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Sharp estimates for bubbling solutions
of a fourth order mean field equation

CHANG-SHOU LIN AND JUNCHENG WEI

Abstract. We consider a sequence of multi-bubble solutions uk of the following
fourth order equation

�2uk = ρk
h(x)euk∫
� heuk

in �, uk = �uk = 0 on ∂�, (∗)

where h is a C2,β positive function, � is a bounded and smooth domain in R
4, and

ρk is a constant such that ρk ≤C . We show that (after extracting a subsequence),
limk→+∞ ρk = 32σ3m for some positive integer m ≥ 1, where σ3 is the area
of the unit sphere in R

4. Furthermore, we obtain the following sharp estimates
for ρk :

ρk −32σ3m =c0

m∑
j=1

ε2
k, j


∑

l �= j

�G4(p j ,pl )+�R4(p j ,p j )+ 1

32σ3
� log h(p j )




+ o


 m∑

j=1

ε2
k, j




where c0 >0, log 64
ε4

k, j
= max

x∈Bδ(p j )
uk(x)−log(

∫
�

heuk ) and uk →32σ3
m∑

j=1
G4(·, p j )

in C4
loc(�\{p1, . . . , pm}).

This yields a bound of solutions as ρk converges to 32σ3m from below
provided that

m∑
j=1


∑

l �= j

�G4(p j , pl ) + �R4(p j , p j ) + 1

32σ3
� log h(p j )


 > 0.

The analytic work of this paper is the first step toward computing the Leray-
Schauder degree of solutions of equation (∗).

Mathematics Subject Classification (2000): 35B40 (primary); 35B45, 35J40
(secondary).

Received December 12, 2006; accepted in revised form November 13, 2007.



600 CHANG-SHOU LIN AND JUNCHENG WEI

1. Introduction

In this paper, we initiate the study of the following fourth order mean field equation


�2u = ρ

heu∫
�

heu
in �,

u = �u = 0 on ∂�.

(1.1)

This is the first of a series of two papers on computing the Leray-Schauder degree
for solutions of (1.1). In this first paper, we compute the sharp estimates of the
bubbling rate of multiple bubble solutions.

In dimension two, the analogous problem


−�u = ρ

heu∫
�

heu
in �,

u = 0 on ∂�

(1.2)

where � is a smooth and bounded domain in R
2, has been extensively studied

by many authors. We summarize the results for (1.2) and identify the difficulty
in studying (1.1) now. Let (uk, ρk) be a bubbling sequence to (1.2) with ρk ≤
C, maxx∈� uk(x) → +∞. Then it has been proved that

(P1) (no boundary bubbles) uk is uniformally bounded near a neighborhood of ∂�

(Ma-Wei [18]);
(P2) (bubbles are simple) ρk →8mπ for some m ≥1 and uk(x)→8π

∑m
j=1G2(·,p j )

in C2(�\{p1, . . . , pm}) [2, 13, 18, 21], where G2 is the Green function of −�

with Dirichlet boundary condition;
(P3) (sup + inf estimates) at each bubble pk, j where uk(pk, j ) = maxx∈Bδ(p j ) uk(x),

the following refined estimates hold [5, 12, 13]

|uk(x) − uk(pk, j ) − log
1(

1 + |x−xk, j |2
ε2

k, j

)2
| ≤ C (1.3)

where uk(pk, j ) − log(
∫
�

heuk ) = log 1
ε2

k, j
;

(P4) (exact bubbling rate) It holds then [7]

ρk −8mπ =c0

m∑
j=1

h(pk, j )
−1� log h(pk, j )ε

2
k, j log

1

εk, j
+O

(
m∑

j=1

ε2
k, j

)
; (1.4)

(P5) (Leray-Schauder degree) Li [12] initiated the program of computing the
Leray-Schauder degree of solutions to (1.2). He showed that the Leray-Schauder



SHARP ESTIMATES 601

degree remains a constant for ρ ∈ (8π(m − 1), 8πm) and that the degree de-
pends only on the genus of �. Chen and Lin [8] obtained the exact degree
counting formula as follows:

d(ρ) =



1

m! (−χ(�) + 1) . . . (−χ(�) + m) for m > 0,

1 for m = 0
(1.5)

where χ(�) is the Euler characteristic of �.

In this and subsequent paper [17], we carry out the same program for equation
(1.1). It will be shown that d(ρ)-the Leray-Schauder degree of (1.1) can be defined
as long as ρ �= 32mσ3, where σ3 is the area of unit sphere in R

4. The main purpose
of this paper and the subsequent one [17] is to compute d(ρ). In these two papers,
we prove, among other things, the following theorem:

Theorem A. Let 32mσ3 < ρ < 32(m + 1)σ3 and d(ρ) be the Leray-Schauder
degree for equation (1.1). Then

d(ρ) =



1

m! (−χ(�) + 1) . . . (−χ(�) + m) for m > 0,

1 for m = 0
(1.6)

where χ(�) is the Euler characteristic of �.

Remark 1.1. We are informed by Prof. Malchiodi that he obtained a similar degree
counting formula for the corresponding prescribing Q-curvature problem on a four
dimensional compact manifold, [20]. He used a different approach –the Morse
theory approach– to obtain the formula. We remark that on compact manifolds, one
does not need to prove property (P1). On the other hand, one of the main difficulties
in our proof is the property (P1).

As a consequence of Theorem A, equation (1.1) always possesses a solution
for ρ �= 32mσ3 whenever the Euler characteristic χ(�) ≤ 0. (Here m can be made
≥ 2, by results of Lin-Wei [16].) On the other paper, when χ(�) > 0, the situation
is much different than the second order case. For example, when � is a ball, we can
prove the existence of at least one solution when ρ ∈ (0, 64πσ3). See the remark
after Corollary 1.3. The complete proof of Theorem A will be given in [17], the
second part of this series of papers.

Set d+
m = limρ→8mπ+ d(ρ) and d−

m = limρ→32mσ3 d(ρ). One of the main steps
in the proof of Theorem A is to calculate the gap d+

m − d−
m for any integer m ≥ 1.

Once this is known, d(ρ) can be computed inductively on m. Clearly, the gap of
d+

m − d−
m is due to the occurrence of blowup solutions when ρ → 32mσ3. Thus an

important question is to analyze the blowup behavior of sequence of solutions uk to
(1.1) and to know the signs ρk − 32mσ3.

In this paper, we shall obtain estimates analogous to (1.4) for bubbling solu-
tions to (1.1). To this end, we have to first resolve the analogous properties (P1),
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(P2) and (P3) for problem (1.1). Once we obtain (P1), (P2) follows from results in
Wei [23]. So we just need to prove (P1) and (P3). Here the problem arises since the
method of Kelvin transform in obtaining (P1) and the method of moving spheres in
obtaining (P3) seem not applicable for (1.1). We overcome these difficulties by us-
ing various new techniques. (After we obtain (P1)-(P3), the Leray-Schauder degree
d(ρ) of (1.1) for ρ �= 32mσ3 can be well-defined.)

The following is the main result of this paper:

Theorem 1.2. Let h be a positive C2,β function in � and uk be a sequence of
blowup solutions of (1.1) with ρ = ρk . Then (after extracting a subsequence),
limk→+∞ ρk = 32σ3m for some positive integer m. Furthermore,

ρk − 32σ3m

= c0

m∑
j=1

(h(pk, j ))
− 1

2 ε2
k, j

[
1

32σ3
� log h(pk, j ) + �R4(pk, j , pk, j )

+
∑
i �= j

�G4(pk, j , pk,i )

]

+ o

(
m∑

j=1

ε2
k, j

)
(1.7)

where c0 > 0 is a generic constant, G4(·, P) is the Green function of �2 with
Navier boundary condition u = �u = 0 on ∂�, R4 is the regular part of G4,
pk, j are the local maximum points of uk on Bδ(p j ), and log 64

ε4
k, j

= uk(pk, j ) −
log(

∫
�

heuk ).

