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Combinatorial mapping-torus, branched surfaces
and free group automorphisms

FRANÇOIS GAUTERO

Abstract. We give a characterization of the geometric automorphisms in a cer-
tain class of (not necessarily irreducible) free group automorphisms. When the
automorphism is geometric, then it is induced by a pseudo-Anosov homeomor-
phism without interior singularities. An outer free group automorphism is given
by a 1-cocycle of a 2-complex (a standard dynamical branched surface, see [7]
and [9]) the fundamental group of which is the mapping-torus group of the au-
tomorphism. A combinatorial construction elucidates the link between this new
representation (first introduced in [16]) and the classical representation of a free
group automorphism by a graph-map [2].

Mathematics Subject Classification (2000): 20E05, 57M20, 37Bxx, 37E25.

1. Introduction

Let S be a compact surface, with fundamental group π . Any homeomorphism h of
S induces an outer automorphism h# of π , which only depends on the isotopy-class
of h. A classical question is to know to what extent we can go back from an outer
automorphism of a surface group π , i.e. a group isomorphic to the fundamental
group of a compact surface, to an isotopy-class of surface homeomorphisms. More
precisely, let π be a surface group and let α ∈ Out(π) = Aut(π)/Inn(π); does
there exist a compact surface S with fundamental group π and a homeomorphism h
of S such that h# = α? If so, then we say that α (or any automorphism in the class)
is geometric.

If π is isomorphic to the fundamental group of a compact surface with empty
boundary, then this surface is unique up to homeomorphism and an old result of
Nielsen tells us that any α ∈ Out(π) is geometric. Assume now that π is iso-
morphic to the fundamental group of a compact surface with boundary, i.e. π is a
rank-n free group, denoted by Fn . Up to homeomorphism, there are a finite num-
ber of distinct surfaces with fundamental group Fn . Is any element of Out(Fn)

geometric? Nielsen again (see for instance [10, 11]) provides an answer: “the au-
tomorphism α is geometric if and only if there exists a free basis B of Fn such that
α preserves, up to reduction and change of orientation, a set of reduced words in
B whose union contains exactly twice each element of B”. A reduced word in an
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alphabet {e±1
i }i=1,··· ,n is a word with no cancellation ei e

−1
i or e−1

i ei . For n = 2,
this condition is always satisfied (any α ∈ Out(F2) is induced by a homeomorphism
of the torus deprived of an open disc) but for n ≥ 3, geometric automorphisms of
Fn are “rare” [18].

The above answer is however not completely satisfactory. Because of the
words “there exists” emphasized above, given α ∈ Out(Fn), it does not provide
a way to detect whether α is geometric. The problem of finding other character-
izations of these geometric free group automorphisms was already addressed, for
different classes, in [12, 19, 20, 23, 27] and [2]. The paper [1] provides an “implicit
algorithm” to detect the geometricity. It seems reasonable to think that the work
of M. Lustig [24] could also lead to such an algorithm, with some non-trivial addi-
tional technical work (from the same author see also [15], Section 6). Our approach
here is quite different. We are not primarily interested in giving an algorithm which
would be a kind of black-box, but rather in providing easy and effective character-
izations of the geometric automorphisms in the class considered. In this sense, we
are closer in spirit to [20]. Our work only recognizes free group automorphisms in-
duced by pseudo-Anosov homeomorphisms without interior singularities [13]. As a
counterpart to this restriction, we do not introduce highly sophisticated graph-maps,
as the “improved relative train-track maps” of [1], or the “partial train-tracks with
Nielsen faces” of [24]. In spite of this, let us observe that the automorphisms we
deal with are not necessarily irreducible. We remind that α ∈ Aut(Fn) is reducible
if α permutes, up to conjugation, the factors Fλ of a free product decomposition of
Fn of the form Fn = ∗

λ∈�
Fλ∗G, and α is irreducible if it is not reducible. Obviously

α is irreducible if and only if α−1 is, and this notion only depends on the class of α

in Out(Fn). We often blur the distinction between Aut(Fn) and Out(Fn).
In order to give a flavor of the results of this paper without entering in the

details of the class of automorphisms considered, we just call them “nice”. Let us
now recall the definition of the growth-rate λ(α) of α ∈ Out(Fn):

λ(α) = sup
C∈Fn

lim sup
j→+∞

ln(||α j (C)||)
j

.

Here ||w|| is the length of the cyclically reduced representative of w. We then have
the following statement:

Theorem 1.1. A nice outer free group automorphism α is geometric if and only if
λ(α) = λ(α−1). If α is geometric, then it is induced by a pseudo-Anosov homeo-
morphism without interior singularities.

We give examples of nice, non-geometric automorphisms and also of nice re-
ducible automorphisms in Appendix D. In [20], there appears a non-geometric
β ∈ Out(F3) with λ(β) = λ(β−1). We explain in Appendix D why this is not a
nice automorphism (this is the first one considered in Example 0).

In all the papers cited above, α ∈ Out(Fn) is represented by a pair (ψ, �), � be-
ing a graph with fundamental group Fn and ψ a certain kind of graph-map, inducing
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α on the fundamental group of �. A feature of the work presented here is to partly
use another type of representation: α ∈ Out(Fn) is represented by a pair (K , u), K
being a particular kind of 2-complex with fundamental group Fα

n = Fn �α Z (the
mapping-torus group of α) and u ∈ C1(K ; Z) is a cocycle whose cohomology-
class is associated to this semi-direct product structure after identifying H1(K ; Z)

with H1(Fα
n ; Z). Such a representation was introduced in [16]. Its interest lies on

the fact that the 2-complexes K that we consider have a particularly simple combi-
natorial description. They are not just mapping-tori � × [0, 1]/(x, 1) ∼ (ψ(x), 0)

of graph-maps (ψ, �) but have been “desingularized” in some sense. In particular,
they are standard 2-complexes as defined in [7] (see also [25] and more recently [4])
and they are also branched surfaces (i.e. are equipped with a smooth structure) as
introduced in [29] (closer in spirit, see [5]). More precisely they are “dynamical
branched surfaces” as defined in [9].

The plan of the paper goes as follows: In Sections 2 and 3 the notions necessary
to the statement of Theorem 3.3 are introduced. In Sections 4 and 5 we recall the
basic notions about train-tracks and free group automorphisms so that we can state
the “train-track version” of Theorem 3.3, this is Theorem 5.12. In Sections 6 and 7,
we shed some light on the link between the above theorems. In particular, in Section
7, there appears the process of combinatorial suspension already evoked. Sections
8 and 9 present the technical work needed to prove Theorem 3.3. The two impor-
tant results are the (rather easy) Proposition 8.1 and the (harder) Proposition 9.1. In
Section 10, we gather all the pieces and prove Theorems 3.3 and 5.12. Appendix A
elucidates the passage from “train-tracks with circuits” to “nice train-tracks” (both
were defined in Section 5). Appendix B is a brief informal discussion about the al-
gorithmic detection of train-track with circuits among the representatives of a free
group automorphism. Appendix C gives a characterization of the mapping-tori of
pseudo-Anosov surface homeomorphisms without interior singularities. It is also
proved there (Proposition C.1) that any pseudo-Anosov without interior singulari-
ties admits a train-track with circuits, and even a nice train-track when the surface is
orientable and the pseudo-Anosov is orientation-preserving. Appendix D presents
a bunch of examples.

2. Standard dynamical branched surfaces

The set of singular points in a 2-complex K , denoted by S(K ), is the set of points
with no neighborhood in the complex homeomorphic to a disc. A region of K is a
connected component of K − S(K ).
Definition 2.1 ( [4, 7]). A standard 2-complex is a compact 2-complex satisfying
the following three properties:

(a) the set of singular points is a connected 4-valent graph with at least one vertex;
(b) each point admits a neighborhood homeomorphic to the neighborhood of some

point in the interior of the cone over the 1-skeleton of the tetrahedron, see Fig-
ure 2.1;

(c) each region is a 2-cell.
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Figure 2.1. Non-singular and singular points in a standard 2-complex.

Smoothing a cellular complex K consists in defining at each point of K a tangent
plane Tx K , which depends continuously on x . See Figure 2.2.

Definition 2.2. A standard branched surface is a smooth standard 2-complex.

Definition 2.3. Let K be a standard 2-complex. Two oriented germs of edges at a
vertex v of K form a source (respectively a sink) for the germ of region at v that
they bound if they both point away from (respectively toward) v.

The notion of k-sheeted side, k ≥ 1, in a standard branched surface is intu-
itively obvious. We leave the reader elaborate the precise definition and refer him
to Figure 2.2.

2-sheeted side

1-sheeted side

middle of the
3-sheeted portion

1-sheeted germ

Smoothing a standard complex

Figure 2.2. Neighborhood of the singular set in a standard (dynamical) branched sur-
face.

Definition 2.4. A standard dynamical branched surface is a standard branched sur-
face W which admits an orientation on the edges of S(W) satisfying the following
properties:

(a) at each vertex v of W , the germ of region of W at v which is 1-sheeted (respec-
tively in the middle of the 3-sheeted portion) is a source (respectively a sink);

(b) the boundary of every region contains exactly one sink and one source.

Remark 2.5. The boundary of a region decomposes into two maximal positive
edge-paths in the singular graph. Each one connects the source of the region to
its sink.
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3. Statement of first main theorem

Definition 3.1. Let W be a standard dynamical branched surface. A positive cocy-
cle of W is a cocycle in C1(W; Z) which is non-negative on the edges of S(W),
and which is positive on all the positive embedded loops of S(W).

