R the
inequality

τ(k, r) ≤ c3(r̂ − r)−
1
ν

n
n−1 τ(k, r̂)

1
ν

1
2

n
n−1 a(k, r̂)

1
κν

1
2

n
n−1 (3.19)

is valid. Obviously a(h, r̂) ≤ (h −k)−2τ(k, r̂), if h > k, and from (3.19) (replacing
k by h > k) we get

τ(h, r) ≤ c3(r̂ − r)−γ τ (h, r̂)
1
ν

1
2

n
n−1 a(h, r̂)

1
κν

1
2

n
n−1

≤ c3(r̂ − r)−γ (h − k)−βτ(h, r̂)
1
ν

1
2

n
n−1 τ(k, r̂)

1
κν

1
2

n
n−1

with suitable positive exponents γ , β. Since τ(h, r̂) ≤ τ(k, r̂), we finally arrive at

τ(h, r) ≤ c3(r̂ − r)−γ (h − k)−βτ(k, r̂)
1
2

n
n−1

1
ν
[1+ 1

κ
],

0 < k < h, 0 < r < r̂ ≤ R.

(3.20)
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In (3.20) ν and κ are still in our disposal, and for ν, κ > 1 but very close to 1 we
can arrange that

1

2

n

n − 1

1

ν

[
1 + 1

κ

]
> 1 ,

thus a lemma of Stampacchia [18, Lemma 5.1, page 219] can be applied to (3.20)
implying 
n ∈ L∞(BR/2(x0)). Since the ball BR(x0) was arbitrary, it follows that
∂nu is in the space L∞

loc(�).
Next we fix a coordinate direction em , m < n, and let 
m := 1 + |∂mu|2,

A(k, r) := Br∩[
m ≥ k] etc. We indicate the changes in the foregoing calculations:
(3.9) holds for 
m in place of 
n , and if we use ∂nu ∈ L∞

loc(�), then (3.10) can be
replaced by∫

A(k,r̂)

η2|∇
m |2 dx ≤ c
∫

A(k,r̂)


̃
s−2

2 (
m − k)2|∇η|2 dx . (3.10′)

Here we just observed 

t−2

2
n ≤ c
̃

s−2
2 . (3.11) remains valid for 
m , and we have

I
n

n−1
1 ≤c(r̂ −r)−

n
n−1

[ ∫
A(k,r̂)



s−2

2
m (
m −k)2 dx

] 1
2

n
n−1

[ ∫
A(k,r̂)



2−s

2
m dx

] 1
2

n
n−1

. (3.12′)

(3.13) of course is true for 
m , and as before we can use (3.10′) on the r.h.s. of the

m-version of (3.13), which leads in combination with (3.12′) and (3.13) to∫

A(k,r)

(
m − k)
n

n−1 dx

≤ c(r̂ − r)−
n

n−1

{[ ∫
A(k,r̂)



s−2

2
m (
m − k)2 dx

] 1
2

n
n−1

[ ∫
A(k,r̂)



2−s

2
m dx

] 1
2

n
n−1

+
[ ∫

A(k,r̂)


̃
s−2

2 (
m − k)2 dx

] 1
2

n
n−1

|A(k, r̂)| 1
2

n
n−1

}
.

(3.14′)

Obviously (see (3.15), (3.16)) it holds for ν > 1 (recall (3.1)! )∫
A(k,r)


̃
s−2

2 (
m − k)2 dx ≤ c1(ν)

[ ∫
A(k,r)

(
m − k)
n

n−1 dx

] 1
ν

, (3.16′)

and in accordance with (3.17), (3.18) we find∫
A(k,r̂)



2−s

2
m dx ≤ c2(κ)

[ ∫
A(k,r̂)



s−2

2
m dx

] 1
κ

, (3.17′)

|A(k, r̂)| ≤ c2(κ)

[ ∫
A(k,r̂)



s−2

2
m dx

] 1
κ

. (3.18′)
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This gives by (3.14′), (3.16′) and (3.17′), (3.18′), respectively,∫
A(k,r)


̃
s−2

2 (
m − k)2 dx

≤ c1(ν)(r̂ − r)−
1
ν

n
n−1

[ ∫
A(k,r̂)


̃
s−2

2 (
m − k)2 dx

] 1
2

1
ν

n
n−1

·
{[ ∫

A(k,r̂)



2−s

2
m dx

] 1
2

n
n−1

+ |A(k, r̂)| 1
2

n
n−1

} 1
ν

≤c3(ν, κ)(r̂ −r)−
1
ν

n
n−1

[∫
A(k,r̂)


̃
s−2

2 (
m −k)2dx

] 1
2

1
ν

n
n−1

[ ∫
A(k,r̂)



s−2

2
m dx

] 1
2

1
ν

1
κ

n
n−1

.

Let us now define

τ ′(k, r) :=
∫

A(k,r)


̃
s−2

2 (
m − k)2 dx ,

a′(k, r) :=
∫

A(k,r)



s−2

2
m dx .

Then the foregoing inequality implies (3.19) for the quantities τ ′, a′, and since again
(h > k)

a′(h, r̂) ≤ (h − k)−2τ ′(k, r̂)

we deduce (3.20) for τ ′ which means 
m ∈ L∞(BR/2(x0)), thus ∂mu ∈ L∞
loc(�).

Remark 3.2. The information ∂nu ∈ L∞
loc(�) is not really needed for the proof of

∇̃u ∈ L∞
loc(�, Rn−1). If we keep the quantity

∫
A(k,r̂)



t−2

2
n (
m − k)2 dx

on the r.h.s. of (3.10′), then this item occurs on the r.h.s. of (3.14′) (it has to be
added to

∫
A(k,r̂)


̃
s−2

2 (
m − k)2 dx ). On the other hand we have (compare (3.16′))

∫
A(k,r)



t−2

2
n (
m − k)2 dx ≤ c1(ν)

[ ∫
A(k,r)

(
m − k)
n

n−1 dx

]1/ν

,
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hence

τ ′′(k, r) : =
∫

A(k,r)

[

̃

s−2
2 + 


t−2
2

n

]
(
m − k)2 dx

≤ c1(ν)

[ ∫
A(k,r)

(
m − k)
n

n−1 dx

]1/ν

≤ c1(ν)(r̂ − r)−
1
ν

n
n−1 τ ′′(k, r̂)

1
2

1
ν

n
n−1

{[ ∫
A(k,r̂)



2−s

2
m dx

] 1
2

n
n−1

+ |A(k, r̂)| 1
2

n
n−1

} 1
ν

and the terms in {. . .} are treated via (3.17′), (3.18′). This gives (3.19) for τ ′′ and
a′, and from a′(h, r̂) ≤ (h − k)−2τ ′′(k, r̂), h > k, the τ ′′-version of (3.20) follows
which again gives ∂mu ∈ L∞

loc(�).
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