Clearly Theorem 1.2 implies the following:

Corollary 1.3. Let h(x) be a C2,β positive function and satisfy

m∑
j=1

(h(p j ))
− 1

2

[
1

32σ3
� log h(p j )+�R4(p j , p j )+

∑
l �= j

�G4(pl , p j )

]
> 0 (1.8)

for all (p1, . . . , pm) satisfying

∇
(

1

32σ3
log h(p j ) + R4(p j , p j ) +

∑
l �= j

G4(pl , p j )

)
= 0, j = 1, . . . , m . (1.9)

Then for any compact interval I ⊂ (32σ3(m − 1), 32σ3m], there exists a constant
C > 0 such that

u(x) ≤ C for x ∈ � (1.10)

for any solution u of (1.1) with ρ ∈ I .
As a consequence, if �h(x) ≥ 0, then (1.10) holds for any solution u of (1.1)

with ρ ∈ (0, 32σ3].
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Remark 1.4. 1. Corollary 1.3 extends earlier results of Lin and Wei [16] where
we proved Corollary 1.3 for m = 1, h = 1. We note that when � = B1 and
h(x) = 1, (1.2) has no solution when ρ ≥ 8π . However, for (1.1), a solution always
exists when ρ ≤ 32σ3 [16]. On the other hand, a solution with a single bubble has
been constructed in [3]. By Theorem 1.2, since �R4(p j , p j ) > 0, this shows that
problem (1.1) has a solution for ρ > 32σ3 and |ρ − 32σ3| small. By Theorem A,
d(ρ) = 0 for ρ ∈ (32σ3, 64σ3). Thus when � = B1 and h = 1, problem (1.1) has
a solution for ρ ∈ (0, 64σ3). In fact, we conjecture that a solution to (1.1) exists for
any ρ > 0.

2. Theorem 1.1 can be extended easily to the following n-th order mean field type
equation 

(−�)nu = ρ
heu∫
�

heu
in �,

(−�) j u = 0 on ∂�, j = 0, . . . , n − 1
(1.11)

where � is a smooth and bounded domain in R
2n . In particular, we have the same

degree counting formula for solutions to (1.11)

d(ρ) =



1

m! (−χ(�) + 1) · · · (−χ(�) + m) for m > 0,

1 for m = 0

where ρ ∈ (m22n(n − 1)!n!σ2n−1, (m + 1)22n(n − 1)!n!σ2n−1). This then implies
that (1.11) always has a solution if ρ �= m22n(n − 1)!n!σ2n−1 and χ(�) ≤ 0.

Semilinear equations involving exponential nonlinearity and fourth order ellip-
tic operator appear naturally in conformal geometry and in particular in prescribing
Q-curvature on 4-dimensional Riemannian manifold M (see e.g. Chang-Yang [6])

Pgw + 2Qg = 2Q̃gw e4w (1.12)

where Pg is the so-called Paneitz operator:

Pg = (�g)
2 + δ

(
2

3
Rg I − 2Ricg

)
d,

gw = e2wg, Qg is Q-curvature under the metric g, and Q̃gw is the Q-curvature
under the new metric gw.

Integrating (1.12) over M, we obtain

kg :=
∫

M
Qg =

∫
M

(Q̃gw)e4w

where kg is conformally-invariant. Thus, we can write (1.12) as

Pgw + 2Qg = kg
Q̃gw e4w∫

M Q̃gw e4w
. (1.13)
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In the special case, where the manifold is the Euclidean space, Pg = �2, and (1.13)
becomes

�2w = ρ
h(x)e4w∫
�

h(x)e4w
. (1.14)

There is now an extensive literature about this problem, we refer to Adimurthi-
Robert-Struwe [1], Baraket-Dammak-Ouni-Pacard [3], Druet-Robert [9], Hebey-
Robert [10], Hebey-Robert-Wen [11], Malchiodi [19] and the references therein.

The organization of this paper is as follows: The statements for properties
(P1)-(P3) are collected in Section 2 where important preliminaries are presented.
The proof of (P1) is given in the Appendix A and the proof of (P3) is given in
Section 3. Finally in Section 4, we prove Theorem 1.2. Though we essentially
follow those of [7], we simplify and give a new proof of the key estimates–Estimate
C in Section 5.

Throughout this paper, unless otherwise stated, the letter C will always denote
various generic constants which are independent of k ≥ 1.

ACKNOWLEDGEMENTS. The research of the first author is partially supported by a
research Grant from NSC of Taiwan. The research of the second author is partially
supported by an Earmarked Grant from RGC of Hong Kong.

2. Preliminaries

We begin with the following lemma which excludes the boundary blowups. The
proof of it is by adopting the method used in our previous paper [16] and is given
in Appendix A.

Lemma 2.1. Let u be a solution to (1.1) with ρ ≤ C. Then there exists a δ > 0
such that u(x) ≤ C for all x such that d(x, ∂�) ≤ δ.

Let G4 denote the Green’s function of �2 under the Navier boundary condi-
tion, that is

�2G4(x, y) = δ(x − y), G4|∂� = �G4|∂� = 0. (2.1)

We decompose

G4(x, y) = 1

4σ3
log

1

|x − y| + R4(x, y). (2.2)

It is easy to see that

�x G4(x, y) < 0, �x R4(x, y) > 0. (2.3)

From Lemma 2.1, we derive the following lemma, whose proof follows exactly
those in Wei [23] and thus omitted.
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Lemma 2.2. Let uk be a bubbling sequence with ρk ≤ C. Then (after extract-
ing a subsequence), ρk → 32σ3m and uk(x) → 32σ3

∑m
j=1 G4(·, p j ), where

(p1, . . . , pm) satisfies

∇
(

1

32σ3
log h(pi ) + R4(pi , pi ) +

∑
j �=i

G4(pi , p j )

)
= 0, i = 1, . . . , m. (2.4)

We also need to recall the well-known Pohozaev’s identity for solutions of fourth-
order equation

�2u = h(x)eu in D.

We have:

Lemma 2.3. Let u satisfy �2u = h(x)eu in D, where D is a smooth and bounded
domain in R

4. Then we have∫
D
(4h+ < x, ∇h >)eu =

∫
∂ D

< x,ν > h(x)eu

+
∫

∂ D

[
1

2
|�u|2 < x,ν > −2

∂u

∂ν
�u− < x,∇u >

∂�u

∂ν
− < x,∇�u >

∂u

∂ν

+ < x, ν >< ∇u, ∇�u >

] (2.5)

and for any ξ ∈ R
4,∫

D
(< ξ, ∇h >)eu =

∫
∂ D

h(x)eu < ξ, ν >∫
∂ D

[
1

2
|�u|2 < ξ, ν > − < ξ, ∇u >

∂�u

∂ν
− < ξ, ∇�u >

∂�u

∂ν

+ < ξ, ν >< ∇u, ∇�u >

]
.

(2.6)

Proof. In fact, multiplying �2u = h(x)eu by x · ∇u and integrating by parts, we
obtain the lemma.