The definition below motivates the introduction of these positive cocycles.

Definition 3.2. An outer automorphism α of Fn is represented by a positive co-
cycle u of a standard dynamical branched surface W if, after identifying the first
cohomology-groups of W and of its fundamental group G, we have Ker(u) = Fn ,
G/Ker(u) = Z and α is the outer automorphism of Fn associated to the short exact
sequence 1 → Ker(u) → G → G/Ker(u) → 1.

The subset of all the elements of Out(Fn) which can be represented by positive
cocycles of standard dynamical branched surfaces is denoted by SDBS(Fn).

We recall further in the paper the connection between positive cocycles of stan-
dard dynamical branched surfaces and outer free group automorphisms (see [16]).
We now state the first main result of this paper:

Theorem 3.3. Let α ∈ SDBS(Fn). The following properties are equivalent:
(a) α is geometric.
(b) If W is a standard dynamical branched surface which admits a positive cocycle

representing α, then W can be embedded in some compact 3-manifold.
(c) λ(α) = λ(α−1).
(d) α−1 ∈ SDBS(Fn).

4. Train-tracks

A graph-map is a continuous map from a graph � to a graph �′. We do not require
that the image of a vertex by a graph-map be a vertex. We also do not require that
the map be locally injective when restricted to the edges. Substituting a path in a
graph by the unique locally injective path with same endpoints in the same relative
homotopy-class will be called pulling-tight or reducing the path. A representative
of α ∈ Out(Fn) is a pair (ψ, �), � and ψ being respectively a graph with funda-
mental group Fn , and a graph-map from � to itself with ψ# = α.

A train-track (see [26] for instance) is a graph with a smooth structure, see
Figure 4.1.

If τ is a train-track, we distinguish two sides at each point of τ and, in partic-
ular, if τ is trivalent, a 2-sheeted side and a 1-sheeted side at each vertex. A legal
path in a train-track τ is a non-trivial locally injective path which never crosses con-
secutively two germs of edges in a same side of a vertex. A map ψ on a trivalent
τ preserves the smoothing if, for each vertex v of τ , ψ sends both germs of edges
in the 2-sheeted side of v to a same side of ψ(v), and sends the germ of edge in the
1-sheeted side of v to the other side of ψ(v).
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2-sheeted side1-sheeted and

legal

illegal

Figure 4.1. From a graph to a train-track.

Definition 4.1. A standard invariant train-track of α ∈ Out(Fn) is a representative
(ψ, τ) of α such that τ is a trivalent train-track, and ψ preserves the smoothing of
τ and maps any edge to a legal path.

Example 4.2. See Figure 4.2.

y

z

x g(x) = x

g(z) = z

g(y) = z x−1 z x−1 z x−1 y z−1 x
y

z

x

f (x) = x y x

f (y) = z

f (z) = z x z

vw
vw

τ τ'

Figure 4.2. Two invariant train-tracks.

A classical consequence of the above definition is that any iterate of ψ is locally
injective when restricted to the edges.

5. Train-tracks with circuits and nice train-tracks

We begin by recalling a topological version of Stallings folds [28]:

Definition 5.1. Let (ψ, τ) be an invariant train-track.
A cancellation-pair (p, q) for (ψ, τ) is a pair p, q: [0, 1]→τ of (parametrized)

legal paths in τ with p(0) = q(0) a vertex of � and such that ψ(p(t)) = ψ(q(t))
for any t ∈ [0, 1].

ψ : τ → τ is obtained by folding (ψ, τ) at (p, q), or along ψ(p) = ψ(q), if:

• τ = τ/ ∼ where x ∼ y if and only if ∃ t ∈ [0, 1] s.t. x = p(t) and y = q(t);
• ψ ◦ π = ψ with π : τ → τ the quotient-map.

Example 5.2. In this example and the following ones of this section (which all
refer to Figure 4.2), when e is an oriented edge we denote by ei the subpath of e
which is mapped to the i th edge in the image of e under the map considered.
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Two cancellation-pairs for ( f, τ ) respectively at v and w are (yx1, z1z2) and
(z−1

3 z−1
2 , y−1x−1

3 ).

For (g, τ ′) we have (y−1
9 y−1

8 , x−1z) and (y1 · · · y6, zx−1zx−1zx−1).

We denote by χ(τ) = 1 − rank(π1(τ )) the Euler characteristic of τ . If τ is
trivalent, then −2 ∗ χ(τ) = 2 ∗ rank(π1(τ )) − 2 is the number of vertices in τ .

Definition 5.3. Let (ψ, τ) be a standard invariant train-track. A set of cancellation-
paths for (ψ, τ) is a set of −2χ(τ) oriented legal paths in τ such that:

(a) It is possible to fold (ψ, τ) along the cancellation-paths and get an automor-
phism of τ .

(b) Each vertex of τ is the terminal vertex of exactly one cancellation-path.

Example 5.4. ( f, τ ) (respectively (g, τ ′)) admits a set of 2 cancellation-paths: zx
along which one folds z1z2 with yx1 (respectively zx−1zx−1zx−1 along which one
folds y1 · · · y6 with zx−1zx−1zx−1) and z−1x−1 along which one folds z−1

3 z−1
2 with

y−1x−1
3 (respectively x−1z along which one folds y−1

9 y−1
8 with x−1z).

Definition 5.5. A train-track with circuits is a standard invariant train-track (ψ, τ)

for which there exists an integer j ≥ 1 such that (ψ j , τ ) admits a set C of
cancellation-paths satisfying the following property:
for any oriented edge e from τ , there is an oriented subpath s of e and two legal
paths p+, p− such that:

(a) either s (respectively s−1) is an oriented subpath of p+ (respectively of p−), i.e.
p+ = · · · s · · · whereas p− = · · · s−1 · · · , or sp− is a proper oriented subpath
of p+ (i.e. p+ = · · · sp− · · · );

(b) ψ(p+) and ψ(p−) are two distinct cancellation-paths in C.

Example 5.6. The pair ( f, τ ) is a train-track with circuits. Indeed z2 ⊂ z and
y appear in the cancellation-pair (z1z2, yx1) whereas z−1

2 and y−1 appear in
(z−1

3 z−1
2 , y−1x−1

3 ). It remains to check that some subpath of x also appears with its
both orientations in the cancellation-pairs for some ( f j , τ ). By looking at f 2, we
get as cancellation-pairs (z1 · · · z8, yx1 · · · x5) and (z−1

9 · · · z−1
2 , y−1x−1

7 · · · x−1
3 ).

Hence x3x4x5 ⊂ x appears with both orientations. The pair (g, τ ′) is not a train-
track with circuits because, whatever iterate (g j , τ ′) is considered, neither y nor
y−1 appears as a subpath in the cancellation-pairs of (g j , τ ′).
Definition 5.7. Let (ψ, τ) be a standard invariant train-track. Two cancellation-
pairs (pi , qi ), (p j , q j ) of (ψ, τ) are in bad position if either pi or qi contains p j or
q j as an oriented subpath (i.e. for instance pi = · · · p j · · · ).

Example 5.8. The two cancellation-pairs in (g,τ ′) are in bad position. Indeed, x−1z
which is a maximal legal path in the first one is strictly contained in zx−1zx−1zx−1

which is a maximal legal path of the second one.
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Definition 5.9. A nice train-track is a train-track with circuits (ψ, τ) such that,
whatever set of cancellation-paths is considered, the associated set of cancellation-
pairs does not contain cancellation-pairs in bad position.

The subset of all the elements of Out(Fn) which admit nice train-tracks is
denoted by NTT(Fn).

Remark 5.10. Let (ψ, τ) be a nice train-track. Whatever set of cancellation-paths
is considered, the first condition of item (a), Definition 5.5 is always satisfied.

Example 5.11. The pair ( f, τ ) is a nice train-track. This is in fact a representative
of the pseudo-Anosov homeomorphism induced on the torus deprived of an open

disc by the classical Thom automorphism

(
2 1
1 1

)
of Z2.

We can now state the “train-track” version of our theorem:

Theorem 5.12. Let α ∈ NTT(Fn). The following properties are equivalent:
(a) α is geometric.
(b) If (ψ, τ) is a nice train-track of α, then the map ψ preserves, up to homotopy,

a set of reduced, unoriented loops in τ the union of which crosses exactly twice
each edge of τ .

(c) λ(α) = λ(α−1).
(d) α−1 ∈ NTT(Fn).

6. From a positive cocycle to an outer free group automorphism

This section is a short summary of [16].

Definition 6.1. A graph � is r-embedded in a standard 2-complex K if � is embed-
ded in K transversely to S(K ) and such that:

• The vertices of � belong to the interior of the edges of S(K ). The edges of �

are disjointly embedded in the regions of K .
• Let v be a vertex of � in an edge e from S(K ). There is exactly one germ of an

edge of � at v embedded in each germ of a region of K at e.

See Figure 6.1.
The embedding is a 2-sided embedding if � admits a neighborhood in K home-

omorphic to the trivial I-bundle � × [−1, 1].
Remark 6.2. A naı̈ve, but useful, observation is that a graph r-embedded in a stan-
dard branched surface inherits a structure of train-track from the smooth structure
of the branched surface.

