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Sharp estimates for bubbling solutions
of a fourth order mean field equation

CHANG-SHOU LIN AND JUNCHENG WEI

Abstract. We consider a sequence of multi-bubble solutions uy, of the following
fourth order equation

h(x)e'k

2 .
A = pp—— InQ, = Auy =0 on 9L, *
Uk = Pk Joy e up = Aug ()

where hisa C2P positive function, €2 is a bounded and smooth domain in R4, and
Pk is a constant such that pp < C. We show that (after extracting a subsequence),
limg_, 4 5o px = 3203m for some positive integer m > 1, where o3 is the area

of the unit sphere in R*. Furthermore, we obtain the following sharp estimates
for pg:

1
pr— 32U3m—0026k, D AGu(pjP)+AR(pj.p )+ 35~ Alogh(p))
Jj=1 I#]

m
Z 61%,/'
j=1

where ¢ >0, log €A :xelge?; )uk(x) log(f he'k) and uy — 3203 Z G4(, pj)
j 5 j=1

in CiL L (Q\{p1. ... pm)).
This yields a bound of solutions as p; converges to 32c3m from below
provided that

m

1
DA D - AGupj. pp) + AR4(p;. P+ 35 Alogh(p]) > 0.
J=1 \I#j

The analytic work of this paper is the first step toward computing the Leray-
Schauder degree of solutions of equation ().
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1. Introduction

In this paper, we initiate the study of the following fourth order mean field equation

) he" .
A‘u=p—— 1n,
Jo het (1.1)
u=Au=20 on 0%2.

This is the first of a series of two papers on computing the Leray-Schauder degree
for solutions of (1.1). In this first paper, we compute the sharp estimates of the
bubbling rate of multiple bubble solutions.

In dimension two, the analogous problem

he" .

T ot in , 12
Jo he (1.2)
u=20 on 02

—Au=p

where 2 is a smooth and bounded domain in ]Rz, has been extensively studied
by many authors. We summarize the results for (1.2) and identify the difficulty
in studying (1.1) now. Let (ux, px) be a bubbling sequence to (1.2) with p; <
C, max,cq ur(x) — +o00. Then it has been proved that

(P1) (no boundary bubbles) u; is uniformally bounded near a neighborhood of 92
(Ma-Wei [18]);
(P2) (bubbles are simple) o — 8mm for some m >1 and uy (x) — 8712;7’:1 G2(-,pj)

in CZ(Q\{pl, ..., pm}) [2,13,18,21], where G, is the Green function of —A
with Dirichlet boundary condition;

(P3) (sup + inf estimates) at each bubble p; ; where uy (py, ;) = MaXye s (p;) Uk (X)),
the following refined estimates hold [5, 12, 13]

1
lup(x) —ur(pr,j) —log ———=| = C (1.3)
(1 + ‘x_)zck,_/l )
€

where ug (px, j) — log(fg he') = log 5
k,j
(P4) (exact bubbling rate) It holds then [7] ]

m _ 1 m
Pk —8mm =y Zh(pk’j) lAlogh(pk,j)élz’j log ;—i—O <Z elij) ; (1.4)
j=1 o j=1

(P5) (Leray-Schauder degree) Li [12] initiated the program of computing the
Leray-Schauder degree of solutions to (1.2). He showed that the Leray-Schauder
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degree remains a constant for p € (8w (m — 1), 87m) and that the degree de-
pends only on the genus of 2. Chen and Lin [8] obtained the exact degree
counting formula as follows:

1
%(—X(Q) +1)...(—x(RQ)+m) form >0,

1 form =0

d(p) = (1.5)

where x (€2) is the Euler characteristic of €2.

In this and subsequent paper [17], we carry out the same program for equation
(1.1). It will be shown that d(p)-the Leray-Schauder degree of (1.1) can be defined
as long as p # 32mo3, where 03 is the area of unit sphere in R*. The main purpose
of this paper and the subsequent one [17] is to compute d(p). In these two papers,
we prove, among other things, the following theorem:

Theorem A. Let 32mo3z < p < 32(m + 1)o3 and d(p) be the Leray-Schauder
degree for equation (1.1). Then

1
%(—X(Q) + 1) ... (=x(Q)+m) form >0,
1 form =0

d(p) = (1.6)

where x (2) is the Euler characteristic of 2.

Remark 1.1. We are informed by Prof. Malchiodi that he obtained a similar degree
counting formula for the corresponding prescribing Q-curvature problem on a four
dimensional compact manifold, [20]. He used a different approach —the Morse
theory approach— to obtain the formula. We remark that on compact manifolds, one
does not need to prove property (P1). On the other hand, one of the main difficulties
in our proof is the property (P1).

As a consequence of Theorem A, equation (1.1) always possesses a solution
for p # 32mo3 whenever the Euler characteristic x (2) < 0. (Here m can be made
> 2, by results of Lin-Wei [16].) On the other paper, when x (£2) > 0, the situation
is much different than the second order case. For example, when €2 is a ball, we can
prove the existence of at least one solution when p € (0, 647 03). See the remark
after Corollary 1.3. The complete proof of Theorem A will be given in [17], the
second part of this series of papers.

Set dnf = lim,_gur+d(p) andd,; = lim,_, 32,4, d(p). One of the main steps
in the proof of Theorem A is to calculate the gap d,; — d,, for any integer m > 1.
Once this is known, d(p) can be computed inductively on m. Clearly, the gap of
d — d, is due to the occurrence of blowup solutions when p — 32mo3. Thus an
important question is to analyze the blowup behavior of sequence of solutions u to
(1.1) and to know the signs px — 32mo3.

In this paper, we shall obtain estimates analogous to (1.4) for bubbling solu-
tions to (1.1). To this end, we have to first resolve the analogous properties (P1),
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(P2) and (P3) for problem (1.1). Once we obtain (P1), (P2) follows from results in
Wei [23]. So we just need to prove (P1) and (P3). Here the problem arises since the
method of Kelvin transform in obtaining (P1) and the method of moving spheres in
obtaining (P3) seem not applicable for (1.1). We overcome these difficulties by us-
ing various new techniques. (After we obtain (P1)-(P3), the Leray-Schauder degree
d(p) of (1.1) for p # 32mo3 can be well-defined.)