Let δ0 be a fixed small constant and uk(pk, j ) = maxx∈Bδ(p j ) uk(x) and

e−ck = 1∫
�

h(x)euk
. (2.7)

Then ck → +∞ as k → +∞. Let us define

lk, j = uk(pk, j ) − ck, e− lk, j
4 = εk, j

α
1
4
4

, where α4 = 64, (2.8)
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and
lk = max

1≤ j≤m
lk, j , εk = min

1≤ j≤m
εk, j . (2.9)

Note that lk, j → +∞, as otherwise uk satisfies |�2uk | ≤ C in Bδ0(pk, j ), uk +
|�uk | ≤ C on ∂ Bδ0(pk, j ). This implies maxx∈Bδ0 (pk, j ) uk(x) ≤ C , which contra-
dicts to our assumption.

Next, we present a theorem which gives (P3)-sup + inf estimates. The proof of
it is interesting and given in a separate section.

Lemma 2.4. We have

|uk(x) − uk(pk, j ) − log
α4(

1 + |x−pk, j |2
ε2

k, j

)4
| ≤ C, (2.10)

for x ∈ Bδ0(pk, j ).

From Lemma 2.4, we have the following important corollary:

Corollary 2.5. Let uk be a sequence of blowup solutions of (1.1) with ρ = ρk . Let
lk, lk, j , εk, εk, j be defined as before. It then holds

lk − C ≤ lk, j ≤ lk + C, C−1εk ≤ εk, j ≤ Cεk, j = 1, . . . , m, (2.11)

ck − C ≤ lk, j ≤ ck + C, C−1e− ck
4 ≤ εk, j ≤ Ce− ck

4 , j = 1, . . . , m. (2.12)

Finally, we consider a problem in R
4. It has been proved [15, 22] that the solution

to the following problem 


�2U = eU , in R
4,∫

R4
eU < +∞,

(2.13)

is given by

Uε,a(x) := log
α4ε

4

(ε2 + |x − a|2)4
, (2.14)

for any ε > 0, a ∈ R
4, provided that

U (x) = o(|x |2) as |x | → +∞. (2.15)

Let U = log α4
(1+|y|2)4 and τ ∈ (0, 1) be a fixed constant. We need the following

lemma which proves the nondegeneracy of U :
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Lemma 2.6. The solutions to the following linearized problem

�2φ = eU φ, |φ(y)| ≤ C(1 + |y|)τ (2.16)

is given by φ = ∑4
j=0 c jψ j where

ψ0 = 1 − |y|2
1 + |y|2 , ψ j = y j

1 + |y|2 , j = 1, . . . , 4 . (2.17)

3. Proof of Lemma 2.4

In this section, we prove the sup+inf estimates–Lemma 2.4. As we mentioned
before, the method of moving spheres seems not applicable here. Instead, we use an
approach of combination of potential analysis and Pohozaev identity. This approach
has been used in Bartolucci-Chen-Lin-Tarantello [4].

We now state a more general theorem: Let ũk(x) be a solution of



2ũk(x) = hk(x)eũk in B2, and∫
B2

hk(x)eũk (x)

dx ≤ C,
(3.1)

where hk(x) converges to a positive function h(x) in C1(B̄2), and without loss
of generality, we may assume h(0) = 1. Suppose that ũk satisfies the following
assumptions

(i) |ũk(x) − ũk(y)| ≤ c for |x | = |y| = 2,

(ii) |
ũk(x)| is bounded in any compact set of B̄2 \ {0},
(iii) 0 is the only blow-up point of ũk , i.e., set S={x |xk → x and limk→+∞ũk(xk)→

+∞}. Then S = {0}.
We want to establish the following sharp estimate of the bubbling behavior of ũk
near 0. To state our result, we let lk be the maximum and xk be a maximum point
of ũk , i.e.,

lk = ũk(xk) = max
B̄2

ũk .

and let v(x) be the solution of


2v(x) = ev(x) in R
4

v(0) = 0 = max
R2

v(x) and |v(x)| = O(log |x |) at ∞ .
(3.2)

Theorem 3.1. Suppose ũk is a sequence of solution of (3.1) and satisfies assump-
tions (i)-(iii) and v is the solution of (3.2). Then there exists a constant c such
that

|ũk(x) − lk − v(e
lk
4 |x − xk |)| ≤ C in B̄1 .
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Applying Theorem 3.1 to ũk = uk − ck , we obtain Lemma 2.4.
For r ∈ (0, 1), set

αk(r) =
∫

Br

hk(x)eũk(x)dx ,

and
α(r) = lim

k→+∞ αk(r) and α = lim
r→0

α(r) .

We first have:

Lemma 3.2. Suppose ũk is a solution of (3.1) and satisfies assumption (i)-(iii).
Then ũk → −∞ uniformly in any compact set and α = 32σ3.

Proof. Suppose that there exists a point x0 ∈ B2\{0} such that ũk(x0) is bounded.
Then by assumptions (i)-(iii), the sequence ũk is bounded in any compact set of B2\
{0}. By taking a diagonal process, a subsequence, still denoted by ũk , approaches a
function u(x) in B2 \ {0} which satisfies


2u(x) = h(x)eu(x) in B2 \ {0} .

On the other hand, fixing any δ > 0 and small, we integrate (3.1) in Bδ and obtain∫
∂ Bδ

∂�ũk

∂ν
=

∫
Bδ

�2ũk =
∫

Bδ

hkeũk(x)dx = αk(δ) (3.3)

which implies that

lim
δ→0

∫
∂ Bδ

∂�u

∂ν
= α. (3.4)

Therefore u(x) satisfies (in the distribution sense)


2u(x) = h(x)eu(x) + αδ0 in B2 .

Thus

u(x) = α

4σ3
log

(
1

|x |
)

+ v(x), with α > 0, v(x) is smooth, and

∗
∫

B1

eu(x)dx ≤ C .
(3.5)

By the Pohozaev identity (2.5), we have∫
Br

[4hk(x) + (∇hk(x) · x)]eũk

=
∫

∂ Br

hk(x)|x |eũk dσ −
∫

∂ Br

r

[
(
ũk)

2

2
+ ∂ ũk

∂r

∂

∂r

ũk

]
dσ

+
∫

∂ Br

∂

∂r

(
r
∂ ũk

∂r

)

ũkdσ .

(3.6)
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By letting k → +∞, we have

4α(1 + o(1)) = 2

(
α

4σ3

)2

σ3(1 + o(1)) , (3.7)

where o(1) tends to 0 as r → 0. Since α > 0, we have

α = 32σ3 . (3.8)

However, (3.8) implies α
4σ3

= 8 and then (3.1) yields

∫
B1

|x |−8dx ≤ c1

∫
B1

eu(x)dx ≤ c1c ,

a contradiction. Thus, ũk(x) → −∞ uniformly in any compact set of B2\{0}.
Now it is obvious that ûk(x) = ũk(x) − ck converges to û(x) in C2

loc(B̄2\{0})
and ck → +∞ as k → +∞ where ck = −∫ |x |=1ũk(x)dσ is the average of ũk over

S3. Clearly

û(x) = α

4σ3
log

1

|x | + v(x) , (3.9)

with 
2v(x) = 0 in B2. We can apply the Pohozaev identity (3.6) to obtain α =
32σ3 as the same as (3.8). Thus, Lemma 3.2 is proved.

