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Convex integration and the L p theory of elliptic equations

KARI ASTALA, DANIEL FARACO AND LÁSZLÓ SZÉKELYHIDI JR.

Abstract. This paper deals with the L p theory of linear elliptic partial differential
equations with bounded measurable coefficients. We construct in two dimensions
examples of weak and so-called very weak solutions, with critical integrability
properties, both to isotropic equations and to equations in non-divergence form.
These examples show that the general L p theory, developed in [1, 24] and [2],
cannot be extended under any restriction on the essential range of the coeffi-
cients. Our constructions are based on the method of convex integration, as used
by S. Müller and V. Šverák in [30] for the construction of counterexamples to reg-
ularity in elliptic systems, combined with the staircase type laminates introduced
in [15].

Mathematics Subject Classification (2000): 30C62 (primary); 35D10, 39J40
(secondary).

1. Introduction

In the theory of the elliptic partial differential equations with bounded measurable
coefficients the solutions are initially assumed to have square summable derivatives;
for equations of non-divergence form the assumptions concern the second deriva-
tives. As is well known (see [6, 7] and [26]), there is a range of exponents beyond
p = 2 such that the derivatives are, in fact, L p-integrable. Recent developments
in the theory of planar quasiconformal mappings, in particular the area distortion
theorem obtained by the first author in [1] and the invertibility of Beltrami operators
proved in [4], have in two dimensions provided the precise range for these critical
exponents, see [2, 24] and Theorems 1.1 and 1.5 below. For more information see
also the monograph [3]. These ranges of exponents depend only on the ellipticity
constants of the equation.

It is a natural question to ask if restricting the range of the coefficients could
yield higher integrability for the gradients of the solutions. A basic result pointing in
this direction is the work of L. C. Piccinini and S. Spagnolo [35]. There it is shown
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that if σ(x) = ρ(x)I , where ρ is a real valued function with 1/K ≤ ρ(x) ≤ K ,
then u has a better Hölder regularity than in the case of a general σ .

In this article we present a general method for constructing examples which
show that, in the contrary, for the L p theory such improved regularity beyond the
critical exponents is not possible.

Let us start by recalling the basic notations and the positive results.

Theorem 1.1. Let K ≥ 1, let � ⊂ R2 be a bounded domain and let σ(x) : � →
R2×2

sym be a measurable function such that, in the sense of quadratic forms,

1

K
I ≤ σ(x) ≤ K I a.e. x ∈ � (1.1)

Let u ∈ W 1,q(�), q ≥ 2K
K+1 , be a weak solution of

div (σ (x)∇u(x)) = 0 in �. (1.2)

Then u ∈ W 1,p
loc (�) for all p < 2K

K−1 .

Here R2×2
sym represents the space of 2 × 2 symmetric matrices with real entries.

Theorem 1.1 is a combination of results due to F. Leonetti and V. Nesi [24],
the first author [1] and S. Petermichl and A. Volberg [34]. The proof is based on
the fact [24] that locally any weak solution to (1.2) coincides with the real part of a
K-quasiregular mapping, K being the ellipticity constant of (1.1). The results in [1]
imply that any K -quasiregular mapping in W 1,q belongs actually to the space W 1,p,
whenever 2K

K+1 < q < p < 2K
K−1 . Finally, the end point case q = 2K

K+1 was recently
covered by S. Petermichl and A. Volberg (see [4, 13, 34]).

The classical examples built on the radial stretching1 u(x) = �(x |x | 1
K −1)

show that for general σ the range of exponents p, q cannot be improved without
extra assumptions. On the other hand, the work of L. C. Piccinini and S. Spagnolo
[35] suggests that for isotropic coefficients one might have better regularity.

Our first theorems show, however, that for Sobolev regularity one cannot im-
prove either of the critical exponents 2K

K+1 , 2K
K−1 even if the essential range of σ

consists of only two isotropic matrices.

Theorem 1.2. Let � be a bounded domain in R2 and let K > 1. There exists a
measurable function ρ1 : � →

{
1
K , K

}
such that the solution u1 ∈ W 1,2(�) to the

equation {
div (ρ1(x)∇u1(x)) = 0 in �

u1(x) = x1 on ∂�
(1.3)

satisfies for every disk B = B(x0, r) ⊂ � the condition∫
B

|∇u1| 2K
K−1 = ∞. (1.4)

1 Here the variable x ∈ R
2 is identified with the complex number x = x1 + i x2.
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Theorem 1.3. For every α ∈ (0, 1) there exists a measurable function ρ2 : � →{
1
K , K

}
and a function u2 ∈ Cα(�) such that u2 ∈ W 1,q(�) for all q < 2K

K+1 ,

u2(x) = x1 on ∂� with x = (x1, x2) and

div (ρ2(x)∇u2(x)) = 0

in the sense of distributions, but for every disk B = B(x0, r) ⊂ �∫
B

|∇u2| 2K
K+1 = ∞. (1.5)

As a particular consequence, Theorem 1.2 and Theorem 1.3 apply also to the
quasiregular mappings, since u1 and u2 coincide with the real parts of (weakly)
quasiregular mappings f1 and f2, respectively. Here both mappings satisfy

∂z f = ±k ∂z f a.e. in �, (1.6)

where k = K−1
K+1 . Indeed, in the proofs we construct f1 and f2 rather than u1 and

u2. The same ideas yield extremal solutions also to the classical Beltrami equation

∂z f = ±k ∂z f , (1.7)

for details see Remark 3.21.