Lemma 6.3. Let K be a standard 2-complex. Any r-embedded, 2-sided graph in
K defines a cocycle in C1(K ; Z). Let u ∈ C1(K ; Z) be an integer cocycle of K .
There is a unique, up to isotopy, r-embedded, 2-sided graph �u in K representing
u and satisfying the following property: (
) no edge of �u connects two vertices in
a same edge of S(K ).
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Figure 6.1. A r-embedding.

From now on all r-embedded graphs considered will satisfy property (
) above,
even if not mentioned.

In the following proposition and its subsequent corollary, we describe with
some details the topology of a standard dynamical branched surface with a positive
cocycle. A complete proof can be found in [16].

Proposition 6.4 ( [16]). Let W be a standard dynamical branched surface. Then
any positive cocycle u ∈ C1(W; Z) defines a foliation of W with compact graphs
transversely oriented by the edges of the singular graph and such that:

(a) all the graphs are homotopically equivalent; at the exception of n of them (n is
the number of vertices in W) all the graphs are r-embedded;

(b) the graphs which are not r-embedded contain exactly one 4-valent vertex at
a vertex of W and otherwise satisfy all the other properties required for a r-
embedding.

Let W be a standard dynamical branched surface which admits a positive co-
cycle. By Proposition 6.4, the points in W can be parametrized in coordinates
(x, µ), such that µ ∈ [0, 1) and x belongs to a graph �µ of the foliation given by
the proposition. For any t ≥ 0 there is a continuous deformation in W from �µ

to �µ+t−E[µ+t], where E[µ + t] denotes the greatest integer smaller than or equal
to µ + t . This continuous deformation induces a map σt : �µ → �µ+t−E[µ+t]
satisfying σt+t ′ = σt ◦ σt ′ . This is a non-singular semi-flow. The passage from
�µ to �µ+t−E[µ+t] will be called pushing �µ along the singular graph or along
the semi-flow. Each graph �µ of the foliation is a cross-section to such a semi-
flow, i.e. it intersects transversely, and always in the same direction, each orbit of
the semi-flow. The map σ1 : �µ → �µ is the return-map of the semi-flow on its
cross-section.

Corollary 6.5. Let W be a standard dynamical branched surface, which admits a
positive cocycle u. With the notations above: let ti < tk in [0, 1] be such that �ti
and �tk are r-embedded.

(a) If �t is r-embedded for all t ∈ [ti , tk], then the map from �ti to �tk induced by
the semi-flow is homotopic to a homeomorphism.
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(b) If there is exactly one t ∈ [ti , tk] such that �t is not r-embedded, then �tk is
obtained from �ti by a Whitehead-move (see Figure 6.2) (and the map from �ti
to �tk induced by the semi-flow is homotopic to a map induced by this move).

In particular, the return-map of the semi-flow on �u is homotopic to a composition
of Whitehead-moves and of a homeomorphism and induces an outer automorphism
on the fundamental group of the graph. This is the outer automorphism represented
by u.

Figure 6.2. A Whitehead-move through a vertex of a dynamical branched surface.

7. Standard dynamical branched surfaces vs nice train-tracks

The goal of this section is to prove Theorem 7.1 below. We decompose the proof in
the two Propositions 7.2 and 7.7, each one treating an inclusion.

Theorem 7.1. For any n ≥ 1, SDBS(Fn) = NTT(Fn).

For n = 1 both sets are obviously empty. The proof of Proposition 7.2 below
relies on a process of “combinatorial suspension”, or rather of desingularization of
the classical mapping-torus construction, already evoked in the introduction.

Proposition 7.2. For any n ≥ 1, NTT(Fn) ⊂ SDBS(Fn).

Let ψi : τi → τ be a train-track map from a train-track τi to a train-track τ .
Here, a train-track map is a graph-map which satisfies the properties required for
the map ψ of an invariant train-track (ψ, τ).
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Definition 7.3. With the notations above: a fine cancellation-pair for ψi : τi → τ

is a cancellation-pair (pi , qi ) such that:

(a) the terminal point of neither pi nor qi is a vertex;
(b) p−1

i qi is an embedded path;
(c) there is no t0 in [0, 1] such that both pi (t0) and qi (t0) are vertices of τi .

We consider a fine cancellation-pair (pi , qi ). Let Kτi = τi × [0, 1]. We will make
the slight abuse of identifying τi with any τi ×{r}. We define an equivalence relation
Ri on Kτi as follows:
(x, t)Ri (x ′, t ′) if and only if t = t ′ and there is t0 ≤ t such that x = pi (t0) and
x ′ = qi (t0).

Definition 7.4. With the assumptions and notations above: we set Ki = Kτi /Ri .
The image in Ki of the set {(pi (t), t), t ∈ [0, 1]} is a suspended cancellation-path.

The suspended
cancellation-path

pi (t)

qi (t)

Figure 7.1. Combinatorial suspension.

The definition of a r-embedded graph in a standard 2-complex is extended in a
straightforward way to the kind of 2-complex considered here.

Lemma 7.5. With the assumptions and notations above, S(Ki ) is a union of inter-
vals which can intersect each other only transversely. More precisely:
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(1) Let v be any vertex of τi distinct from the vertex pi (0) = qi (0). The singular set
is formed by the suspended cancellation-path and the union of the images Iv in
Ki of the intervals {v} × [0, 1].

(2) All the intervals Iv are disjoint.
(3) The suspended cancellation-path intersects an interval Iv if and only if v belongs

to p−1
i qi .

Furthermore:
(4) The 2-complex Ki has two boundary components, the bottom one homeomor-

phic to τi and the top one homeomorphic to the graph obtained by folding τi at
(pi , qi ).

(5) The neighborhood of any point in (the interior of) Ki is homeomorphic to the
neighborhood of some point in (the interior of) the cone over the 1-skeleton of
the tetrahedron.

(6) The image in Ki of τi × {t} ⊂ Kτi either is a r-embedded graph, or is a graph
in the interior of Ki with one 4-valent vertex at a vertex of S(Ki ) and which is
otherwise r-embedded in Ki .

The notion of an almost standard branched surface and of a dynamical branched
surface used in the proof below are obvious generalizations of the standard defini-
tions introduced before. “Almost standard” for a branched surface means that there
is no restriction on the topology of the regions. In a dynamical branched surface
might exist regions which are open annuli or Moebius-bands but these regions have
neither sources nor sinks in their boundaries. The reader will painlessly imagine the
obvious adaptations to these non-standard settings of the various objects defined in
the standard ones.

Proof of Proposition 7.2. By definition, a nice train-track (ψ, τ) of α ∈ Out(Fn)

admits a collection of cancellation-pairs such that folding at these pairs eventu-
ally yields a diffeomorphism h of τ . We decompose these cancellation-pairs, by
taking subpaths of the paths involved in each pair, to get an ordered sequence of
fine cancellation-pairs (pi , qi ), i = 0, · · · , r , in invariant train-tracks ψi : τi → τ ,
which satisfies the additional property:

(d) for any i , neither pi nor qi contains an oriented subpath of some p j or q j with
j > i .

The non-existence of pairs in bad position allows us to get property (d). The con-
struction detailed before Lemma 7.5 gives a 2-complex Ki for each ψi : τi → τ

such that the top of Ki can be identified via h with the bottom of Ki+1. We denote
by K[0,1] the 2-complex resulting from these identifications. It has two boundary
components: the bottom one is the bottom of K0 and the top one is the top of Kr .
They are diffeomorphic one to the other via the diffeomorphism h. We identify
them by this diffeomorphism.
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Any point in the resulting 2-complex W is homeomorphic to the neighborhood of
some point in the interior of the cone over the 1-skeleton of the tetrahedron. By
definition, a smoothing is defined on each τi , each ψi (and also h) preserves this
smoothing and the image of no edge crosses consecutively two germs of edges in the
same side of a vertex. Thus a smoothing is defined on each Ki and these smoothings
assemble to define a smoothing on W . Therefore W is an almost standard branched
surface.

We equip S(W) with the orientation induced by the “from bottom to top” ori-
entation of each Ki . Thanks to property (d), the above smoothing is compatible
with this orientation (there are no “bad intersections”, see Figure 7.2). By construc-
tion, the only possible types of regions in W are open annuli, Moebius-bands and
discs. The orientation defined on S(W) is such that there is no source nor sink in
the boundaries of the annuli or Moebius-bands, and exactly one source and one sink
in the boundary of each disc. Thus W is a dynamical branched surface.

Good intersection

Bad intersection

Figure 7.2. Good and bad intersections.

The images in each Ki of the oriented intervals {x} × [0, 1], x ∈ τi , glue together
to define the orbits of a non-singular semi-flow which flows in a neighborhood
of S(W) from the 2-sheeted side to the 1-sheeted side, when it is transverse to
it. By construction, each r-embedded image of a τi × {t} in Ki defines a positive
cocycle of W . Furthermore, there is a well-defined return-map of the semi-flow on
this r-embedded train-track and, by construction, this return-map induces α on the
fundamental group. Thus α is represented by a positive cocycle of W .

It only remains to check that W is standard, i.e. any region is a 2-cell. As-
sume the contrary. Consider the 2-complex Wm obtained after gluing m ≥ 1 copies
K i

[0,1] of K[0,1] by the identification, via h, of the top of K i
[0,1] to the bottom of

K i+1
[0,1] for i = 1, · · · , m and with K m+1

[0,1] ≡ K 1[0,1]. Following the same argu-
ments as above, Wm is a dynamical branched surface one region of which is not
a 2-cell. It obviously inherits this property from our assumption on W . On the
other hand, Wm is diffeomorphic to the dynamical branched surface obtained from
(ψm, τ ) by applying the combinatorial suspension process with a suitable choice
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of cancellation-paths. By Definition 5.5 and Remark 5.10, there is j ≥ 1 such
that this set of cancellation-paths satisfies that any edge of τ has a subpath which
is a common subpath of two cancellation-pairs, where it appears with its two ori-
entations. By Lemma 7.5, this implies that the combinatorial suspension process
applied to (ψ j , τ ) yields a 2-complex W j whose regions are 2-cells. We so get a
contradiction for W j . Hence all regions of W are 2-cells.