Proof of Theorem 3.1. By (i) and (ii), it is easy to see that ũk(x) can be written as

ũk(x) = 1

4σ3

∫
B2

log

(
1

|x − y|
)

hk(y)eũk(y)dy + fk(x) , (3.10)

where fk(x) is a smooth function in B̄ 3
2
, and

‖ fk‖C4(B̄ 3
2
) ≤ C . (3.11)

Recall ũk(xk) = lk = maxB̄2
ũk . Then

ũk(x) − lk = 1

4σ3

∫
B2

log

{ |xk − y|
|x − y|

)
hk(y)eũk(y)dy + fk(x) − fk(xk) . (3.12)

Set vk(x) = ũk(εk x + xk) − lk and εk = e− lk
4 . Then (3.12) implies

vk(x) = 1

4σ3

∫
B

ε
−1
k

log

( |y|
|x − y|

)
h̃k(y)evk(y)dy + f̃k(x) , (3.13)
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where h̃k(y) = hk(xk + e− lk
4 y) and

‖∇ j f̃k‖B−1
εk

→ 0 for 1 ≤ j ≤ 4 .

From (3.13), we have |
vk(x)| is uniformly bounded. Thus, vk(x) → v(x) in
C4

loc(R
4) and v(x) satisfies


2v(x) = ev(x) in R
4 and

v(x) = 1

4σ3

∫
R4

log

( |y|
|x − y|

)
ev(y)dy + c0

(3.14)

for some constant c0. Therefore 
v(x) → 0 as |x | → +∞, a classification result
of [2] shows that

v(x) = c + log
1

(1 + |x |2)4
.

Thus, for any R > 0,

|vk(x) − v(x)| → 0 uniformly for |x | ≤ R (3.15)

as k → +∞.
To prove Theorem 3.1, it is equivalent to showing

|vk(x) − v(x)| ≤ C for R ≤ |x | ≤ r0e
lk
4 , (3.16)

for some r0 > 0.
To prove (3.16), we claim

|αk − 32σ3| ≤ c

(
log

1

εk

)−1

, (3.17)

where αk is the local mass defined by

αk =
∫

B1

hk(x)eũk(x)dx (3.18)

The idea to obtain (3.17) is to apply the Pohozaev identity (3.6) on the circle |x | =
εk(log 1

εk
). Hence, we need some fine estimates of vk . Basically, all estimates

required here can be obtained by using the Green representation formulas (3.13).
First, we has a rough estimate about the behavior of vk .

For any fixed δ > 0, there exists R = Rδ and k0 = k(δ) ∈ N such that if
|x | ≥ 2R and k ≥ k0, then

vk(x) ≤ −
(

αk

4σ3
− δ

)
log |x | .
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The proof is standard, and is omitted here. Since αk
4σ3

→ 8 as k → +∞, δ is always
chosen such that

vk(x) ≤ −7 log |x | holds for |x | ≥ 2R. (3.19)

For log
1

εk
≤ |x | ≤ ε−1

k , set

α̃k(|x |) =
∫

|y|≤ro|x |
h̃kevk(y)dy ,

where r0 ≤ 1
2 is a positive constant. By (3.19),

|αk − α̃k(|x |)| ≤ c
∫

|y|≥r0|x |
evk(y)dy ≤ c

∫
|y|≥ro|x |

|y|−7dy = O

(
1

|x |3
)

, (3.20)

for |x | ≥ log
1

εk
and k large.

By (3.20), we claim that∣∣∣∣vk(x) + αk

4σ3
log |x |

∣∣∣∣ ≤ C , (3.21)

∣∣∣∣∂vk

∂r
(x) + αk

4σ3

1

|x |
∣∣∣∣ ≤ O

((
log

1

εk

)−1

|x |−1

)
(3.22)

∣∣∣∣ ∂

∂r
(r

∂vk

∂r
(x))

∣∣∣∣ ≤ O

(
1

|x |2
)

(3.23)

∣∣∣∣
vk(x) + αk

2σ3

1

|x |2
∣∣∣∣ ≤ O

((
log

1

εk

)−1

|x |−2

)
, and (3.24)

∣∣∣∣ ∂

∂r

vk(x) − αk

σ3

1

|x |3
∣∣∣∣ ≤ C

(
log

1

εk

)−1

|x |−3 , (3.25)

for |x | = log 1
εk

. In fact, we will prove (3.21) holds for log 1
εk

≤ |x | ≤ 1
εk

.
We first show (3.17) by assuming (3.21)-(3.25). Rescaling back to ũk , (3.21)-

(3.25) can be written as follows:

ũk(x) = vk

(
ε−1

k x
)

− 4 log εk = − αk

4σ3
log |x | +

(
αk

4σ3
− 4

)
log εk (3.26)
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∂ ũk(x)

∂r
= − αk

4σ3

1

|x | + O

((
log

1

εk

)−1 1

|x |

)
, (3.27)

∣∣∣∣ ∂

∂r

(
r
∂ ũk

∂r
(x)

)∣∣∣∣ ≤ O

((
log

1

εk

)−1 1

|x |

)
(3.28)


ũk(x) = − αk

2σ3

1

|x |2 + O

((
log

1

εk

)−1 1

|x |2
)

, and (3.29)

∂

∂r

ũk(x) = αk

σ3

1

|x |3 + O

((
log

1

εk

)−1 1

|x |3
)

(3.30)

for |x | = 2k(log 1
εk

).

Substituting (3.26)-(3.30) to (3.6) on r = εk log( 1
εk

), we have

4αk + O(1)εk log

(
1

εk

)
= α2

k

8σ3
+ O

((
log

1

εk

)−1
)

.

Thus,

αk = 32σ3 + O

((
log

1

εk

)−1
)

,

and then (3.17) is proved.
We come back for the proof of (3.21)-(3.25). By (3.13), for log ε−1

k ≤ |x | ≤ ε−1
k ,

vk(x) = 1

4σ3

∫
|y|≤ε−1

k

log

( |y|
|x − y|

)
h̃k(y)evk(y)dy + O(1)

= 1

4σ3

∫
|y|≤r0|x |

log

(
1

|x − y|
)

h̃k(y)evk(y)dy + O(1)

= α̃k

4σ3
log

1

|x | + O(1)

= αk

4σ3
log

1

|x | + O(1) ,

where ∫
|y|≤e−1

k

|log(|y|)| h̃k(y)evk(y)dy ≤ c ,

∫
|y|≥r0|x |

log

(
1

|x − y|
)

h̃k(y)evk(y)dy = O(|x |−3 log |x |) ,
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and (3.20) are employed. This proves (3.21). To prove (3.22), we have

∂vk(x)

∂r
= −1

4σ3

∫
|y|≤ε−1

k

(x − y) · x
|x |

|x − y|2 h̃k(y)evk(y)dy + O(εk)

= −1

4σ3

∫
|y|≤r0|x |

(x − y)x

|x ||x − y|2 h̃k(y)evk(y)dy + O(|x |−4 + εk)

= −1

4σ3

∫
|y|≤r0|x |

1

|x | h̃k(y)evk(y)dy + O(1)

|x |2
∫

|y|≤r0|x |
|y|evk(y)dy

+ O(|x |−4 + εk)

= − α̃k

4σ3

1

|x | + O(|x |−2)

= − αk

4σ3
|x |−1 + O

((
log

1

εk

)−1

|x |−1

)
.

For (3.23), we have

∂

∂r

(
r
∂vk

∂r
(r)

)
= −1

4σ3

∫
|y|≤ε−1

k

∂

∂r

(
(x − y)x

|x − y|2
)

h̃k(y)evk(y)dy + O(εk)

= −1

4σ3

∫
|y|≤r0|x |

∂

∂r

(
(x − y)x

|x − y|2
)

h̃k(y)evk(y)dy + O(εk + |x |−4)

= O(1)

|x |2
∫

|y|≤r0|x |
|y|(1 + |y|)−6dy + O(εk + |x |−4)

=O

(
1

|x |2
)

.