The following is the main result of this paper:

Theorem 1.2. Let h be a positive C*P function in Q and uy be a sequence of
blowup solutions of (1.1) with p = pr. Then (after extracting a subsequence),
limy— 400 Pk = 3203m for some positive integer m. Furthermore,

px — 3203m

m 1 1
=<0 Z(h(Pk,j)) €} [%A log h(pk,j) + AR4(pr.js Pr.j)
=1

+ Z AG4(pk,j» Pr,i)

] (1.7)
i)

m
+o (Z e,fyj>
j=1

where ¢y > 0 is a generic constant, G4(-, P) is the Green function of A* with

Navier boundary condition u = Au = 0 on 9, Ry is the regular part of Gy,
. . o4

Pk,j are the local maximum points of ux on Bs(p;), and log a = ur(pr,j) —

k.j
log([q, he").
Clearly Theorem 1.2 implies the following:
Corollary 1.3. Let h(x) be a C*# positive function and satisfy

u 1 1
> (h(pj)2 [32—Alogh<pj>+AR4<pj, PN+ AGa(p, pj)} >0 (1.8)
j=1 73 I%]

forall (p1, ..., pm) satisfying

1 .
Vv logh(p;) + Ra(pj, pj) + E Ga(pi,pj)|=0,j=1,....,m. (1.9)
3203 =

Then for any compact interval I C (3203(m — 1), 3203m], there exists a constant
C > 0 such that
u(x) < Cforx e Q (1.10)

for any solution u of (1.1) with p € 1.
As a consequence, if Ah(x) > 0, then (1.10) holds for any solution u of (1.1)
with p € (0, 3203].
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Remark 1.4. 1. Corollary 1.3 extends earlier results of Lin and Wei [16] where
we proved Corollary 1.3 for m = 1,h = 1. We note that when 2 = B; and
h(x) = 1, (1.2) has no solution when p > 8m. However, for (1.1), a solution always
exists when p < 3203 [16]. On the other hand, a solution with a single bubble has
been constructed in [3]. By Theorem 1.2, since AR4(pj, pj) > 0, this shows that
problem (1.1) has a solution for p > 3203 and |p — 3203| small. By Theorem A,
d(p) = 0 for p € (3203, 6403). Thus when Q = B and 4 = 1, problem (1.1) has
a solution for p € (0, 6403). In fact, we conjecture that a solution to (1.1) exists for
any p > 0.

2. Theorem 1.1 can be extended easily to the following n-th order mean field type

equation
u

he .
(=AY =P e M (1.11)
(=AY u=0 ondQ,j=0,....,.n—1

where € is a smooth and bounded domain in R?". In particular, we have the same
degree counting formula for solutions to (1.11)

1
%(—x(ﬂ) +1) - (=x(Q)+m) form >0,
1 form =0

d(p) =

where p € (m2%'(n — nlog,—1, (m + 1)22"(n — 1)!n!o2,_1). This then implies
that (1.11) always has a solution if p % m2%*(n — 1)!nloa,_ and x () < 0.
Semilinear equations involving exponential nonlinearity and fourth order ellip-
tic operator appear naturally in conformal geometry and in particular in prescribing
Q-curvature on 4-dimensional Riemannian manifold M (see e.g. Chang-Yang [6])

Pow +2Q, =20, e*" (1.12)

where P, is the so-called Paneitz operator:
2 2 .
Py = (Ag)"+6 gRgI — 2Ric, | d,

gw = ezwg, Qg is Q-curvature under the metric g, and Q ¢ 18 the Q-curvature
under the new metric gy, .
Integrating (1.12) over M, we obtain

kg ::/ Qg :/ (ng)e4w
M M

where kg is conformally-invariant. Thus, we can write (1.12) as

ng e4w

Pow+2Q, =k
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In the special case, where the manifold is the Euclidean space, P, = AZ and (1.13)
becomes
h(x)e*

Aw=pr.
O et

(1.14)
There is now an extensive literature about this problem, we refer to Adimurthi-
Robert-Struwe [1], Baraket-Dammak-Ouni-Pacard [3], Druet-Robert [9], Hebey-
Robert [10], Hebey-Robert-Wen [11], Malchiodi [19] and the references therein.

The organization of this paper is as follows: The statements for properties
(P1)-(P3) are collected in Section 2 where important preliminaries are presented.
The proof of (P1) is given in the Appendix A and the proof of (P3) is given in
Section 3. Finally in Section 4, we prove Theorem 1.2. Though we essentially
follow those of [7], we simplify and give a new proof of the key estimates—Estimate
C in Section 5.

Throughout this paper, unless otherwise stated, the letter C will always denote
various generic constants which are independent of k > 1.

ACKNOWLEDGEMENTS. The research of the first author is partially supported by a
research Grant from NSC of Taiwan. The research of the second author is partially
supported by an Earmarked Grant from RGC of Hong Kong.

2. Preliminaries

We begin with the following lemma which excludes the boundary blowups. The
proof of it is by adopting the method used in our previous paper [16] and is given
in Appendix A.

Lemma 2.1. Let u be a solution to (1.1) with p < C. Then there exists a 6 > 0
such that u(x) < C for all x such that d(x, 9Q2) < 4.

Let G4 denote the Green’s function of A” under the Navier boundary condi-
tion, that is
A’Gy(x,y) = 8(x — ), Galag = AGalpe = 0. 2.1

We decompose

1
Ga(x,y) = —1log

+ Rq(x, y). (2.2)
dos 7 |x —

It is easy to see that
AxGa(x,y) <0, AcRa(x,y) > 0. (2.3)

From Lemma 2.1, we derive the following lemma, whose proof follows exactly
those in Wei [23] and thus omitted.
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Lemma 2.2. Let uy be a bubbling sequence with py < C. Then (after extract-
ing a subsequence), px — 3203m and ur(x) — 3203 Z’j’?:l Ga(-, pj), where
(p1, - .-, pm) satisfies

1 .
V( log h(pi) + Ra(pi, pi) + E G4(Pi,Pj)> =0,i=1,....,m. (24
3203 =

We also need to recall the well-known Pohozaev’s identity for solutions of fourth-
order equation
A%u = h(x)e" in D.