Remark 7.6. In the course of the proof of Proposition 7.2 above, we prove in fact a
slightly stronger result: if (ψ, τ) is a nice train-track representative of α, then there
is a standard dynamical branched surface W with positive cocycle representing α

such that τ appears as a cross-section to a semi-flow on W , the return-map of which
is the map ψ .

The inclusion SDBS(Fn) ⊂ NTT(Fn) is easier than the first one:

Proposition 7.7. Let u be a positive cocycle of a standard dynamical branched
surface W . Then u defines a nice train-track (ψu, τu) of the outer automorphism
that it represents:

• τu is the r-embedded graph �u equipped with the smooth structure induced by
W;

• ψu is the return-map of some semi-flow on W which is transverse to �u (see
Section 6).

Proof. Consider a semi-flow on W which is transverse to τu and also transverse
to S(W), flowing from the 2-sheeted side to the 1-sheeted side. Its return-map
ψu on τu is such that any vertex is the initial vertex of a cancellation-pair. Cut
W along τu . We get a branched surface W[0,1] with two boundary components,
both diffeomorphic to τu , as in Lemma 7.5. Consider the universal covering W̃[0,1].
This is a branched surface with two boundary components, diffeomorphic to a same
smooth tree. The singular set is oriented from the bottom to the top. Consider any
vertex v in the bottom of W̃[0,1]. There is an interval in S(W̃[0,1]) from v to some
vertex w in the top. There is also an orbit-segment of the semi-flow from v to some
point u in the top (u is not necessarily a vertex). There is a unique reduced path
in the top from u to v. Its image under the covering-map π : W̃[0,1] → W[0,1] is
a cancellation-path in τu for ψu . All the above assertions are true for any vertex
v in the bottom of W̃[0,1]. Moreover two different intervals in S(W[0,1]) which
go from the bottom to the top end at two distinct vertices. Thus, we so get a set
of cancellation-paths for (ψu, τu). The associated cancellation-pairs are not in bad
position because the smoothing of W[0,1] is compatible with the orientation of the
singular set. Finally, the additional property required for a train-track with circuits
is satisfied when suitably gluing together, bottom-to-top, a sufficiently large number
of copies of W[0,1] because, otherwise, there would be an annular or Moebius-band
region.
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8. A characterization for embedding a dynamical branched surface
in a 3-manifold

The goal of this section is to prove Proposition 8.1 below. It will be a key ingredient
in the proof of Theorem 3.3. The mirror-edges appearing in the statement of this
proposition are defined in the next page (Definition 8.4). A standard dynamical
branched surface comes with an orientation of the edges of its singular graph. We
say that this orientation and the structure of dynamical branched surface, or the
smoothing, are compatible.

Proposition 8.1. Let K be a standard 2-complex. Assume that some orientation
of S(K ) is compatible with a structure of dynamical branched surface W . The
following three properties are equivalent:

(a) W admits an embedding in a compact 3-manifold.
(b) At each vertex of W , either both outgoing edges are mirror-edges or none of

them is.
(c) The reverse orientation on the edges of S(K ) is compatible with a structure of

dynamical branched surface on K .

Let W be a standard branched surface. As was already illustrated by many figures,
like Figure 8.1, one can always choose the smooth embedding in R3 of a neigh-
borhood of a vertex in W so that there are four germs of regions contained in the
horizontal plane of R3 and two outside. Up to isotopy, these are two types of such
smooth embedding, see Figure 8.1, which differ by the cyclic ordering of the germs
of regions around the edges.

Figure 8.1. Two distinct ways to embed a neighborhood of a vertex.

Remark 8.2. When considering a standard dynamical branched surface W , it is
always possible to choose the above local R3-embeddings of W so that all have
the same type. This is a consequence of the fact that the singular set S(W) admits
an orientation compatible with the smoothing, but this is false when considering an
arbitrary branched surface. This observation is important to the understanding of
the so-called “mirror-edges”. We advise the reader to choose once and for all his
preferred type.
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A smooth structure in a neighborhood of a vertex of the singular set of a standard
2-complex (in particular a structure of branched surface) defines a cyclic ordering
on the germs of edges at this vertex, unique up to reversal. We will sometimes say
that these cyclic orderings and the given local smooth structure are compatible.

Definition 8.3. A circuit in a standard branched surface W is an immersed loop C
of the singular graph such that if g, g′ are any two germs of edges at a vertex v in W
which are consecutive in C, then g, g′ are not consecutive with respect to the cyclic
ordering on the germs of edges at v defined by the structure of branched surface.

Definition 8.4. An edge e from the singular graph of a standard dynamical
branched surface W is a mirror-edge if, for any region R of W , for any maxi-
mal positive path p in ∂ R, then either p does not contain e or p contains e in first,
in second or in last position.

In Lemma 8.5 below, we gather some easy observations about mirror-edges.
The point (a) comes from [17]. For points (b) and (c), we refer the reader to Fig-
ures 8.2 and 8.3.

e

Figure 8.2. Mirror-edge.

Lemma 8.5. Let W be a standard dynamical branched surface. Then:
(a) Any circuit of W contains at least one mirror-edge.
(b) If e1e2 · · · ek, k ≥ 2, is a maximal positive edge-path in the boundary of a region

of W , then either k = 2 and e2 is not a mirror-edge or both e2 and ek are
mirror-edges and these are the only one in e2 · · · ek.

(c) An edge e from S(W) is a mirror-edge if and only if no smooth R3-embedding
of a neighborhood of e in W defines two R3-embeddings of the same type when
restricted to neighborhoods of the vertices of e.

The point (c) of Lemma 8.5 together with the criterion for embedding a standard
2-complex in a 3-manifold given by [4] lead to:
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Lemma 8.6. A standard dynamical branched surface W can be embedded in a 3-
manifold if and only if there is an even number of mirrors in the boundary of any
region of W .

For counting the number of “mirrors in the boundary of a region R”, we count
the number of times we pass over a mirror-edge when reading the closed edge-path
∂ R, starting at any vertex of ∂ R.

Lemma 8.7 ( [17]). With the notations and assumptions of Proposition 8.1, the re-
verse orientation on the edges of S(K ) is compatible with a structure of dynamical
branched surface if and only if any edge of S(W) appears exactly once in one-to-
last position along all the maximal positive paths in the boundaries of the regions
of W .

Lemma 8.8. With the notations and assumptions of Proposition 8.1, the reverse
orientation on the edges of S(K ) is compatible with a structure of dynamical
branched surface if and only if, at each vertex of W either both outgoing edges
are mirror-edges or none of them is.

Proof. Assume that some vertex v of W admits two outgoing edges of distinct
types. Let e be the non-mirror outgoing edge. Then the incoming edge at v which
precedes e along its circuit never appears in one-to-last position in a maximal pos-
itive path of the boundary of a region. For the converse, let v be any vertex of W
and let e be an incoming edge at v. Let f (respectively g) be the outgoing edge at v

which follows (respectively which does not follow) e in its circuit. From Figure 8.3:

• if both f and g are mirror-edges, then e appears in one-to-last position in a max-
imal positive path of the boundary of the region which consecutively contains e
and f ;

• if neither f nor g are mirror-edges, then e appears in one-to-last position in a
maximal positive path of the boundary of the region which consecutively con-
tains e and g.

Lemma 8.8 follows.

Proof of Proposition 8.1. The equivalence between (b) and (c) is the content of
Lemma 8.8. Let us prove (a) ⇔ (b). By Lemma 8.6, W cannot be embedded
in a 3-manifold if and only if some region R admits an odd number of mirrors in
its boundary. We denote by f and g the outgoing edges at the source s of R. By
item (b) of Lemma 8.5, there is an even number of mirrors in the subpath of ∂ R
containing the sink of R and which goes from the terminal vertex of f to the termi-
nal vertex of g. Thus the total number of mirrors in ∂ R is odd if and only if there is
an odd number of mirrors in g−1 f , whence the conclusion.
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one-to-last positions

e

f

g

e

f

g

Figure 8.3. When the two outgoing edges share the same type.

9. From non-embeddability to non-geometricity

Here the goal is to prove the following result:

Proposition 9.1. Let α ∈ SDBS(Fn) be represented by a positive cocycle of a
standard dynamical branched surface W . If W cannot be embedded in a compact
3-manifold, then λ(α−1) < λ(α).

The first step is to simplify the combinatorics of the branched surface. In each
region, there is a line connecting the source of the region to its sink. The union of
these lines form a union of disjoint loops embedded in W , termed cycles.

Lemma 9.2. Let α ∈ SDBS(Fn) be represented by a positive cocycle of a standard
dynamical branched surface W which does not embed in a 3-manifold. There is
k ≥ 1 and a standard dynamical branched surface V admitting a positive cocycle
u representing αk such that:
• The r-embedded graph �u intersects each cycle and each circuit of V exactly

once. In particular, there are at least two circuits and two cycles in V and the
circuits have no self-intersection.

• V does not embed in a 3-manifold.