We have proved (3.21)-(3.23). Proofs of (3.24) and (3.25) are similar, and we should
omit them here. Hence (3.17) is proved completely.

We note (3.21) holds for log 1
εk

≤ |x | ≤ ε−1
k . Therefore, by (3.17) and (3.21),

we have

|vk(x) + 8 log |x || ≤ C
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for log 1
εk

≤ |x | ≤ ε−1
k . So far, we have proved

|vk(x) − v(x)| ≤ C for |x | ≤ R or |x | ≥ log
1

εk
. (3.31)

For the region R ≤ |x | ≤ 1
εk

, we proceeds as follows: for |x | ≤ log 1
εk

,

�vk(x) = − 1

2σ3

∫
|y|≤ro|x |

1

|x − y|2 h̃k(y)evk(y)dy + O(|x |−5)

= − 1

2σ3

∫
|y|≤ro|x |

1

|x |2 h̃k(y)evk(y)dy

− 1

σ3

∫
|y|≤ro|x |

x · y

|x |4 h̃k(y)evk(y)dy + O

(
1

|x |4
)

= − α̃k

2σ3

1

|x |2 + O

(
1

|x |3
)

= �v(x) + O

(
1

|x |3
)

where we have used the fact that α̃k(|x |) − αk = O( 1
|x |3 ) and that αk − 32σ3 =

O( 1
log 1

εk

).

Thus,

|�vk(x) − �v(x)| ≤ C

|x |3 (3.32)

holds for R ≤ |x | ≤ 1
εk

.

Now we choose g(x) = C(1 + 1
|x | ) where C is large. Then −�g(x) = C

|x |3 ≥
|�vk(x) − �v(x)|. It is easy to see that g(x) ≥ |vk(x) − v(x)| for |x | = R and
|x | = log 1

εk
. Thus, the maximum principle implies

|vk(x) − v(x)| ≤ C

(
1 + 1

|x |
)

(3.33)

for R ≤ |x | ≤ log 1
εk

.
Combining (3.31) and (3.33), we have proved (3.16). Thus, Theorem 3.1 is

completely proved.
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4. The Estimate of ρk − 32σ4m

The main purpose of this section is to prove Theorem 1.2. We follow the main steps
used in [7]. Let

ũk(x) = uk(x) − ck (4.1)

which satisfies

�2ũk = ρkh(x)eũk in �,

∫
�

h(x)eũk = 1. (4.2)

Recall the definitions ck, pk, j , lk, lk, j , εk, εk, j given in (2.7)-(2.9).
For a fixed small δ0 > 0, we set the local “mass” ρk, j to be

ρk, j = ρk

∫
Bδ0 (p j )

h(x)eũk(x)dx . (4.3)

By Corollary 2.5, we have

ρk, j = ρk

∫
Bδ0 (pk, j )

h(x)eũk(x)dx + O(ε4
k ) (4.4)

which yields
m∑

j=1

ρk, j = ρk + O(ε4
k ). (4.5)

In Bδ0(pk, j ), we set

G∗
j (x) = ρk, j R4(x, pk, j ) +

∑
l �= j

ρk,l G4(x, pk,l) (4.6)

and wk(x) to be the error term defined by

wk(x) = uk(x) −
m∑

i=1

ρk,i G4(x, pk,i ) = ũk −
m∑

i=1

ρk,i G4(x, pk,i ) + ck (4.7)

on �\ ∪m
j=1 B δ0

2
(p j ).

We first have:

Estimate A. |wk(x)| + |∂αwk(x)| = O(εk) for all |α| ≤ 3, x ∈ �\ ∪m
j=1 B δ0

2
(p j ).
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Proof. This follows from the Green’s representation formula:

uk(x) =
∫

�

G4(x, y)(ρkh(y)eũk )dy

=
m∑

j=1

ρk

∫
B δ0

2
(pk, j )

G4(x, y)h(y)eũk + O(ε4
k )

=
m∑

j=1

ρk

∫
B δ0

2
(pk, j )

[G4(x, y) − G4(x, pk, j )]h(y)eũk

+
m∑

j=1

ρk G4(x, pk, j )

∫
B δ0

2
(pk, j )

h(y)eũk + O(ε4
k )

=
m∑

j=1

ρk

∫
B δ0

2
(pk, j )

O(|y − pk, j |)h(y)eũk +
m∑

j=1

ρk, j G4(x, pk, j ) + O(ε4
k )

=
m∑

j=1

ρk, j G4(x, pk, j ) + O(εk).

Similarly we can estimate |∂αwk(x)| for |α| ≤ 3.
Hence Estimate A is established.

Estimate B. |∇(log h(x) + G∗
j (x))| = O(εk) at x = pk, j .

Proof. Applying (2.6) to ũk on Bδ0(pk, j ), we obtain

LHS of (2.6) = ρk

∫
Bδ0 (pk, j )

< ξ, ∇h > eũk

= ρk

∫
Bδ0 (pk, j )

[< ξ, ∇h > − < ξ, ∇h(pk, j ) >]eũk

+ρk

∫
Bδ0 (pk, j )

< ξ, ∇h(pk, j ) > eũk

= O(εk) + ρk

∫
Bδ0 (pk, j )

h(pk, j )e
ũk < ξ, ∇ log h(pk, j ) >

= O(εk) + ρk, j < ξ, ∇ log h(pk, j ) > .
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On the other hand by Estimate A, we have

uk(x) = wk(x) + Ĝ∗
j (x) (4.8)

where

Ĝ∗
j (x) = G∗

j (x) + ρk, j

4σ3
log

1

|x − pk, j | .

Note that �2(Ĝ∗
j (x)) = 0 in Bδ0(pk, j )\{pk, j }. Applying the Pohozaev’s identity to

Ĝ∗
j , we obtain

RHS of (2.6)

=
∫

∂ Bδ0 (p j )

[
< ξ, ν >

(
1

2
|�uk |2

)
− < ξ, ∇�uk >

∂uk

∂r
− < ξ, ∇uk >

∂�uk

∂r

+ < ξ, ν >
∂uk

∂r

∂�uk

∂r

]
+ O(ε4

k )

=
∫

∂ Bδ0 (p j )

[
< ξ,ν >

(
1

2
|�Ĝ∗

j |2
)

−< ξ,∇�Ĝ∗
j >

∂Ĝ∗
j

∂r
−< ξ,∇Ĝ∗

j >
∂�Ĝ∗

j

∂r

+ < ξ, ν >
∂Ĝ∗

j

∂r

∂�Ĝ∗
j

∂r

]
+ O(εk)

= lim
r→0

∫
∂ Br (p j )

[
< ξ,ν >

(
1

2
|�Ĝ∗

j |2
)

−< ξ,∇�Ĝ∗
j >

∂Ĝ∗
j

∂r
−< ξ,∇Ĝ∗

j >
∂�Ĝ∗

j

∂r

+ < ξ, ν >
∂Ĝ∗

j

∂r

∂�Ĝ∗
j

∂r

]
+ O(εk)

= −ρk, j < ξ, ∇G∗
j (pk, j ) > +O(εk).

This proves Estimate B.