‘We have:

Lemma 2.3. Let u satisfy A2u = h(x)e" in D, where D is a smooth and bounded
domain in R*. Then we have

/ (4h+ < x, Vh >)e" :/ <x,v > h(x)e"
D aD

+/ 1IA E zauA v 0Au VA du
—|Aul® <x,v > -2—Au— <x,Vu > —— < x,VAu > —
ap L2 av av av 2:5)

+<x,v><Vu,VAu>j|

and for any & € R%,
/ (< &, Vh >)e" =/ h(x)e" <&, v >
D aD
/ 1IA 2o £V dAu £.VA dAu
—|Aul* <& v>—<§& Vu> —— <§, u>—-
ap |2 av av (2.6)
+ <&, v><Vu,VAu >].
Proof. In fact, multiplying A%u = h(x)e" by x - Vu and integrating by parts, we
obtain the lemma. O

Let 6o be a fixed small constant and uy (py, ;) = max,¢p; (p) Uk (x) and

o 1
ok — e 2.7

Then ¢y — +00 as k — +00. Let us define

b, j €k

Lj=u(prj)—ck, e & = —lj’ where oy = 64, (2.8)
1
Qy
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and
Iy = max Iy j, € = min e ;. (2.9)
1<j<m 1<j<m

Note that I ; — 00, as othc?rvyise Uk satisfies |AZuy| < C in Bs, (p.k’j)’ Uy +
|[Aug| < C on 0Bs,(px, ;). This implies MaXye By (p. ;) ur(x) < C, which contra-
dicts to our assumption.

Next, we present a theorem which gives (P3)-sup + inf estimates. The proof of
it is interesting and given in a separate section.

Lemma 2.4. We have

% <cC. (2.10)

——I =
(1 i |X—§k.j|2)4

€

lug (x) — ur(pr,j) — log

for x € Bsy(p,j)-
From Lemma 2.4, we have the following important corollary:

Corollary 2.5. Let uy be a sequence of blowup solutions of (1.1) with p = pi. Let
i, Iy, j, €k, €k, j be defined as before. It then holds

h—C<lj<hk+C, Cla<eq,;<Ce j=1,...,m, (2.11)

G —C<h;<a+C Cled <q <Ce® j=1,....m (212

Finally, we consider a problem in R*. It has been proved [15,22] that the solution
to the following problem

AU =Y, in R4,
(2.13)
f eU < 400,
R4
is given by
Uea(x) =1 et (2.14)
x):=log——————, .
o St x—apy
forany € > 0,a € R4, provided that
Ux) =o(|x|*) as |x| - +oo. (2.15)

Let U = log (HTW and T € (0, 1) be a fixed constant. We need the following
lemma which proves the nondegeneracy of U:
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Lemma 2.6. The solutions to the following linearized problem
A =eY¢, 1o = CUA+IyDT (2.16)
is given by ¢ = Zj':o cjyj where

_ 1P g
L+ 1y 7 1+ 1yl

Yo 5od=1....4. (2.17)

3. Proof of Lemma 2.4

In this section, we prove the sup+inf estimates—Lemma 2.4. As we mentioned
before, the method of moving spheres seems not applicable here. Instead, we use an
approach of combination of potential analysis and Pohozaev identity. This approach
has been used in Bartolucci-Chen-Lin-Tarantello [4].

We now state a more general theorem: Let i1y (x) be a solution of

A20; (x) = hg(x)e in By, and

f he (0 dx < G-I
By

where /1 (x) converges to a positive function A(x) in C 1(B,), and without loss
of generality, we may assume 4(0) = 1. Suppose that iy satisfies the following
assumptions

() |ag(x) —ur ()| < cfor x| = |y| =2, i
(i1) |Aug(x)|is bounded in any compact set of B, \ {0},

(iii) Ois the only blow-up point of i1y, i.e., set S={x|xx — x and mk*)+ooﬁ (xg) —
+o0}. Then § = {0}.

We want to establish the following sharp estimate of the bubbling behavior of iy
near 0. To state our result, we let /; be the maximum and x; be a maximum point
of uy, i.e.,
lk = ﬁk(xk) = max lzk .
By

and let v(x) be the solution of

A%y(x) = '™ in R*
v(0) = 0 = max v(x) and |v(x)| = O(log|x|) at 00 . (3.2)
R

Theorem 3.1. Suppose iy is a sequence of solution of (3.1) and satisfies assump-
tions (1)-(iii) and v is the solution of (3.2). Then there exists a constant ¢ such
that

1 —
i (x) — Ik — v(e |x — x)] < Cin By .
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Applying Theorem 3.1 to iy = uy — ci, we obtain Lemma 2.4.
Forr € (0, 1), set

o (r) :/ hk(x)eﬁk(x)dx ,
B,

and
a(r) = lim ar(r)and o = lim a(r) .
k—+00 r—0

We first have:

Lemma 3.2. Suppose uy is a solution of (3.1) and satisfies assumption (i)-(iii).

Then it — —oo uniformly in any compact set and « = 32073.

Proof. Suppose that there exists a point xg € B>\{0} such that iy (x¢) is bounded.
Then by assumptions (i)-(iii), the sequence ity is bounded in any compact set of By \
{0}. By taking a diagonal process, a subsequence, still denoted by ix, approaches a

function u(x) in By \ {0} which satisfies

A%u(x) = h(x)e"™ in B \ {0} .

On the other hand, fixing any § > 0 and small, we integrate (3.1) in Bs and obtain

dAii .
/ o :/ AZﬁk:/ hee™ O dx = a(8)
9By OV Bs Bs

which implies that
dAu

lim — =q.
8—0J3Bs av
Therefore u(x) satisfies (in the distribution sense)
A2u(x) = h(x)e"™ + adyin B .