Proof. We cut W along a r-embedded graph associated to a positive cocycle rep-
resenting α. Gluing in a suitable way a sufficiently hight number of copies of the
resulting 2-complex, and then identifying its top and bottom, yields a standard dy-
namical branched surface V as announced.



MAPPING-TORUS, BRANCHED SURFACES AND FREE GROUP AUTOMORPHISMS 423

From now on, V and u are assumed to satisfy the conclusions of Lemma 9.2.

The second step is to give an explicit definition of a map “induced” by a posi-
tive cocycle and representing the associated outer free group automorphism.

Let �u be the r-embedded graph associated to the positive cocycle u ∈C1(V;Z).
It defines a sequence of positive cocycles ui , i = 0, · · · , n, with u = u0 = un ,
and of associated r-embedded graphs �ui such that �ui is obtained from �ui−1 by
a Whitehead-move. This Whitehead-move corresponds to the passage through a
vertex of V . We define in Figure 9.1 an elementary-map, that is the map associated
to such a passage.

x

y

z

t

u

v

x−1z

x−1t

y−1u
y−1v

s

Figure 9.1. The elementary-map.

Let us describe more this figure. We subdivide the edges of the �ui ’s at the inter-
section points with the cycles. With respect to the orientation of the edges of S(V),
�ui is just after the vertex s of V , whereas �ui−1 is just before s.

The map, denoted by ψi , is defined from �ui−1 to �ui by the labels put on
the edges of �ui−1 . No label means that the edge is collapsed. Outside the edges
contained in the small contractible neighborhood of s ∈ V drawn in Figure 9.1,
there is a trivial identification between the edges from �ui and from �ui−1 . The
edge from �ui−1 which belongs to the germ of region in the middle of the 3-sheeted
portion is collapsed. The other edges from �ui−1 in this figure are dilated through
an half of the region with source s, two covering x−1 and the other two y−1.

We feel important to stress that, because of the “symmetry” in the definition
of an elementary-map, such a map does not depend on the way the complex has
been smoothed in a neighborhood of the vertices (as long as the local smoothing is
compatible with the orientation of the edges of the singular set).

We let ψu be the graph-map on �u defined by ψu = ψn ◦ ψn−1 ◦ · · · ◦ ψ1.
Observe that the 2-valent vertices of �u are periodic orbits (in fact fixed points
because V and �u satisfy the conclusions of Lemma 9.2) for ψu . In other words,
the cycles are periodic orbits for the semi-flow on V admitting ψu on �u as return-
map. This semi-flow is not transverse everywhere to the singular set.

The following lemma is obvious from the definitions.
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Lemma 9.3. With the notations above, up to collapsing the edges of �u with trivial
images under ψu, (ψu, �u) is an invariant train-track of the outer free group auto-
morphism defined by u (�u is equipped with the train-track structure inherited from
the smooth structure of V).

We revert the orientation of all the edges. The cocycle −u is a positive cocycle
of the resulting standard dynamical 2-complex, denoted by D. If β is the outer
automorphism represented by u, the outer automorphism represented by −u is β−1.
In the same way as in Lemma 9.3, we define a representative (ψ−u, �−u) of β−1.

The incidence matrix M = (mi j ) of a graph-map f mapping vertices to ver-
tices is defined by setting mi j equal to the number of times the edge e±1

j appears
in f (ei ). We denote by λ( f ) or λ(M) the growth-rate of the map f , which is the
greatest positive eigenvalue of the matrix M .

Lemma 9.4. For any k ≥ 1, the volume (i.e. the sum of the entries) of the incidence
matrix Mk

u of ψk
u is equal to the volume of the incidence matrix Mk−u of ψk−u.

Recall the construction of the graph G(M) associated to the incidence matrix
M = (mi j ) of a graph-map mapping vertices to vertices: the vertices vi of G(M)

are in bijection with the edges ei of the graph; there are mi j oriented edges going
from vi to v j . The volume of M is equal to the number of outgoing edges in G(M).

Proof. Consider the cellular decomposition of V obtained by subdividing each re-
gion by an edge connecting the source to the sink. Take the graph dual to this
cellular decomposition. We delete the edges dual to the 1-cells not in the singular
graph (i.e. the 1-cells dual to the edges of the cycles). We collapse each edge e
which has a vertex in an edge from S(V) which is outgoing at the source of the
region containing e. We orient each edge e of the resulting graph so that its initial
vertex belongs to an edge from S(V) which is outgoing at the source of the region
containing e (this means, roughly speaking, that the edges are oriented according to
the orientation of the semi-flow). See Figure 9.2.

We denote by G̃u the graph so constructed. The same construction applied to
D (i.e. after reversing the orientation of the edges of S(V)) yields a graph denoted
by G̃−u . The construction of G̃u , and of G̃−u , can be realized embedded in the
2-complex. By construction also, any positive loop in G̃u defines a periodic orbit
of ψu , and conversely any periodic orbit of ψu defines a positive loop in G̃u . The
same conclusions hold for G̃−u .

There is an isomorphism µ : G̃u → G̃−u which reverses the orientation of the
unique edge of G̃u in each 2-cell which connects the edge of the singular graph
originating at the source to the edge ending at the sink. The isomorphism µ pre-
serves the orientation of the other edges. Let R̃ denote the union of the edges of G̃u
the orientation of which is reversed under µ. The subgraph R̃ is a union of disjoint
embedded loops, positively oriented, and homotopic to positive loops of the singu-
lar graph. In Figure 9.2, one of these loops is represented in dash. Among the edges
of R̃, we distinguish R0, the set of edges which do not intersect �u in an essential
way (i.e. such that the intersection point can be suppressed by a small homotopy
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Figure 9.2. The graphs G̃u and G̃−u .

of �u). Since �u intersects any positive loop of the singular graph, this set R0 is a
forest in R. We collapse R0. The resulting graph is isomorphic to G(Mu) by an
orientation-preserving isomorphism. By collapsing µ(R0) ⊂ G̃−u , we similarly
get G(M−u).

If πu and π−u are the collapsing maps, µ induces an isomorphism µ: G(Mu)→
G(M−u) which reverses the orientations of the edges of πu(R) and preserves the
orientation of the other edges. From our description of R and of R0, πu(R) is a
union of positive loops such that the number of incoming edges at a given vertex
is equal to the number of outgoing edges. Thus the number of outgoing edges
of π−u(µ(R)) = µ(πu(R)) is equal to the number of outgoing edges of πu(R).
Therefore, G(Mu) and G(M−u) admit the same number of outgoing edges, so that
the volumes of Mu and M−u are equal.

To conclude for the powers Mk
u and Mk−u , just consider the standard dynam-

ical 2-complexes constructed for ψk
u and ψk−u as was suggested in the proof of

Lemma 9.2 and apply the same arguments as above.

Lemma 9.5. With the notation and assumptions above:

(a) Let e be an edge of �u and let R be the region which contains e. ψu(e) is trivial
if and only if there is no vertex from S(V) in the positive path in ∂ R from the
trivalent vertex of e to the sink of R.



426 FRANÇOIS GAUTERO

(b) Let p be a legal edge-path in �u. Then ψu(p) = p if and only if the endpoints
of p are 2-valent vertices and neither p nor any image of p along the semi-
flow intersects a mirror-edge. In particular the boundary of any region entirely
crossed by p or any of its images contains exactly four edges of S(V).

(c) There are j ≥ 1 and M > 0 such that, if p is a legal edge-path in �u with length
greater than M, then �u = ψ j (p). The same conclusion holds if p is any legal
loop in �u.

(d) There is j ≥ 1 such that, if some image under the semi-flow of an edge e from
�u intersects a mirror-edge, then �u = ψ j (e).

(e) If e and f are the two edges in the 2-sheeted side of a trivalent vertex of �u,
then �u = ψ j (e) or �u = ψ j ( f ).

The first item is obvious from the definition of ψu . We refer the reader to Figure 9.3
to see the phenomenon of dilation crucial for understanding the other items. The
second item is easily deduced from this figure.

p

p dilated p not dilated

Figure 9.3.

The third item was proven in [17]. It comes from the fact that any circuit contains a
mirror-edge (see Lemma 8.5, item (a)). The last assertions are consequences of this
one.

The 2-complex D can be smoothed in a small neighborhood of each vertex,
such that the smooth structure is compatible with the orientation of the singular
graph. Notice however that the 2-complex D does not necessarily admit such a
smooth structure along the whole singular graph. The following lemma strengthens,
in some sense, Proposition 8.1.

Lemma 9.6. With the notations above, let M be the set of open edges e from S(V)

such that e is a mirror-edge of V whereas the other edge of S(V) with same initial
vertex is not. Then D can be smoothed along the complement of M in S(D) in a
way compatible with the orientation of S(D).

Proof. The lemma relies upon the two following observations:

• Keep the same cyclic orderings for D as for V on the germs of edges at each
vertex. Then D can be smoothed along an edge e in a way compatible with
the orientation of S(D) and with these cyclic orderings if and only if e is not a
mirror-edge of V . See Figure 9.4.
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e
e

Figure 9.4. Reversing the orientation of a mirror-edge.

• Permute the two incoming, or the two outgoing, edges of D at some vertex v. Let
e be an incoming edge at v. If D was smoothable (respectively non-smoothable)
along e, in a compatible way, before the change of cyclic ordering, then D is
not smoothable (respectively smoothable) along e in a compatible way after the
permutation. Nothing changes for the other edges of the singular graph. We
leave the reader check by inspection.