Next, we give a sharper description of the bubbling behavior of uk in the ball
Bδ0(pk, j ). We set

hk, j = h(pk, j )

and

vk, j (x) = log

(
α4ε

4
k, j

(ε2
k, j + √

ρkhk, j |x − qk, j |2)4

)
(4.9)
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where εk, j is given by (2.8) and qk, j ∈ R
4 is chosen such that

∇vk, j (pk, j ) = ∇ log h(pk, j ). (4.10)

By direct computations, we also have

|pk, j − qk, j | = O(ε2
k ) . (4.11)

For x ∈ Bδ0(pk, j ), we also set

ηk, j (x) = uk(x) − ck − vk, j (x) − (G∗
j (x) − G∗

j (pk, j )). (4.12)

Then by Estimate B and (4.11), we have

|∇ηk, j (pk, j )| = O(εk) (4.13)

ηk, j (pk, j ) = lk, j − vk, j (pk, j ) = O(εk) (4.14)

|ηk, j (x) ≤ C for x ∈ Bδ0(pk, j ) . (4.15)

Let us check the matching of wk and ηk, j on B δ
2
(pk, j ):

ηk, j (x) = uk(x) − ck − vk, j (x) − (G∗
j (x) − G∗

j (pk, j ))

= wk +
∑

i

ρk,i G4(x, pk,i ) − ck

− log
α4ε

4
j

(ε2
j + √

ρkhk, j |x − qk, j |2)4
− (G∗

j (x) − G∗
j (pk, j ))

= O(εk) + ρk, j G4(x, pk, j ) + ρk, j R4(x, pk, j ) − ck + G∗
j (pk, j )

− log
α4ε

4
k, j

(
√

ρkhk, j |x − qk, j |2)4

= O(εk) +
(

ρk, j

4σ3
− 8

)
log

1

|x − pk, j | − ck + G∗
j (pk, j )

− log
α4ε

4
k, j

(
√

ρkhk, j )4

= O(εk) + Ak, j +
(

ρk, j

4σ3
− 8

)
log

1

|x − pk, j |
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where Ak, j is a constant given by

Ak, j = −ck − log ε4
j + G∗

j (Pk, j ) − log
α4

ρ2
k h2

k, j

. (4.16)

Then by Corollary 2.5, we have |Ak, j | = O(1). This implies that for x ∈∂ Bδ0(pk, j ),
we have

ηk, j (x) = Ak, j +
(

ρk, j

4σ3
− 8

)
log

1

|x − pk, j | + O(εk). (4.17)

Moreover, (4.17) holds for partial derivatives of ηk, j up to the order 3.
Let

η̃k, j (z) = ηk, j (pk, j + εk, j (ρkhk, j )
−1/4z), R = δ0

8εk, j
. (4.18)

The following estimate is the key estimate, whose proof will be given in a separate
section:

Estimate C. For any τ ∈ (0, 1), there exists a constant Cτ such that

|η̃k, j (z)| ≤ Cτ (1 + |z|)τ

ε2τ + ετ sup

R
2 ≤|z|≤R

|η̃k, j (z)|

 . (4.19)

Now we have:

Estimate D. For any 1
2 < τ < 1, we have

|Ak, j | ≤ C


ε + ετ sup

R
2 ≤|z|≤R

|η̃k, j |

 . (4.20)

Proof. By Green’s formula,

uk(pk, j ) = log(α4ε
−4
k, j ) + ck

=
m∑

i=1

∫
Bδ0 (pk,l )

ρkheũk G4(pk, j , y)dy + O(εk).

For l �= j ,∫
Bδ0 (pk,l )

ρkheũk G4(pk, j , y)dy = ρk,l G4(pk, j , pk,l) + O(εk). (4.21)

For l = j , we have∫
Bδ0 (pk, j )

ρkheũk G4(pk, j , y)dy

=
∫

Bδ0 (pk, j )

ρkheũk

(
1

4σ3
log

1

|pk, j − y| + R4(pk, j , y)

)
dy

= − 1

4σ3
ρk

∫
Bδ0 (pk, j )

ρkheũk log
1

|pk, j − y|dy + ρk, j R4(pk, j , pk, j ) + O(εk).
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Now we write

heũk = hevk, j +ηk, j +(G∗
j (x)−G∗

j (pk, j )) = h(pk, j )e
vk, j H(x, ηk, j (x)) + h(pk, j )e

vk, j

where
H(x, t) = et+log h(x)+G∗

j (x)−log h(pk, j )−G∗
j (pk, j ) − 1 . (4.22)

Let z and zk, j satisfy

x = pk, j + εk, j (ρkhk, j )
−1/4z, qk, j = pk, j + εk, j (ρkhk, j )

−1/4zk, j .

Then we have

ρk

∫
Bδ(Pk, j )

heũk log |pk, j − y|

= ρk

∫
Bδ0 (pk, j )

heũk log εk, j (ρkhk, j )
−1/4 + ρk

∫
BR(0)

heũk log |z|

= ρk, j log(εk, j (ρkhk, j )
−1/4)

+ ρk

∫
BR(0)

α4

(1 + |z − zk, j |2)4
(1 + H(x, ηk, j )) log |z|

= ρk, j log(εk, j (ρkhk, j )
−1/4)

+ ρk

∫
BR(0)

α4

(1 + |z − zk, j |2)4
H(x, ηk, j ) log |z| + O(εk)

(4.23)

where we have used

|zk, j | = O(εk),

∫ ∞

0
(1 + r2)−4r3 log rdr = 0. (4.24)

The last term in (4.23) can be estimated by

∫
BR(0)

α4

(1 + |z − zk, j |2)4
H(x, 0) log |z| + O


ε2τ

k + ετ
k sup

R
2 ≤|z|≤R

|η̃k, j (z)|



= O


εk + ετ

k sup
R
2 ≤|z|≤R

|η̃k, j (z)|

 .

Combining all together, we obtain Estimate D (by choosing a larger τ > 1
2 ).
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Estimate D implies:

Estimate E. On B δ0
2
(pk, j )

ηk, j (x) =
(

ρk, j

4σ3
− 8

)
log

1

|x − pk, j | + O


ε + ετ sup

R
2 ≤|z|≤R

|η̃k, j (z)|

 . (4.25)

From (4.25), we also have

sup
R
2 ≤|z|≤R

|η̃k, j | ≤ C |ρk, j − 32σ3| + Cεk, j . (4.26)

Hence Estimate C can be refined as

|η̃k, j (z)| ≤ C(1 + |z|)τ (ε2τ
k + ετ

k |ρk, j − 32σ3|). (4.27)

On the other hand, |ρk, j − 32σ3| can also be estimated by a quantity related to ηk, j .

Estimate F.

ρk, j − 32σ3 =
∫

∂ Bδ0 (pk, j )

∂�ηk, j

∂ν
dx + o(ε2

k ). (4.28)

Proof.

ρk, j = ρk

∫
Bδ(pk, j )

heũk =
∫

∂ Bδ0 (pk, j )

∂�uk

∂ν

=
∫

∂ Bδ0 (pk, j )

∂�vk, j

∂ν
+

∫
∂ Bδ0 (pk, j )

∂�ηk, j

∂ν

= 32σ3 +
∫

∂ Bδ0 (pk, j )

∂�ηk, j

∂ν
+ O(ε3

k )

since
∂�vk, j

∂ν
= 32

1

r3
+ O

(
1

r7

)
.

It remains to compute
∫
∂ Bδ0 (pk, j )

∂�ηk, j
∂ν

.



622 CHANG-SHOU LIN AND JUNCHENG WEI

Note that ηk, j satisfies

�2ηk, j = ρkhk, j e
vk, j ηk, j + ρkhk, j e

vk, j (H(x, ηk, j ) − ηk, j ). (4.29)

Let

�(x) = ε2
k, j − √

ρkhk, j |x − qk, j |2
ε2

k, j + √
ρkhk, j |x − qk, j |2

.