Thus
o 1 . .
u(x) = —1Iog| — | + v(x), witha > 0, v(x) is smooth, and
403 | x|

* Ndx < C .
B

By the Pohozaev identity (2.5), we have

/ [4hi (x) + (Vhi(x) - x)]e™
Br

i Adig)® iy 9
:f hk(x)|x|e”kd0—/ G NP
9B, 9B,

2 ar or
0 ou
+f 2 (2 pdigdo .
9B, ar ar

(3.3)

(3.4)

(3.5)

(3.6)
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By letting k — +00, we have

o

2
> o3(1 +o(1)), (3.7)
403

da(l +o(1)) =2 (

where o(1) tends to 0 as r — 0. Since o > 0, we have
o = 3203 . (3.8)

However, (3.8) implies 4‘%3 = 8 and then (3.1) yields

/ |x|_8dx < c1/ &MYdx < e,
B B

a contradiction. Thus, ix(x) — —oo uniformly in any compact set of B>\{0}.

Now it is obvious that iz (x) = @ix(x) — ¢ converges to #(x) in Clzoc(ég\{O})

and ¢; — 400 as k — 400 where ¢y = flxl:lﬁk(x)dor is the average of it; over
S3. Clearly

1
Q) = —~log — +v(x), (3.9)
403 |x|

with A%v(x) = 0in B,. We can apply the Pohozaev identity (3.6) to obtain o =
3203 as the same as (3.8). Thus, Lemma 3.2 is proved. [l

Proof of Theorem 3.1. By (i) and (ii), it is easy to see that iy (x) can be written as

i (x) = L / log <#) he (e Mdy + fi(x) (3.10)
403 Jp, lx —

where fi (x) is a smooth function in B 3 and
I filcazyy =C - (3.11)
2

Recall ity (x) = I = max g, iy. Then

1 — )
i) =l = — [ log { b — y ') e D dy + () — fixn) . (3.12)
403 B |x - )’|

I
Set vp(x) = ur(epx + xi) — Iy and g = e‘f Then (3.12) implies

1
vp(x) = E/B

Og( || >,~lk(y)evk<y>dy ¥ A, (3.13)
lx =yl

-1
k
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_ I
where hi(y) = hg(xx + 6’7%)’) and

”ij"”Be‘kl —0forl <j<4.

From (3.13), we have |Av(x)| is uniformly bounded. Thus, vi(x) — v(x) in
Cﬁ)C(R“) and v(x) satisfies

A%vu(x) = '™ inR* and

1 3.14
403 Jrs lx =yl

for some constant cg. Therefore Av(x) — 0 as |x| — 400, a classification result
of [2] shows that

v(x) =c+log——+— .
) MGERNEY
Thus, for any R > 0,
|vr(x) — v(x)| — O uniformly for |x| < R (3.15)

as k — +oo.
To prove Theorem 3.1, it is equivalent to showing

l
vk (x) — v(x)| < C for R < |x| < roe? |, (3.16)

for some ro > 0.
To prove (3.16), we claim

1\ !
lo — 3203| < ¢ <log —> , (3.17)
ek
where oy is the local mass defined by
a = / By (x)e™ ™) dx (3.18)
B

The idea to obtain (3.17) is to apply the Pohozaev identity (3.6) on the circle |x| =
ex(log é). Hence, we need some fine estimates of vi. Basically, all estimates
required here can be obtained by using the Green representation formulas (3.13).
First, we has a rough estimate about the behavior of vy.

For any fixed § > 0, there exists R = Rs and ko = k(§) € N such that if
|x| > 2R and k > kg, then

ve(x) < — <ﬂ - 5) log || .
403
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The proof is standard, and is omitted here. Since - 4

chosen such that

vk (x) = —7log |x|

1 _
For log — < |x| < &k l,set
Ek

holds for |x| > 2R.

&uun=i/ he’dy
[y|<rolx|

where rg < % is a positive constant. By (3.19),

Iw—&uwﬂfc/

1
for |x| > log — and k large.
&k

By (3.20), we claim that

(073
vr (x) + — log |x|
403

ovk o 1

oy B+

403 |x|

AV

‘—( =, )

1

Avk(x) + |x|2

Ak()———

o 1
o3 |x}?

for |x|

evk(y)dy < C/ |y|77dy =0 ( 3
Iyl =rolx] Iy[=rolx] |x|

= log é In fact, we will prove (3.21) holds for log é <|x| < i

611

— 8ask — +o0, § is always

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

We first show (3.17) by assuming (3.21)-(3.25). Rescaling back to g, (3.21)-

(3.25) can be written as follows:

ur(x) = vy <8k ) 4loger =

403

—4—10g| x|+ (— —4) log ek (3.26)
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B —1
P e 1 <<log l) L) , (3.27)
or 403 |x| Ek x|
9 ( diiy ) <( 1 >—1 1 )
—r—@) || < 0| |log— — (3.28)
or \ or €k xl

3 a1 N1
Aup(x) =———+ 0| | log — W , and (3.29)
X

203 |x|? &k

3 o 1 N1
—ANiig(x) = ——=40|[log—) — (3.30)
ar o3 |x|? &k |x|3

for |x| = 2 (log ;1.
Substituting (3.26)-(3.30) to (3.6) on r = & log(é), we have

1 a,f 1\
4o + O(l)eglogl — | ==—+ O | {log— .
&k 803 &k
1 _1
ap = 3203+ O <10g —) ,
ek

and then (3.17) is proved.
We come back for the proof of (3.21)-(3.25). By (3.13), for log sk_l < I|x| < 8,(_1,

1 -
v (x) = —/ log bl hi (e Ndy + 0(1)
do3 lyl<e;! lx =yl

Thus,

1 -
= log ( ) h(y)e™Vdy + 0(1)
403 J)y|<rolx| lx =yl

oy 1
=—Ilog— 4+ O(1)
403 |x|

1
— X jog — 1 01,
403 |x|

where

/ - log(IyD e (y)e™ M dy < ¢,
yi=e;

1 -
/ log (—) he(n)e*Pdy = 0(1x| > log |x])
ly|>rolx| lx — yl
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and (3.20) are employed. This proves (3.21). To prove (3.22), we have

3 -1 (x =y 77~
- L (e Wy + 0(er)
ar 403 Jiyj<ept X =y
—1 (x —y)x

= — e (0)e% P dy + O (x| + &)
403 Jiyi<roi) 1x11x — yI?