To obtain the lemma, it then suffices to permute each pair of mirror-edges in V
which have a same initial vertex, reverse the orientation of the edges and then
smooth in a neighborhood of each vertex in a way compatible with both the ori-
entation and the cyclic orderings on the germs of edges. These local smoothings
can be extended along the singular graph as announced in the lemma.

Lemma 9.7. With the notations above, let Bu (respectively B−u) be the maximal,
not necessarily connected, proper subgraph of �u which is invariant under ψu
(respectively under ψ−u). Then Bu is a union of disjoint, legal embedded inter-
vals (in particular it is a forest) and λ(ψu |Bu

) = λ(ψ−u |B−u
) = 1. Moreover,

if πu : �u → �u (respectively π−u : �−u → �−u) is the map collapsing the
edges of �u with trivial images under ψu (respectively under ψ−u), then πu(Bu) =
π−u(B−u).

Proof. The point (c) of Lemma 9.5 tells us that any legal path in Bu is an interval.
The point (e) in the same lemma tells us that Bu contains no illegal turn. Thus
the connected components of Bu are legal intervals. It is straightforward that the
growth-rate of the map restricted to Bu is 1.

Let p be a ψu-invariant legal edge-path. By the point (b) of Lemma 9.5, and
by definition of the elementary-maps, it readily follows that p is ψ−u-invariant. Let
us now consider an edge e of �−u outside Bu such that ψ−u(e) is non-trivial. As



428 FRANÇOIS GAUTERO

long as the image of e under the semi-flow remains a legal edge-path, the same
arguments as for Lemma 9.5 apply, so that the image of e is a legal edge-path
which eventually covers all the graph if D is smooth. Otherwise, at some point,
the image of e decomposes into two legal edge-paths. Since we do not reduce the
image, iterating the process yields a concatenation of an increasing number of legal
edge-paths which covers the graph. We so get the lemma.

Lemma 9.8. Assume that D does not admit a smoothing compatible with the ori-
entation of its singular set. There is m ≥ 1, an invariant train-track (ψm, τ ) rep-
resenting the same automorphism as (ψm

u , �u) and a representative (φm, τ ) of the
same automorphism as (ψm−u, �−u) with λ(φm) < λ(ψm).

Proof. By Proposition 8.1, some vertex in V is the initial vertex of both a mirror-
edge and a non-mirror-edge. We consider the partial smooth structure given by
Lemma 9.6: D is smooth except along a non-empty set M of open edges in S(D),
which does not contain two edges with same terminal vertex.

Let us consider an edge f0 from M. Consider the edge f1 of S(D) which is
outgoing at t ( f0) and does not follow f0 in its circuit. Without loss of generality,
we can assume that �−u connects the two outgoing edges at t ( f0) in the region
admitting t ( f0) as a source. We embed �−u in D so that each vertex of �−u belongs
to a small neighborhood of the initial vertex of the edge from S(D) containing it.
We equip �−u with the induced smooth structure.

Let �−u1 be the r-embedded graph connecting the two incoming edges at t ( f0)

in the region which admits t ( f0) as a sink. We assume that the two trivalent vertices
v1, v2 of �−u1 in these incoming edges belong to a small neighborhood of t ( f0) and
�−u1 is equipped with the smooth structure induced by this embedding.

Let v1 be the vertex of �−u1 in f0. Since no vertex from S(D) is the terminal
vertex of two edges in M, some image ψ−u(y) of an edge y crosses the illegal legal
turn of �−u1 at v1 and consecutively crosses the legal turn at v2. See Figure 9.5.
Pushing �−u1 through t0 then creates a cancellation.

no cancellation

  never happens because never 2

    non-smoothed edges incoming
             at a same vertex

f0
f1

f0

f1

e
R

cycles

Figure 9.5. How cancellations arise.

Let v0 be the vertex of �−u in f1. Consider the turn τ of �−u at v formed by
the edge in the 1-sheeted side and the edge e in the region R containing the turn
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f0 f1. The legal turn of �−u1 at v1 which has one edge in R is mapped to τ by
the passage through t ( f0). Since f0 is in M, by pulling �−u1 along f0 until a
small neighborhood of its initial vertex, this turns becomes illegal. By definition,
no illegal turn is in the image of an elementary-map when pushing through a vertex
of the singular set (this is only after pushing along an edge that an illegal turn may
appear). On the contrary, any legal turn which belongs to a small neighborhood of
the vertex though which we push appears twice. Observe that τ is also a legal turn
for �u , and that the observations of the last sentence hold for V . It follows that the
turn τ of �−u appears a smaller number of times in the image of ψ−u than in the
image of ψu . Moreover, since f0 is in M, the edge e of �−u introduced above is
outside Bu , so that τ is not in Bu . Thus the number of times τ appears in the image
of ψk

u grows exponentially faster with k → ∞ than the number of times τ appears
in the image of ψk−u .

We have a natural one-to-one correspondance between the turns of �u and
those of �−u (equipped with the smooth structure defined at the beginning of this
proof) such that any legal turn τ ′ of �−u corresponds to a legal turn of �u which is
crossed at least the same number of times by the image of �u under ψu than τ ′ is
crossed by the image of �−u under ψ−u . Moreover, no illegal turn of �−u is crossed
by the image of some edge under ψ−u .

Therefore, by Lemma 9.4, after collapsing Bu , and by pulling-tight each iter-
ate of ψ−u , we get two sequences of representatives (ψ̃k

u , �̃u) and (φ̃k, �̃−u) such
that the volume growths exponentially faster in the first sequence than in the sec-
ond one. The lemma follows since, by Lemma 9.7, the matrices associated to the
representatives obtained after collapsing Bu are irreducible (a non-negative, integer
matrix M is irreducible if for any (i, j), there is Ni j such that the (i, j)-coefficient
of M Ni j is positive).

Proof of Proposition 9.1. Let W be a standard dynamical branched surface with a
positive cocycle representing α ∈ Out(Fn). Up to passing to a positive power αk of
α, Lemma 9.2 gives a standard dynamical branched surface V for which subsequent
lemmas apply. Let m ≥ 1 be the integer given by Lemma 9.8, and let (ψm, τ ) and
(φm, τ ) be the two representatives given there. They respectively represent αkm

and α−km . Since (ψm, τ ) is an invariant train-track, λ(ψm) = λ(αkm), whereas
λ(φm) ≥ λ(α−km). Lemma 9.8 then gives λ(α−km) < λ(αkm), with k and m
positive integers. Thus λ(α−1) < λ(α) as announced.

10. Proof of the theorems

Proof of Theorem 3.3. (b) ⇒ (a) is a consequence of

Proposition 10.1 ( [16, 17]). Let α ∈ Out(Fn) be represented by a positive cocycle
u of a standard dynamical branched surface W . Let us assume that W admits an
embedding in some compact 3-manifold M3. Let MW be the regular neighborhood
of W in M3. Let u be any positive cocycle of W . Then:
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(a) u defines a surface Su, with fundamental group Fn, which is properly embedded
in MW ;

(b) Su is the fiber of a fibration of MW over S1;
(c) the monodromy of this fibration induces α on the fundamental group of Su. Fur-

thermore the monodromy is pseudo-Anosov and the associated foliations have
no interior singularities.

The monodromy is pseudo-Anosov because no singular leaf connects ∂ MW to itself
(see [17] for the construction of the contraction-dilation directions). This is indeed
forbidden by the non-existence of annuli or Moebius-bands among the regions of W
and by the compatibility of the orientation of the singular graph with the smoothing.
All the other assertions are borrowed from [16, 17].

(a) ⇒ (d): By Proposition 9.1, W can be embedded in a compact 3-manifold.
By Proposition 8.1, the same standard 2-complex, equipped with the reverse orien-
tation on S(W), admits a compatible structure of dynamical branched surface V . If
u is a positive cocycle of W representing α, the cocycle −u of V represents α−1.

(d) ⇒ (c): Assume that α is not geometric. Then W does not embed in a 3-
manifold. Thus λ(α−1) < λ(α) by Proposition 9.1. If α is not geometric, neither is

α−1 so that the same arguments applied to α−1 give λ((α−1)
−1

) = λ(α) < λ(α−1)

whence a contradiction. It follows that α is geometric so that λ(α) = λ(α−1).
(c) ⇒ (b) is given by Proposition 9.1.

Proof of Theorem 1.1. Call nice any outer automorphism of Fn which is in

NTT(Fn) = SDBS(Fn).

The theorem is then implied by Theorem 3.3 and Proposition 10.1.

Proof of Theorem 5.12. The equivalences (a) ⇔ (c) ⇔ (d) are a straightforward
consequence of Theorems 3.3 and 7.1. The implication (a) ⇒ (b) is a consequence
of the combinatorial suspension explicited while proving Proposition 7.2 (see Re-
mark 7.6), and of the equivalence between the items (a) and (b) of Theorem 3.3.

Let us prove (b) ⇒ (a). Let (ψ, τ) be a nice train-track for α. Let B be a set
of loops in τ homotopically preserved by ψ , as given by item (b) (we call “set of
∂-loops” such a set of loops). The combinatorial suspension described for proving
Proposition 7.2, applied to (ψ, τ), gives a standard dynamical branched surface
W with a positive cocycle u defining (ψ, τ) as the return-map ψ of some non-
singular semi-flow on a cross-section τ in W (see Remark 7.6). Assume that α is
not geometric. Then, by Theorem 3.3, W cannot be embedded in a 3-manifold. By
Lemma 8.6, some region R of W admits an odd number of mirrors in its boundary.
Let s and a be the source and sink of R. Assume that τ is embedded in W with an
edge e connecting the two incoming edges at s. The loops in B pass over e either
like in the trivial I-bundle over e (left of Figure 10.1) or like the twisted I -bundle
over e (right of Figure 10.1).
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Figure 10.1. Preservation and Non-Preservation of ∂-loops.