Remark 1.4. Our methods do not imply that ρ1 and ρ2 in the above theorems could
be equal. Surprisingly, in the analogous problem for the Beltrami equation (1.7) one
has a simple argument relating the corresponding results. Namely, let f be the very
weak solution of (1.7) constructed in Theorem 3.18, with dilatation µ : � → {±k}
and u2 = � f satisfying (1.5). If F is the classical homeomorphic solution to

the same equation, with F ∈ W 1,2
loc and ∂z F = µ∂z F , then

∫
B |∇F | 2K

K−1 +ε = ∞
for every ε > 0 and every ball B ⊂ �. To see this, since ∇ f ∈ Lq(B) for
any q < 2K

K+1 , we would otherwise have ∇F ∈ L p0(B) and ∇ f ∈ Lq0(B) for
some dual exponents p0 and q0. But then, for example by [23, Lemma 6.4], the
composition h = f ◦ F−1 is in W 1,1(F B) and h obeys the chain rule. Therefore
∂zh = 0 a.e. and by Weyl’s lemma h is analytic. Then f = h◦F is also quasiregular,
which contradicts the fact that f /∈ W 1,2(B).

Lastly we turn to the analogous results concerning linear elliptic equations
in non-divergence form. The following theorem is due to K. Astala, T. Iwaniec
and G. Martin in [2] where, answering a question of Pucci [36], quasiconformal
techniques are applied to establish the precise L p theory for planar equations in
non-divergence form.

Theorem 1.5. Let K ≥ 1, let � ⊂ R2 be a bounded domain and let A(x) : � →
R2×2

sym be a measurable function such that for a.e. x ∈ �

1√
K

I ≤ A(x) ≤ √
K I, with det A(x) ≡ 1. (1.8)
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Let u ∈ W 2,q(�), q > 2K
K+1 , be a solution of the equation

Tr
(

A(x)D2u(x)
)

= 0, (1.9)

where D2u(x) = (
∂i j u(x)

)
i j is the Hessian matrix of u. Then u ∈ W 2,p

loc (�) for all

p < 2K
K−1 .

In (1.8) the second condition on A(x) is a normalization which can always be
made since A is bounded above and below and (1.9) is pointwise linear.

The key point in the proof is that under the assumptions of the theorem the
complex gradient of the solution, ∂zu = (ux , −uy), is a K -quasiregular mapping.
Therefore the ideas from [1,4,34] apply. In analogy with the result of Piccinini and
Spagnolo it was recently shown by A. Baernstein II and L. V. Kovalev ([5]) that
the complex gradients of solutions to equation (1.9) belong to a better Hölder space
than general quasiregular mappings.

Concerning the sharpness of the theorem, an example due to C. Pucci built on
an appropriate radial function shows that the L p estimates fail at the lower critical
exponent q = 2K

K+1 . Nevertheless, examples built on radial functions do not seem to
work for the upper critical exponent. Here we not only provide required examples,
but again show that the range of A(x) is as simple as one can ask for.

Theorem 1.6. Let K ≥ 1 and let � ⊂ R2 be a bounded domain.
There exists a measurable

A3 : � →
{(

1√
K

0

0
√

K

)
,

(√
K 0

0 1√
K

)}

such that the solution u3 ∈ W 2,2(�) to the equation{
Tr(A3(x)D2u3) = 0 in �,

u3(x) = x1 on ∂�
(1.10)

satisfies for every disk B = B(x0, r) ⊂ � the condition∫
B

|D2u3| 2K
K−1 = ∞. (1.11)

Similarly, we have the counterpart of Theorem 1.3.

Theorem 1.7. For every α ∈ (0, 1) there exists a measurable mapping

A4 : � →
{(

1√
K

0

0
√

K

)
,

(√
K 0

0 1√
K

)}
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and a function u4 ∈ C1,α(�) such that u4 ∈ W 2,q(�) for all q < 2K
K+1 ,

Tr(A4(x)D2u4) = 0 (1.12)

in the sense of distributions, but for every disk B = B(x0, r) ⊂ �∫
B

|D2u4| 2K
K+1 = ∞. (1.13)

Theorem 1.2 improves the results in [15]. These in turn have roots in [27], where
G. Milton proposed that a suitable layered construction, using infinitely many
scales, should yield extremal integrability properties. In [15] the second author
interpreted Milton’s idea from a different point of view, introduced the so-called
staircase laminates and used Beltrami operators to complete the technical details
left open by Milton. The method in [15] yields only a sequence of equations of the
type (1.3), such that the corresponding solutions

{
u j

}∞
j=1 satisfy

lim
j→∞

∫
B

|∇u j | 2K
K−1 = ∞.