-1 o(1)

= Ly + 28 |yle™ ¥ dy
403 Jy|<rolx| 1X] 1= Jiy<rolxl
+O0(x|™* + &)
oek 1 _
= ———+0(x[?

o 1\
= tyo <<log—) |x|—1>.
403 &k

For (3.23), we have

0 0 —1 0 ~ '
(rﬂ< )) 2 (“‘ ! )§> h e Ody + 0er)
ar 403 ly|<e;! 0 lx — |

—1 0 X —y)x\ -~
=Ion W (%) hi(y)e*Vdy + 0 (ex + x|~
403 Jiy1<rolx O \ |x — ¥l

_on

X2 Jiyi<rol]

¢ <|x1|2> '

We have proved (3.21)-(3.23). Proofs of (3.24) and (3.25) are similar, and we should
omit them here. Hence (3.17) is proved completely.

We note (3.21) holds for log é < l|x| < 8,:1. Therefore, by (3.17) and (3.21),
we have

IVI(L+ 1y 7Oy 4+ O (e + x| ™)

lug (x) + 8log|x|| < C



614 CHANG-SHOU LIN AND JUNCHENG WEI

for log é < x| < 8,:1. So far, we have proved
1
|up(x) —v(x)| < C for |x| < Ror |x] > log —. (3.31)
€k

For the region R < |x| < Si, we proceeds as follows: for |x| < log i,
k €k

1 -
Ave(x) = —— shi()e™Ydy + 0(1x| )
203 Jiy|<r,lxl 1X =
1 1 -
=5 —hi (e Vdy
203 Jiyizr, vl 1612
1 Cy - 1
—— T (e dy + 0 (—4>
03 Jiyl<rolx 1X] x|
a1 Lo 1
203 |x? |x|3
1
= Av(x)+ O —3
|x |-
where we have used the fact that @i (|x]) — ax = 0(#) and that oy — 3203 =
1
0(IOgé )
Thus,

|[Av(x) — Av(x)| < (3.32)

|x[?

holds for R < |x| < é

Now we choose g(x) = C(1 + ﬁ) where C is large. Then —Ag(x) = ﬁ >

3
|[Avi(x) — Av(x)|. Tt is easy to see that g(x) > |vk(x) — v(x)| for |[x] = R and
|x| = log é Thus, the maximum principle implies

lug(x) —v(x)| < C (1 + i) (3.33)

|x|

for R < |x| < log é
Combining (3.31) and (3.33), we have proved (3.16). Thus, Theorem 3.1 is
completely proved. O
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4. The Estimate of o, — 3204m

The main purpose of this section is to prove Theorem 1.2. We follow the main steps
used in [7]. Let

up(x) = up(x) — cx 4.1)
which satisfies

A%y = prh(x)e™ in Q, f h(x)e™ = 1. 4.2)
Q

Recall the definitions c, px,j, Ik, Ik, j, €k, €k, given in (2.7)-(2.9).
For a fixed small §p > 0, we set the local “mass” py ; to be

pi=o [ e dx. (43)
Bﬁo(pj)

By Corollary 2.5, we have

Pk = Pk f h(x)e®@dx + 0(e}) (4.4)
Bsy (P, j)
which yields
m
>0k = P+ O(€). (4.5)
j=1

In Bs,(pk, ), we set

Gh(x) = ok jRa(x, pr.j) + Y praGalx. pis) (4.6)
I#]
and wy (x) to be the error term defined by
m m
wi(x) = up(x) = Y priGalx, pri) =ik — Y priGa(x, pri) +ex - (47)
i=1 i=1
on Q\ U7, B%(pj).
We first have:

Estimate A. [wy(x)| + |0%wi (x)| = O(ex) forall o] < 3,x € Q\ U™, By (p).
2
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Proof. This follows from the Green’s representation formula:

ug(x) = /Q Ga(x, y)(oxh(y)e™)dy

m
> o / Ga(x, Mh(y)e™ + 0(€])
j=1 Bsy (P.j)

2

m
Yoo [ 1Gsy) = Gatx e
j=1 Bsy (Pr.j)

2

m
FYmGape) [ he 4 0t
j=1 B sy (r.j)
2

m
Oy = prjDh(E™ + " pr jGa(x, pr.j) + O(€])
S_O(Pk.j) j=1
2

m
—;Pk/B

3

Pk, jGa(x, pr,j) + O(ep).

~
Il
-

Similarly we can estimate |0%wy (x)| for |o| < 3.
Hence Estimate A is established. O

Estimate B. |V(logh(x) + Gf»(x))l = O(ex) atx = py ;.

Proof. Applying (2.6) to ity on Bs,(px, ), we obtain

LHS of (2.6) = px / < &, Vh >
Bsy (px,j)

- pk/ [< & Vh>— <& Vh(pj) >]e™
Bsy (P, j)

+pk/ <& Vh(prj) > ™
Bsy (P, j)

O + pk/ h(pr.)e™ < & Viogh(pr)) >
Bsy (P, j)

= O(ex) +pr,j <&, Viogh(py,j) > .
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On the other hand by Estimate A, we have

u(x) = we(x) + G4 (x) (4.8)

where
1
Ix — prjl°
Note that Az(éjf (x)) = 01in Bs,(pk, j)\{pk, j}- Applying the Pohozaev’s identity to

A

G’}f, we obtain

A _ Pk, j
Gi(x) = Gj(x) + 4os log

RHS of (2.6)

0Auy

= <& v>|=|Aukl” ) — <& VAuy > —— < &, Vuy >
3Bsy(p)) 2 dr

ouy 0Auy
ar or

+<&v> }+0@b

1 aun ., GY ., 0AGY
:/ <& > (—|AG§|>—<§,VAG’;>——<5,VG’;>
9Bsy(p)) 2 ar

ar

aé*aAéj

J
, ——_Jl+o0
+<&v> 5 oy ]+ (ex)