Assume that this last case is satisfied. Then, as illustrated by Figure 10.1, the re-
duced image of B under the semi-flow is not a set of ∂-loops and pass four times
over the edge of the new train-track which connects the two outgoing edges at s.
Since the four subpaths are legal subpaths, any further image of B also crosses at
least four times the edge intersecting the cycle of W through s. It follows that the
reduced image of B under ψ passes also at least four times over the edge e, thus B
is not homotopically preserved by ψ , which is a contradiction with our assumption.

Assume now that the loops in B pass over e like the trivial I-bundle. Then
this is also true for their reduced images under the Whitehead-move through s (see
Figure 10.1). Pushing further along the semi-flow, since R has an odd number of
mirrors in its boundary, we get a train-track τ ′ with an edge f connecting the two
incoming edges at a, and such that the reduced image of B in τ ′ is a set of ∂-loops
which pass over f like the twisted I -bundle. This implies, as before, that B is not
homotopically preserved when pushing through a.

It only remains to check that we can assume that some edge e of τ connects
the two incoming edges at s. If this is not satisfied by τ , then it is satisfied by the
invariant train-track (ψ ′, τ ′) obtained after pushing τ through some vertices of W
– see Section 6. Moreover, the same arguments as those exposed above, about the
preservation or non-preservation of a set of ∂-loops when pushing through a vertex
of W , give a set of ∂-loops in τ ′ homotopically preserved under ψ ′. The conclusion
follows as above, by substituting (ψ ′, τ ′) to (ψ, τ).

A. Appendix: From train-tracks with circuits to nice train-tracks

Let ψ : � → � be a tight graph-map, i.e. the image of any edge is a locally injective
path, and let (p, q) be a cancellation-pair for ψ .

A BH-folding [2] at (p, q) from (ψ, �) to (ψ̂, �̂) is defined by: ψ̂ ◦π = π ◦ψ ,
�̂ is the graph obtained from � by folding at (p, q) and π : � → �̂ is the associated
quotient-map.

An unfolding [21] from a tight graph-map (ψ̂, �̂) to a tight graph-map (ψ, �)

is a homotopic right-inverse of a BH-folding from (ψ, �) to (ψ̂, �̂), i.e. for any
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edge e of �, (ψ̂ ◦ π)(e) = (π ◦ ψ)(e) up to pulling-tight. An efficient unfolding is
an unfolding from a invariant train-track to an invariant train-track.

Let (ψ, τ) be a train-track with circuits. Consider a cancellation-pair (pi , qi )

associated to a cancellation-path wi . Its tip, i.e. the common vertex of pi and qi ,
is the terminal vertex of a cancellation-path, noted wi−1. Associated to wi−1 is an-
other cancellation-pair, denoted by (pi−1, qi−1). Eventually, repeating the process,
we go back to (pi , qi ). The cyclically ordered sequence of cancellation-pairs, or of
the associated cancellation-paths, is called a circuit.

The circuits exhibited above allow us to efficiently unfold, as long as we wish,
any train-track with circuits, starting from any tip of cancellation-pair.

Lemma A.1. Let (ψ, τ) be a train-track with circuits. If any two cancellation-
pairs in bad position belong to two distinct circuits then a finite sequence of efficient
unfoldings transforms (ψ, τ) to a nice train-track.

Proof. Let us consider two cancellation pairs (pi , qi ), (p j , q j ) in bad position.
Without loss of generality pi = wp j · · · and w does not contain the tip of a
cancellation-pair (pk, qk) with pi = · · · pk · · · . We unfold at the tip of (p j , q j )

along a legal path which is the concatenation of a proper subset of an edge with the
path w. This suppresses the considered pair in bad position. This might create a
new one if, by this unfolding, we put the cancellation-pair (p j−1, q j−1) preceding
(p j , q j ) in its circuit, in bad position with respect to some (pk, qk). If this happens
we iterate the process. Thanks to the assumption that no two cancellation-pairs in
bad position lie in a same circuit, we eventually end with a train-track map with one
couple less of cancellation-pairs in bad position. Lemma A.1 readily follows.

Corollary A.2. If α ∈ Out(Fn) is represented by a train-track with circuits, then
there is an integer 1 ≤ k ≤ (2n − 2)! such that αk is represented by a nice train-
track.

Proof. Let (ψ, τ) be a train-track with circuits of α. Setting k equal to the lcm of
the lengths of the circuits of (ψ, τ), (ψk, τ ) admits a collection of length 1 circuits
for which it is a train-track with circuits. Lemma A.1 gives a nice train-track for
(ψk, τ ).

Thanks to Theorem 5.12, the above corollary gives the following statement:

Theorem A.3. Let α ∈ Out(Fn) admitting a train-track with circuits. Then the
following properties are equivalent for some 1 ≤ k ≤ (2n − 2)! :

(a) αk is geometric.
(b) λ(α) = λ(α−1).
(c) both αk and α−k admit a nice train-track.

Remark A.4. As can be observed by looking at the proof of Corollary A.2, (2n −
2)! is only a rough upper-bound on k.

The best upper-bound is maxn1+···+ni =2n−2 lcm(n1, · · · , ni ).
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B. Appendix: Finding train-tracks with circuits

To be able to search for train-track with circuits representatives among the repre-
sentatives of an outer free group automorphism, we need the “connectedness”, in
a sense to be defined, of the set of efficient representatives of an outer free group
automorphisms. Here, an efficient representative of α ∈ Out(Fn) is a representa-
tive (ψ, �) of α such that for any k ≥ 1, ψk is locally injective when restricted
to the edges. It is easily checked that an invariant train-track of α is an efficient
representative of α. Usually, efficient representatives are required to map vertices
to vertices, which is not the case here but this is a fairly unimportant point.

Once the connectedness established, it would not be hard to describe a finite
algorithm. Unfortunately, the state of art about the connectedness of the set of
efficient representatives is very unsatisfactory at the moment of the writing of this
paper.

• In [21], the connectedness is asserted in the case of an irreducible automor-
phism and with respect to certain moves (essentially, BH-folding and efficient
unfoldings). However there is a slight mistake in [21]. This mistake should be
corrected by the introduction of global BH-foldings and global unfoldings: a
global (un)-folding consists of (un)-folding simultaneously all the cancellation-
pairs of a same circuit. On the other hand, the assumption of irreducibility seems
needed there only to ensure the existence of an efficient representative.

• If the automorphism is Irreducible With Irreducible Powers (IWIP), the connect-
edness under the above moves is a consequence of [22]. The methods of this last
paper are completely different from the previous one.

• In [14], the connectedness is established for the set of efficient representatives
of an outer free group automorphism induced by a pseudo-Anosov of a surface,
which are embedded in the surface. The connectedness is established with re-
spect to the same kind of moves as above, but which are also embedded in the
surface. This does not mean that the whole set of efficient representatives is
connected under these moves (even non-embedded ones): it might exist non-
embedded efficient representatives which could not be joined to any embedded
one.

C. Appendix: Characterizing mapping-tori
of pseudo-Anosov homeomorphisms

Proposition C.1. Let S be a compact surface with boundary. Let h be any pseudo-
Anosov homeomorphism of S, with no interior singularities. The outer free group
automorphism α induced by h on the fundamental group of S is represented by
a train-track with circuits. If, in addition, S is orientable and h is orientation-
preserving, then α admits a nice train-track representative.

We refer the reader to [26] and [8] for all what is needed about pseudo-Anosov
homeomorphisms.



434 FRANÇOIS GAUTERO

Proof. Any outer automorphism α induced by a pseudo-Anosov without interior
singularities is represented by an invariant train-track (ψ, τ) which admits a set of
cancellation-paths. This is a well-known and easy consequence of the existence
of the singular leaves. These leaves give the way to unfold at the vertices of the
train-track to get the cancellation-paths.

Now, consider an oriented edge e. Since any train-track of a pseudo-Anosov
homeomorphism is recurrent (i.e. carries a measure with positive weights), there are
two legal edge-paths p+, p− in τ beginning at the 2-sheeted side of their initial ver-
tices and ending respectively with e and e−1. By the dilation property of a pseudo-
Anosov homeomorphism, the lengths of the legal paths composing a cancellation-
pair for (ψ j , τ ) tend toward infinity with j . Thus, there is j ≥ 1 such that both p+
and p− belong to cancellation-pairs of (ψ j , τ ) so that (ψ, τ) is a train-track with
circuits.

When the surface is orientable and the homeomorphism is orientation-pre-
serving, two cancellation-pairs in bad position do not belong to a same circuit.
Lemma A.1 gives the second assertion of the proposition.

Theorem C.2 below is then a straightforward consequence of our process of
combinatorial suspension:

Theorem C.2. Let S be an orientable compact surface with boundary. Let h be an
orientation-preserving pseudo-Anosov homeomorphism of S, with no interior sin-
gularities. Then the mapping torus of (h, S) admits as a spine a standard dynamical
branched surface W carrying the weak unstable foliation of the suspension flow.
Moreover W admits a positive cocycle u ∈ C1(W ; Z) associated to the fibration
over the circle with fiber S and monodromy the isotopy-class of h. This cocycle
defines an invariant train-track for h.