Then it is easy to see that �(x) satisfies

�2�(x) = ρkhk, j e
vk, j (x)�(x). (4.30)

Using (4.29) and (4.30), we obtain

∫
Bδ0 (pk, j )

[�2ηk, j�(x) − �2�(x)ηk, j (x)]

=
∫

Bδ0 (pk, j )

ρkhk, j e
vk, j [H(x, ηk, j ) − ηk, j ]�(x).

(4.31)

The left-hand-side of (4.31) equals

=
∫

∂ Bδ0 (pk, j )

[
∂�ηk, j

∂ν
�(x) − �ηk, j

∂�

∂ν
+ ��

∂ηk, j

∂ν
− ηk, j

∂��

∂ν

]

=
∫

∂ Bδ0 (pk, j )

∂�ηk, j

∂ν
(�(x) + 1)

−
∫

∂ Bδ0 (pk, j )

∂�ηk, j

∂ν
+ O(ε2

k, j |ρk, j − 32σ3| + ε3
k, j )

=
∫

∂ Bδ0 (pk, j )

∂�ηk, j

∂ν

2ε2
k, j

ε2
k, j + √

ρkhk, jδ
2
0 + o(ε2

k, j )

−
∫

∂ Bδ0 (pk, j )

∂�ηk, j

∂ν
+ O(ε2

k, j |ρk, j − 32σ3| + ε3
k, j )

= −
∫

∂ Bδ0 (pk, j )

∂�ηk, j

∂ν
+ o(ε2

k, j ).
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The right-hand-side of (4.31) equals

= 1√
ρkhk, j

∫
R4

(
1

(1 + |z − zk, j |2)4

) [
ε2

k, j

∑
l,m

∂2

∂xl∂xm
[G∗

j + log h]zl zm

+ O(|ηk, j |2)
]

1 − |z − zk, j |2
1 + |z − zk, j |2 dz

= 1√
ρkhk, j

∫
R4

(
1

(1+|z|2)4

) [
ε2

k, j

∑
l,m

∂2

∂xl∂xm
[G∗

j +log h](zl +zk,l)(zm +zk,m)

+ O(ε4τ
k )

]
1 − |z|2
1 + |z|2 dz

= 1√
ρkh(pk, j )

ε2
k, j�(G∗

j + log h)(pk, j )
1

4

∫
R4

|z|2
(1 + |z|2)4

1 − |z|2
1 + |z|2 dz + o(ε2

k, j )

(4.32)
where

1

4

∫
R4

|z|2
(1 + |z|2)4

1 − |z|2
1 + |z|2 dz = 1

4

∫
R4

|z|2 − 1

(1 + |z|2)4

1 − |z|2
1 + |z|2 dz < 0. (4.33)

Combining Estimate F and (4.32), we obtain

ρk, j − 32σ4 = c0
1√

h(pk, j )
ε2

k, j�(G∗
j (pk, j ) + log h(pk, j )) + o(ε2

k, j ) (4.34)

where c0 > 0.

Finally, summing up the estimates in (4.34), we obtain Theorem 1.2.

5. Proof of Estimate C

In this section, we prove Estimate C. Our proof is different from [7] and is simpler.
Let τ ∈ (0, 1) be a fixed positive number. We begin with the following simple

but important lemma:

Lemma 5.1. Let u satisfy

�2u = f (y) in BR(0), u = �u = 0 on ∂ BR(0)

Then for R large we have

‖ < y >−τ (u − u(0))‖L∞(B R
2

(0)) ≤ C‖ < y >4−τ f (y)‖L∞(BR(0)). (5.1)
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Proof. Assume that ‖ < y >4−τ f (y)‖L∞(BR(0)) = 1.
By the Green’s representation formula,

u(y) − u(0)=
∫

BR(0)

[
1

4σ3
log

|z|
|y − z| + R̂4

( y

R
,

z

R

)
− R̂4

(
0,

z

R

)]
f (z)dz (5.2)

where R̂4 is the regular part of the Green’s function of �2 in B1(0) with Navier
boundary condition.

Note that∫
BR(0)

∣∣∣∣R̂4

( y

R
,

z

R

)
− R̂4

(
0,

z

R

) ∣∣∣∣| f (z)|dz ≤ C
1

Rτ

∫
BR(0)

< y >τ | f (z)|dz

≤ C < y >τ .

So we only need to consider the first term on the right hand side of (5.2). To this
end, we decompose

∫
BR(0)

log
|z|

|y − z| f (z)dz =
(∫

|z|≤ 1
2 |y|

+
∫

1
2 |y|≤|z|≤2|y|

+
∫

|z|≥2|y|

)
log

|z|
|y − z| f (z)dz.

The last integral can be controlled by∣∣∣∣
∫

|z|≥2|y|
log

|z|
|y − z| f (z)dz

∣∣∣∣ ≤ C

∣∣∣∣
∫

|z|≥2|y|
|y|
|z| | f (z)|dz ≤ C < y >τ .

For the first integral, we have

|y − z| ≥ |y| − |z| ≥ 1

2
|y| ≥ |z|

∣∣∣∣
∫

|z|≤ 1
2 |y|

log
|z|

|y − z| f (z)dz

∣∣∣∣ ≤
∫

|z|≤ 1
2 |y|

log
|y − z|

|z| < z >τ−4 dz

≤ C < y >τ .

It remains to compute the last integral∫
1
2 |y|≤|z|≤2|y|

log
|z|

|y − z| f (z)dz = |y|4
∫

1
2 ≤|z̃|≤2

log
|z̃|

|e1 − z̃| f (|y|z̃)dz̃

≤ |y|4
∫

1
2 ≤|z̃|≤2

| log
|z̃|

|e1− z̃| | < y >τ−4< z̃ >τ−4 dz̃

≤ C < y >τ .
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Let us go back to the equation for η̃:

�2η̃ = eU (eη̃ − 1) + O(ε2
k, j < y >−6) in B δ0

εk, j

(0)

η̃ = O(1), �η̃ = O(ε2
k, j ) on ∂ B δ0

εk, j

(0).

Let η̂k, j = η̃k, jχ . Then we have η̂k, j satisfies

�2η̂k, j = eU (eη̃k, j − 1)

η̃k, j
η̂k, j + O(ε2

k, j < y >−6) in B δ0
εk, j

(0),

η̂k, j = �η̂k, j = 0 on ∂ B δ0
εk, j

(0).

(5.3)

We claim that
‖ < y >−τ η̂k, j‖L∞(B δ

2εk, j

(0)) ≤ Cετ
k, j . (5.4)

Estimate C follows from (5.4).
Suppose not. Then ε−τ

k, j ‖ < y >−τ η̂k, j‖L∞(B δ0
2εk, j

(0)) → +∞. Let η̄k, j =
η̂k, j

‖<y>−τ η̂k, j ‖L∞(B δ
2εk, j

(0))
. Then η̄k, j satisfies

�2η̄k, j = eU (eη̃k, j − 1)

η̃k, j
η̄k, j + o(< y >τ−4) in B δ

εk, j
(0),

η̄k, j = �η̄k, j = O on ∂ B δ
εk, j

(0)

where η̄k, j (0) = 0.
We claim that η̄k, j → 0 in C1

loc(R
4). In fact, by standard elliptic regularity

theory, η̄k, j → η0, where η0 satisfies

�2η0 = eU η0, η0(0) = ∇η0(0) = 0, |η0(y)| ≤ C < y >τ . (5.5)

By Lemma 2.6, η0 = ∑4
j=0 c jψ j for some constants c j , j = 0, 1, . . . , 4. Using

the assumption η0(0) = ∇η0(0) = 0, we deduce that c j = 0 and hence η0 ≡ 0.
So η̄k, j → 0 in C1

loc(R
4). Now we consider∥∥∥∥∥< y >4−τ eU (eη̃k, j − 1)

η̃k, j
η̄k, j

∥∥∥∥∥
L∞

(
B δ0

εk, j

(0)

)
≤ C‖ < y >4−τ< y >−8 η̄k, j‖

L∞
(

B δ
εk, j

(0)

) = o(1).
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By Lemma 5.1, we conclude∥∥< y >−τ η̄k, j
∥∥

L∞(B δ
2εk, j

(0))

≤ C‖ < y >−τ−4 eU (eη̃k, j − 1)η̃−1
k, j η̄k, j‖L∞(B δ

2εk, j

(0)) + o(1) = o(1)

which contradicts to the assumption that ‖ < y >−τ η̄k, j‖
L∞

(
B δ

2εk, j

(0)

) = 1.