: 1 aus ., G* ., 0AG?
= lim <§,v>(—|AG’;|>—<§,VAG7>——<$,VG’;>
B, (p) 2 or

r—0/5

0G* IAGH
+<&v>— + O(er)
or or

= —pr,j <& VGi(prj) > +0(ep).
This proves Estimate B. O

Next, we give a sharper description of the bubbling behavior of uy in the ball
Bs, (pk,j). We set

hi,j = h(pk,j)
and
() =1 ( ici ) 4.9)
v, j (x) = log .
/ (€8 ; + v/orh jlx = qi j19)*
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where ¢ ; is given by (2.8) and gk ; € R?* is chosen such that
Vg, j(pk,j) = V1ogh(pg ;).
By direct computations, we also have
|Pr.j = ai.jl = O(€).
For x € Bs,(pk,j), we also set
Mk, j (X) = up(x) — cx — vk, j(x) = (G7(x) — G (px, j))-
Then by Estimate B and (4.11), we have
IVnk,j(pk, )| = O(ex)
nk,j (P,j) = lk,j — vk, j(pk,j) = O(€r)
Ik, j(x) < C forx € Bsy(px,j) -

Let us check the matching of wy and 7 ; on B% (Pr,j):
M, j (X) = ug(x) = cx — ve,j(x) = (G7(x) = G (px, ;)
= wg + Z PkiGa(x, pii) — Ck
i

aset

— log
(€7 + /orhic j1x — g, j1)*

/ — (G (x) = GH(pr.j))

(4.10)

@.11)

4.12)

(4.13)
(4.14)

(4.15)

= O(ex) + px,jGa(x, pr,j) + pr,jRa(x, pr,j) — ck + G (P, j)

4
Qa€y

— log
(V/prhi jlx — qr,j1»)*

: 1
— 0+ (2L —8)1og ———
403 |x — pr.i

— ¢k + GG (pr.j)
k,jl

4
o4€y

(V/pxhi, j)*

~ 1
= O(e) + Arj + (pk—” —8) log ——
4073 [x — pr.jl
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where Ay ; is a constant given by
4 * (o7}
Ay, j = —cx —loge; + G (P j) — log ———. (4.16)
KMk,
Then by Corollary 2.5, we have |Ag j| = O(1). This implies that for x € 9 Bs, (px, ;).
we have
Pk, j 1
Nk, j(x) = Agj + | —= — 8 | log ———— + O(&). 4.17)
403 lx — pr.j
Moreover, (4.17) holds for partial derivatives of 7, ; up to the order 3.

Let

- _ 3o
k() = i (pr.j + exj(oehi ) "*2), R = 8er (4.18)
sJ

The following estimate is the key estimate, whose proof will be given in a separate
section:

Estimate C. For any 7 € (0, 1), there exists a constant C; such that

ik, j ()] < Co(A+ D7 | €7+ €7 sup ik j (D) | - (4.19)

R<lz1<R
Now we have:

Estimate D. For any % < 1 < 1, we have

|Akjl <Cle+e" sup | l|- (4.20)

L<lzI<R
Proof. By Green’s formula,

u(pr.j) = log(aue, ) + cx
m
=y / prhe™ Ga(py, j, y)dy + O(ep).
i=1 Y Bsy(pr.1)
For! # j,
/ phe™ Ga(pr. j, v)dy = priGa(pi.j» 1) + O(ex). (4.21)
Bsy (pr.1)

Forl = j, we have

/ pehe™ Ga(pr.j, y)dy
Bsy (px,j)

-1 1
= / pkhe"™ (— log ——— + Ra(pk.j» y)> dy
Bs, (pr.j) 403 " Ipk,j — )l

1 - 1
= __Pk/ pihe"* log —————dy + pi jRa(pk,j, pk,j) + O(€p).
463 BSO(Pk,j) |Pk,j _yl
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Now we write
he = he s T HETOZGHPRD) — (e et H (x, e (0) + h(pr e

where
H(x, 1) = eH‘lOgh(XH‘Gj(X)—IOgh(Pk,j)—Gj(Pk,j) 1. (4.22)

Let z and zj ; satisfy

X = prj+ Gk,j(pkhk,j)_l/d'z, qk.j = Pk,j + Gk,j(pkhk,j)_1/41k

Then we have

,Ok/ he™ log | px.j — vl
Bs(Pr,j)

= Pk/ he™ log ek j (prhy, )™+ + Pk/ he™ log |z|
Bsy (P, j) B

r(0)
= pr,; log(ex, j (pxhr, )~
(4.23)
+ / Y1+ Hx ) log 2]
Pk X, Nk, j))10g |2
B (1412 =z j1)* !
= pij log(ex, j (oxhi, )~/
+ / - Hx, me.j) log |z] + O(er)
Pk X, Nk, j)1og|z €k
Br (1412 = zxj12)* /
where we have used
o0
|2k, j] = O(ex), / (A +r>) 3 logrdr = 0. (4.24)
0
The last term in (4.23) can be estimated by
/ % 57 H(x,0)loglz| + O & +ef sup ik (@)
Br©) (I 41z = 2k,1%) R_2)<R

=0 |e+e€ sup N ()]

R
R<lz<R

Combining all together, we obtain Estimate D (by choosing a larger 7 > %). O
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Estimate D implies:

Estimate E. On B, (p, )
2

k. j 1 .
Nk,j(x) = ('O—j — )logi +O0|e+e" sup | ;j@]]. (425
‘ 403 = Picjl R<pzl<r
From (4.25), we also have
sup [Nk, jl < Clpx,j — 3203| + Cey ;. (4.26)
X<z1<R

Hence Estimate C can be refined as

|k, j ()] < C(1+ 1zD7 (" + €]l px,j — 3203)). (4.27)

On the other hand, |y, j — 3203] can also be estimated by a quantity related to 7 ;.