The weak unstable foliation is the foliation tangent at each point to the plane,
in the tangent space of the manifold, spanned by the neutral and unstable directions
of the flow.

D. Appendix: Examples

D.1. Example 0: Two automorphisms which do not admit train-tracks
with circuits representatives

We borrow the two examples from [20] (the two are IWIP). The first one, denoted
by β and represented by (g, G), is defined as follows: the graph G has two vertices
r, q, four edges B, C, D, E with B from q to r , C and D from r to q, E from q
to q; the map g is defined by g(B) = C E−1C−1 DE , g(C) = C−1 B−1 E−1 D−1,
g(D) = B, g(E) = C B. The three turns (C, B), (C, E−1) and (E, B) at the vertex
q are crossed respectively by g(E), g(B) and g(C). This forbids to unfold (g, G)

by keeping the efficiency of the map. Thus β does not admit a train-track with
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circuits (thanks to the connectedness evoked in Appendix B which holds here since
β is an IWIP).

The second example is γ ∈ Aut(F3) given by γ (A) = B, γ (B) = C and
γ (C) = B−1 A, with F3 = < A, B, C >. This is the automorphism of lowest
growth-rate in the pair {γ, γ −1}. We consider the representative on the rose with
three petals, A, B and C . Consider the illegal turn (A−1, C). The turns (B, A−1),
(C−1, B), (C−1, B−1) and (A, C−1) are crossed by γ 7(B), γ 3(B), γ 8(B) and
γ 6(B). This forbids to unfold (A−1, C) in whatever direction by still keeping an
efficient map. Therefore, for the same reason as β, γ cannot be represented a train-
track with circuits.

Figure D.1 presents the elementary-map used to compute the invariant train-
tracks in the examples below. It makes the computations easier than the elementary-
map given for proving Proposition 9.1.

x

z

t

u

v

x−1zt

xu

v

s
x

Figure D.1. Elementary-map.

D.2. Example 1: Figure D.2

We consider the standard dynamical branched surface illustrated by Figure D.2.
The positive cocycle u(0) = 1, u(1) = 3 defines the invariant train-track (ψ1, τ1)

where τ1 is drawn in this figure, and ψ1 is given by : ψ1(A) = C , ψ1(C) = AE ,
ψ1(E) = H , ψ1(H) = I , ψ1(I ) = A−1K , ψ1(K ) = A. The automorphism of
F3 =< X, Y, Z > it represents is α1(X) = Y , α1(Y ) = Z−1 X , α1(Z) = X . There
is one mirror on the edge 0 so that there is an odd number of mirrors in the boundary
of the unique region of W . Therefore W cannot be embedded in a 3-manifold and
thus α1 is not geometric. This is checked directly by computing the growth-rate:
λ(α1) � 1,32 whereas λ(α−1

1 ) � 1,16 (up to 10−2).

Some words about this example: We can slightly modify this example by putting
mirrors on both edges of the singular graph. We get a unique region with boundary
“0, 0, 1, 0−1, 1−1, 1−1”. This is also a standard dynamical branched surface, and
it admits as positive cocycle u(0) = u(1) = 1. This cocycle defines an automor-
phism of F2. These automorphisms are known to be geometric and, indeed, the
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branched surface embeds in a non-orientable 3-manifold. The author did not think
immediately to these so simple (too simple . . . ) examples, but became aware of
them thanks to John Crisp, who studied these 2-complexes with other perspectives
in mind [6].
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13

110

Figure D.2. A “simple” non geometric automorphism.

D.3. Example 2: Figure D.3

We consider the invariant train-track (ψ2, τ2) with τ2 being represented in the right-
hand side of Figure D.3 and ψ2 being defined by: ψ2(A) = E AC , ψ2(C) =
I E K A−1, ψ2(E) = H , ψ2(H) = AK −1 E−1 I −1, ψ2(I ) = E−1 I −1, ψ2(K ) =
E AK −1 E−1 I −1.

It represents α2 ∈ Aut(F3), F3 =< X, Y, Z >, defined by α2(X) = X ,
α2(Y ) = Y ZY −1 X and α2(Z) = Z−1Y −1.

A first way to check that α2 is geometric: try all the sets of reduced loops in
τ2 whose union crosses exactly twice each edge. There are only a finite number of
them. Compute whether they are homotopically preserved or not by ψ2. There is
such a set preserved, this is the set of boundary loops of the trivial thickening of τ2
embedded in the plane as illustrated on the right-hand side of Figure D.3, i.e. the
surface is the three times punctured disc.

A second way: the combinatorial suspension yields the standard dynamical
branched surface W2 with positive cocycle and r-embedded graph illustrated by
Figure D.3. Check whether W2 admits an embedding in a compact 3-manifold (see
the criteria given in 8.6, 8.1, or 8.7).

To obtain the surface where to realize α2, just read-off, once local embeddings
of W2 in R3 have been chosen, the cyclic orderings that they define at the vertices
of the r-embedded graph, and whether over each edge the surface is the trivial or
twisted I-bundle. All is deduced from the combinatorics of the complex.

Some words about this example: the automorphism is in fact in the same class
than the braid automorphism σ1σ

−1
2 of B3. The example was constructed from the

“usual” efficient representative (g, G) where G consists of four 3-valent vertices
and six edges: three, d, e, f , are loops and the three others, a, b, c, connect the
vertices of d, e, f to the fourth vertex. The map g is defined by g(a) = ada−1c,
g(b) = a, g(c) = c f −1c−1b, g(d) = f , g(e) = d and g( f ) = e. To construct W2,
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we unfolded until obtaining (ψ2, τ2). Observe that the invariant train-track defined
by the given positive cocycle is not (ψ2, τ2) but (ψ ′

2, τ2) with ψ ′
2(A) = AC I ,

ψ ′
2(C) = E K , ψ ′

2(E) = H E , ψ ′
2(H) = K −1 E−1 I −1, ψ ′

2(I ) = A−1 E−1 I −1 and
ψ ′

2(K ) = AK −1 E−1.
There are many other positive cocycles, and so many other free group automor-

phisms, represented by this branched surface: for instance u(6) = u(7) = u(1) =
1, u(3) = 2, u(4) = 3 and u(x) = 0 for the other edges. All are geometric.
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Figure D.3. A geometric reducible automorphism.

D.4. Example 3: Figure D.4

Let α3 ∈ Aut(F5), F5 =< X, Y, Z , T, U >, defined by: α3(X) = Y , α3(Y ) = Z ,
α3(Z) = T , α3(T ) = U , α3(U ) = T X−1.

This is the automorphism represented by the standard branched surface W3 and
positive cocycle of Figure D.4. It admits as invariant train-track (ψ3, τ3), τ3 being in
the right-hand side of the figure, and ψ3 is defined by: ψ3(A) = B, ψ3(B) = C A,
ψ3(C) = D, ψ3(D) = E , ψ3(E) = F , ψ3(F) = G, ψ3(G) = H K −1 A−1,
ψ3(H) = I K , ψ3(I ) = J , ψ3(J ) = A, ψ3(K ) = L , ψ3(L) = K .

The edge 1 of S(W3) does not appear in one-to-last position whatever max-
imal positive path in the boundary of a region is considered. Thus W3 cannot be
embedded in a compact 3-manifold so that α3 is not geometric.

Some words about this example: computing α−1
3 is very easy. One has α−1

3 (X) =
ZU , α−1

3 (Y ) = X , α−1
3 (Z) = Y , α−1

3 (T ) = Z , α−1
3 (U ) = T . This is a positive

automorphism so that the map on the rose with petals {X, Y, Z , T, U } is an efficient
representative. One thus obtains λ(α−1

3 ) � 1.19, whereas λ(α3) � 1.23 (up to
10−2).
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Figure D.4. A non-geometric automorphism.

D.5. Example 4: Figure D.5

We consider the automorphism α4 ∈ Aut(F4) given by α4(X) = Y X−1 Z−1Y −1,
α4(Y ) = X Z−1Y −1, α4(Z) = Y Z X−1T Y −1 and α4(T ) = X2 Z−1Y −1, with
F4 =< X, Y, Z , T >. By unfolding, we find the nice train-track (ψ4, τ4) where
τ4 is the train-track on the right-hand side of Figure D.5 and ψ4 is defined by:
ψ4(A) = C , ψ4(C) = M I −1, ψ4(E) = H , ψ4(H) = E A, ψ4(I ) = K M ,
ψ4(K ) = A−1 E−1L , ψ4(M) = N , ψ4(N ) = AM , ψ4(L) = E AM I −1 AM I −1.
Our combinatorial suspension yields the standard dynamical branched surface of
Figure D.5 with the positive cocycle u(0) = u(2) = 2, u(4) = u(7) = 1 and
u(x) = 0 for the other edges x of the singular graph. This branched surface can be
embedded in a compact 3-manifold so that α4 is geometric. The surface where to
realize α4 is the trivial thickening of τ4 which has been drawn with the correct cyclic
ordering at the vertices. This is the orientable genus 2 surface with one boundary
component.

0

0

0

1

2

4

5

6
7

1

1 2

3

3

4

4

5

5

6

A
C

E

I

0

H

1

2
3

4
5

6
7

L
K

3

7

72

6

M

N

0

0

2

2

4
7

A

C

EH

I

K

L

M

N

Figure D.5. An IWIP geometric automorphism.
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