Appendix A: Proof of Lemma 2.1

In this appendix, we prove Lemma 2.1. We follow the ideas in Section 2 of our
previous paper [16].

Let uk be a sequence of solutions of{
�2uk = µkh(x)euk , in �

uk = 0 on ∂�,

and uk blows up at {q1, . . . , qn}, where µk = ρk∫
� h(x)euk

→ 0.

In our previous paper [16], we have shown that uk → P(x) in C4(�̄\{p1, . . . ,pm}).
It is not difficult to show that

lim
x→p j

P(x) = lim
x→p j

(−�P(x)) = +∞, j = 1, . . . , m .

Claim 5.1. p j ∈ � for j = 1, 2, . . . , m.
We prove it by contradiction. Assume p1 = 0 ∈ ∂� and e1 = (1, 0, . . . , 0) is

the outernormal of ∂� at zero. (See [16, Figure 2.1].)
Let N = B(0, r) ∩ � and ϕ be a solution of


�2ϕ = 0 in �,
�ϕ < 0 and ϕ > 0 in �,

ϕ = 0 on B(0, r) ∩ ∂�,

�ϕ = 0 on B(0, r) ∩ ∂� .

We now choose C is a large number so that

heCϕ(x) is decreasing in x1 for x ∈ N .

N can be chosen so small such that

P(x) − Cϕ(x) ≥ 0 and �P(x) − C�ϕ(x) ≤ 0
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for x ∈ ∂ N . Therefore by the maximum principle, for large k,

uk − Cϕ(x) > 0 and �uk(x) − C�ϕ(x) < 0

for x ∈ ∂ N ∩ �. Set wk = uk − Cϕ(x). Then

�2wk = µk(heCϕ)ewk in N

wk = �wk = 0 for x ∈ ∂� ∩ N .

Then we can use the local version of the moving planes as before to show wk(x)

is decreasing in x1, which yields a contradiction to the assumption 0 is a blowup
point.

Appendix B: Proof of Lemma 2.6

In this section, we prove the nondegeneracy Lemma 2.6
Let U = log α4

(1+|y|2)4 be a solution of �2u = eu . In this section, we study the
following eigenvalue problem

�2φ = eU φ, |φ| ≤ C < y >τ (5.6)

for some τ ∈ (0, 1).
Since ψ j , j = 0, . . . , 4 satisfies (5.6), we may assume that φ satisfies

∫
R4 eU ψ jφ =

0, j = 0, 1, . . . , 4. Our goal is then to show that φ ≡ 0.
Let φ0 = 1

4σ3

∫
R4 log 1

|y−z|e
U φdz. Then we have �2(φ − φ0) = 0. Since

|φ0(y)| ≤ C log(2 + |y|), we have φ − φ0 = C . Thus,

φ(y) = 1

4σ3

∫
R4

log
1

|y − z|eU φdz + C. (5.7)

We first prove:

Lemma 5.1. Let φ satisfy (5.6). Then |φ| ≤ C and there holds∫
R4

eU φ = 0,

∫
R4

eU ψ jφ = 0, j = 0, 1, . . . , 4. (5.8)

Proof. From (5.7), we see that

φ = ln |y|
(

1

4σ3

∫
R4

eU φ

)
+ O(1), for |y| ≥ 1 (5.9)

and (5.9) holds for Dαφ, |α| ≤ 3.
We decompose

φ = φ0(r) + φ′ (5.10)
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where φ0(r) = 1
|S3|

∫
S3 φdσ . Then it is easy to see that both φ0 and φ′ satisfy

(5.6). Since U is radially symmetric, by (5.9), it is easy to see that φ′ is bounded
and satisfies (5.8). Therefore, to prove the Lemma, it is enough to assume that

φ = φ(r) is radially symmetric. Now multiplying (5.6) by ψ0(r) = 1−r2

1+r2 and
integrating over Br (0), we obtain

0 =
∫

∂ Br (0)

ψ0(r)
∂�φ

∂r
− φ(r)

∂�ψ0

∂r

and hence for r large, we have

∂�φ

∂r
= −φ(r)

∂�ψ0

∂r
= O

(
ln r

r5

)
. (5.11)

From (5.9) and (5.11), we see that necessarily,
∫

R4 eU φ = 0. The lemma is thus
proved.

Let � be the stereographic projection of the sphere S4 onto R
4 with respect to

the North Pole. Namely,

∀x =(x1, . . . ,x5) ∈ S4, yi = xi

1 − x5
, i =1, . . . ,4, �(x)= y =(y1, . . . ,y4). (5.12)

For a bounded function φ(y) defined on R
4, one can define a function ψ on S4 by

ψ(x) = φ(y), y = �(x). Then it is easy to see that∫
S4

ψ(σ)dσ =
∫

R4
φ(y)eU dy (5.13)

∫
S4

(P4ψ, ψ) =
∫

R4
(�φ)2 (5.14)

where P4 = (−�)(−� + 2) is the Paneitz operator on S4.
Transforming the identities (5.8) to ψ , we have that ψ satisfies∫

S4
ψdσ =

∫
S4

ψxi dσ = 0, i = 1, . . . , 5 . (5.15)

Note that the operator −�Sn is known to have eigenvalues λ j with multiplicity n j
and eigenfunctions u j as follows:

λ0 = 0, n0 = 1, u0 = 1,

λ0 = n, n1 = n + 1, u1,i = σi , i = 1, . . . , n + 1

λk = k(n + k − 1), nk = (n + k − 2)!(n + 2k − 1)!
k!(n − 1)! , uk,i .
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Thus P4 = (−�)(−� + 2) also has eigenvalues and eigenfunctions

µ0 = 0, u0 = 1,

µ1 = 24, u1,i = xi , i = 1, . . . , 5

µ2 > 24 .

From (5.6) and (5.14), we derive that∫
S4

(P4ψ, ψ) = 24
∫

R4
eU φ2 = 24

∫
S4

ψ2dσ ≥ µ2

∫
S4

ψ2 (5.16)

which implies ψ = 0 and so φ = 0.
This proves Lemma 2.6.

References

[1] ADIMURTHI, F. ROBERT and M. STRUWE, Concentration phenomena for Liuville equa-
tions in dimension four, J. Eur. Math. Soc. 8 (2006), 171–180.

[2] H. BREZIS and F. MERLE, Uniform estimates and blow-up behavior for solutions of
−�u = V (x)eu i ntwo dimensions, Comm. Partial Differential Equation 16 (1991), 1223–
1254.

[3] S. BARAKET, M. DAMMAK, T. OUNI, and F. PACARD, Singular limits for 4-dimensional
semilinear elliptic problems with exponential nonlinearity, Ann. Inst. H. Poincaré Anal.
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