Estimate F.
OANL
pkj——3203::/1 —7§4idx4-o@§y (4.28)
dBs, (P, j) v
Proof.
~ YANTYS
Pk,j = Pk/ he'k :/ 5
Bs(pk,j) 9Bs, (P, j) v
_/ AV, +/ AN,
dBsy(pr.j) OV 9Bsy(pr.j) IV
OAN. i
= 3203 +/ I3 4 o)
9Bsy(pr.j) IV
since

IAV ; 1 1
Po%J _ 3= 4y o(—=).
v r3

. AL
It remains to compute [;5 5 L
0 5
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Note that 7y ; satisfies

AP = prheje™ine.j + prhe, je"™ (H(x, n ) — 1k, j)-

Let

W) = €. = v/orhijlx — g jI?
€+ /Pehicjlx — g jI?

Then it is easy to see that W (x) satisfies
AP (x) = pkhk,je”"vf(x)\ll(x).

Using (4.29) and (4.30), we obtain

'/ [AZne j ¥ (x) — A2W(x)mg  (x)]
BSO (Px j)

= / pichi, je"™ I [H(x, k., ;) — nk, j1¥ (x).
Bb‘o(pk j)

The left-hand-side of (4.31) equals

ov Ok, j

9 Ang, ,
= o o0 = sms s B o 20
9Bs, (P, j) 4 v v v

AN
- / 2T () + 1)
3Bsy(pr.j) IV

dAng,
—/ ,+O(k]|pkj 320’3|+€]§’j)
Bsy (P, j) v

_/ d ANk, j 26,
OBy () OV eg’j—f—,/pkhk,ng—}—o(E%’j)

av

OANk,
— _/ - Lt o(ef ).
9Bs, (P, j) v

9 A,
—/ ——L + 0( jlor; — 32031 + €} ))
Bsy (pi.j) '

AV

}

(4.29)

(4.30)

(4.31)
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The right-hand-side of (4.31) equals

82
; Z ox10 [G*+10gh]zzzm

1//Okhkj /]R“ ((1+|Z_Zk]|2)4) |: h.J

1— |z —zj1?

+o .2}—
] o

-= /( 1 )[22 - (G +log hl(zi+2k,0) (Zm~+2km)
Vo e \(+ 12 810, 12k @+ 2k

—|z)?
* 0( )] 14|z |2d

Iz 1—z]?
g (14 |zH* 1+ |2)?

1
e MG +1og ) (pr.j)7 dz + o(€f ;)

1
B VPrh(pk, )

(4.32)
where
1 2 1—z2 1 21 1—|z?
- | v |Z|2 =—/ | = |Z|2dz<0. (4.33)
4 Jrs (1 + 121971+ |z] r4 (I +1z19)* 1+ |z

Combining Estimate F and (4.32), we obtain

pr.j — 3204 = ¢ 2 (G (pr) +logh(pi ) +o(el ) (434)

1
Vh(pk,j)
where cg > 0. ]

Finally, summing up the estimates in (4.34), we obtain Theorem 1.2.

5. Proof of Estimate C

In this section, we prove Estimate C. Our proof is different from [7] and is simpler.
Let T € (0, 1) be a fixed positive number. We begin with the following simple
but important lemma:

Lemma 5.1. Let u satisfy
A% = f(y) in Bg(0), u=Au=0 ondBg(0)
Then for R large we have

I <y>""@—uO)l~@eon < Cll<y>*T fFOlro@roy. (G-
2
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PVOOf Assume that || <Yy >4_T f(Y)”LOO(BR(O)) =1.
By the Green’s representation formula,

_ L ooe B R (2 Y k(0.2
u(y) — u(0)= o [403 log = +R4<R, R) R, (0, R)} f()dz (5.2)

where Ry is the regular part of the Green’s function of A% in B;(0) with Navier
boundary condition.
Note that

/I;R 0

So we only need to consider the first term on the right hand side of (5.2). To this
end, we decompose

Z Z
f log 12l f(@dz= / +/ +/ log 12l f(2)dz.
Br |y —zl i<iivl Siyisizi=aiy Jiziz2py) ly =zl

The last integral can be controlled by

‘/ id f(2)dz
|z|>2|y| Iy— |

For the first integral, we have

WA WO € .
Re(% %) R4(0,R)‘|f(z)|dz§CR, /BR<0><y> | (@)ldz

<C<y>"

<C' mIf(Z)Idz<C<y>

z|>2|y| Iz

1
ly =zl z Iyl =zl = ZIyI = 2]

‘ / log 1"/ @)z < f log X8 ooty
EERI |y - BRI k4

<C<y>"

It remains to compute the last integral

/ f@dz = |yl /
%IYISIZIS2I)I |y— | z|<2

Z
<l Nog

5 =lz1=2

A

<C<y>".

<
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Let us go back to the equation for 7:

A%ij=eV(e" — 1)+ O(ef ; < y =% in B s (0)

k. j

ii=0(l), A = O(e{ ;) on 3B s (0).

k. j

Let 9, j = N, j x- Then we have 7 ; satisfies

A (€] = 1), 6
Aznk,j =eV—— Nk,j + 0(61%’1- <y>"%n B 5, (0),
Mk, j ' %.J (5.3)
Nk.j = Ank,j =0 on 9B 5 (0).
€k.j

We claim that
<y >""fkjllLemi 5 ©) < Ce - (54
2€k,j

Estimate C follows from (5.4).
Suppose not. Then e,;;H <y >"" Mk jllLes 5 (0) — +0o. Let nx,j =

26](,]'
ke Then 7 ; satisfi
l<y>"Fik jliLcos 5 o) N 7k, j SAUSHeEs
2€k4,j
_ (ei — 1) _ 4. .
A% = eV ——ij +o(<y >"* in B (0),

Mk.j .7

Nk,j = Ang,j =0 on 9B s (0)
sk,j
where 7, ;(0) = 0.
We claim that 7 ; — 0 in Clloc (R*). In fact, by standard elliptic regularity
theory, i, ; — 1o, where g satisfies

Ao = €Yo, n0(0) = Vno(0) = 0, [no(y»)| < C <y >" . (5.5)

By Lemma 2.6, ng = Zj’:o cjy; for some constants ¢j, j = 0, 1,...,4. Using
the assumption 19(0) = Vno(0) = 0, we deduce that ¢; = 0 and hence ng = 0.

So ijk,j — 0in C}.(R*). Now we consider

L ople™i—1)
<Yy >4t eU%nk,j
nk,] L>| B 5% (0)>
.j
4—7 -8 = . _
=Cll<y>""<y>"1m,l =o(D).
Lw(BL(0)>

€k, j
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By Lemma 5.1, we conclude

l<y>""ciliens 5 o

26k, j

<Cll<y>"""*e" ™ - Vi ik jlxs 5 ©)+o) =o(l)
261{,]‘

B s (0)

which contradicts to the assumption that || <y >7F 7y ; ”L°°<
261{,]‘

) =1 0O
Appendix A: Proof of Lemma 2.1
In this appendix, we prove Lemma 2.1. We follow the ideas in Section 2 of our

previous paper [16].
Let ux be a sequence of solutions of

A%up = prh(x)e", in Q

ur, =0 on 082,
and uy blows up at {q1, ..., gn}, where u; = W — 0.
In our previous paper [16], we have shown that uy — P(x) in C4(S_2\{p1, ey Pm})-

It is not difficult to show that

lim P(x) = xl_i)n;_(—AP(x)) =+4o00,j=1,...,m.
J

xX—pj

Claim5.1. p; € Qforj=1,2,...,m.

We prove it by contradiction. Assume p; = 0 € 9Q2and e; = (1,0,...,0) is
the outernormal of 9€2 at zero. (See [16, Figure 2.1].)

Let N = B(0,r) N 2 and ¢ be a solution of

A2 =0 in ,
Agp <0Oand ¢ >0 1in €2,
=0 on B(0,r)No,
Ap =0 on B(O,r)No2.

We now choose C is a large number so that
he€?™ is decreasing in x| for x € N.
N can be chosen so small such that

P(x) — Cp(x) >0 and AP(x) — CAg(x) <0
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for x € dN. Therefore by the maximum principle, for large k,
ury — Ce(x) > 0 and Aug(x) — CAp(x) <0
for x € IN N Q. Set wy = uy — Cep(x). Then
A’wip = pi(he€?)e™ in N
wry = Awg =0 for x e QN N.

Then we can use the local version of the moving planes as before to show wy (x)
is decreasing in x1, which yields a contradiction to the assumption 0 is a blowup
point.

Appendix B: Proof of Lemma 2.6

In this section, we prove the nondegeneracy Lemma 2.6
Let U = log (H‘TW be a solution of A%u = ¢*. In this section, we study the

following eigenvalue problem
Ap=eV¢, 19| <C<y>T (5.6)

for some t € (0, 1).
Since ¥, j =0, ..., 4 satisfies (5.6), we may assume that ¢ satisfies fR4 erjqb =
0,j=0,1,...,4. Our goal is then to show that ¢ = 0.

Let ¢pg = ﬁ fR4 log ﬁeUQSdz. Then we have A2(¢ — ¢9) = 0. Since
|#o(»)| < Clog(2+ |y]), we have ¢ — ¢po = C. Thus,

1 1
P(y) = — / log eYpdz + C. (5.7)
403 Jre T |y —z|

We first prove:

Lemma 5.1. Let ¢ satisfy (5.6). Then |¢| < C and there holds

/ eU¢=o,/ Vi =0,j=0,1,....4. (5.8)
R4 R4
Proof. From (5.7), we see that
1
¢ =1Inly| (—/ e”¢) +0(1), for|y| > 1 (5.9)
403 R4
and (5.9) holds for D%, || < 3.

We decompose

¢ =¢o(r) +¢' (5.10)
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where ¢o(r) = ﬁ j s3 ¢do. Then it is easy to see that both ¢ and ¢’ satisfy

(5.6). Since U is radially symmetric, by (5.9), it is easy to see that ¢’ is bounded
and satisfies (5.8). Therefore, to prove the Lemma, it is enough to assume that

¢ = ¢(r) is radially symmetric. Now multiplying (5.6) by ¥o(r) = L::i and
integrating over B, (0), we obtain
AP aAYg
0= / Yo(r) — ()
9B, (0) or or

and hence for r large, we have

aA aA 1

089 _ —¢(r) Vo —o(2L). (5.11)

or or rd

From (5.9) and (5.11), we see that necessarily, fR“ eV¢ = 0. The lemma is thus
proved. O

Let IT be the stereographic projection of the sphere S* onto R* with respect to
the North Pole. Namely,

X
Vx:(xl,...,x5)€S4,y,-= !

=14, Ix)=y=01,...,y4). (5.12)
1— x5

For a bounded function ¢ (y) defined on R*, one can define a function v on S* by
¥ (x) = ¢(y), y = IT(x). Then it is easy to see that

[ wers = [ owmevay (5.13)

f Par, ¥) = / (Ap)? (5.14)
54 R4

where P4 = (—A)(—A + 2) is the Paneitz operator on s4.
Transforming the identities (5.8) to v, we have that  satisfies

wdo:f Yxido =0,i=1,...,5. (5.15)
sS4 sS4

Note that the operator —A g« is known to have eigenvalues A ; with multiplicity n ;
and eigenfunctions u ; as follows:

M=0,n0=1,ug=1,
rMm=nn=n+lu;=0,i=1,...,n+1

n+k—2)!n+2k—-1)!
M=kn+k—1),n, = K — D)l s Uk i -
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Thus P4 = (—A)(—A + 2) also has eigenvalues and eigenfunctions

mo=0,u0=1,
w1 =24 u1;=x;,i=1,...,5

noy > 24.

From (5.6) and (5.14), we derive that

/ Bap. y) = 24 / Vg2 = 24 / V2do > w2 f v 516
§4 R4 S4 S4

which implies ¥ = 0 and so ¢ = 0.

This proves Lemma 2.6.
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