Moreover, we do not know how to use that approach with Beltrami operators to
show that the lower critical exponent 2K

K+1 is sharp.
In this work we replace the use of Beltrami operators by convex integration.

Generally, convex integration is a method for solving differential inclusions of the
type

∇ f (x) ∈ E, a.e. x (1.14)

where E is a given closed set of matrices. Roughly speaking the method consists of
iteratively constructing layers within layers of oscillations, starting with an affine
function whose gradient is in a suitably defined ”hull” of E (see Section 2) and
iteratively pushing the gradients towards E itself. The original method was intro-
duced and developed by M. Gromov [18] as a very general and versatile method for
solving partial differential inclusions related to underdetermined geometric prob-
lems. V. Šverák and S. Müller [30] adapted this method, combining with analysis
of oscillations in the spirit of Tartar’s compensated compactness [41], for construct-
ing regularity counterexamples for elliptic systems (see also [40]). The survey [22]
gives a very good overview of the techniques and results available in the Lipschitz
setting.

The general existence theory for (1.14) has been developed also in [38, 39] as
well as in [11,12,21,43], where a different line of thought - following more closely
the classical Baire category approach to solving ordinary differential inclusions -
has been pursued. However, for us the techniques of Müller and Šverák are partic-
ularly useful since they not only give the existence of solutions to (1.14), but also
provide us with solutions having ”extremal” properties. Recently B. Kirchheim [21]
has developed a powerful Baire category setting which combines both approaches
in an elegant manner and also yields such extremal solutions.
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Our plan of proof for Theorems 1.2, 1.3 and Theorems 1.6, 1.7 is as follows.
We rewrite the equations as differential inclusions, in Lemmas 3.2 and 4.1, and then
proceed with convex integration. The first step is to find a sequence of laminates
(see Definition 2.2) with the required integrability properties. These will be called
the staircase laminates, following [15, 16]. We remark that the construction of this
type of laminates seems very flexible and adaptable to other situations. For example
in [8] and [9] they have been used in connection with the problem of regularity of
rank-one convex functions.

Once we find staircase laminates supported in the appropriate sets, we proceed
in a different way for the lower and the upper critical exponents. For the upper
critical exponents we are dealing with honest quasiregular mappings. This allows
us to fit the set of solutions of (1.3) into a natural metric space setting. Then we
can adapt the method of Kirchheim in [21] and use Baire category. This approach
is based on the observation that points of continuity of the gradient are typically
residual.

For the lower critical exponent we are not able to find a natural metric space
setting. The reason is that the only norm which we are able to bound is the W 1,1

norm (see Remark 3.23). Therefore, we develop a version of the approach of Müller
and Šverák [30], which works for unbounded sets and laminates. This approach
is technically more involved than Baire category, but has the advantage that we
get very precise information on the integrability of the gradient, namely that our

solutions have gradient in the weak Lebesgue space L
2K

K+1
weak (see Theorem 3.18).

Finally, let us remark that the same proof works with minor modifications also for
the upper critical exponents (see Remark 3.19), however we have preferred to use
the Baire category method for its transparency and elegance.
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2. Preliminaries

We start by introducing the following notation. For matrices A ∈ R2×2 write A =
(a+, a−) where a+, a− ∈ C denote the conformal coordinates. That is, in the
identification of vectors v = (x, y) ∈ R2 with the complex numbers v = x + iy,
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the coordinates are defined by the relation

Av = a+v + a−v

For future reference we record that multiplication of matrices in conformal coordi-
nates reads as

AB = (a+b+ + a−b−, a+b− + a−b+), (2.1)

and that TrA = 2�a+, where �z denotes the real part of the complex number z.
Also

det A = |a+|2 − |a−|2,
|A|2 = 2|a+|2 + 2|a−|2,
‖A‖ = |a+| + |a−|,

(2.2)

where |A| and ‖A‖ denote the Hilbert-Schmidt and the operator norm, respectively.
In quasiconformal geometry it is important to measure how far a matrix is from
being conformal. There are two classical notions quantifying this, the complex
dilatation and the distortion K (A). In our work it is most convenient to use the so
called second complex dilatation, which is defined by

µA = a−
a+

(2.3)

Then distortion K (A) of A is given by

K (A) = ‖A‖2

| det(A)| =
∣∣∣∣1 + |µA|
1 − |µA|

∣∣∣∣. (2.4)

These definitions extend naturally to mappings through the differential. If f ∈
W 1,1(�, R2), its second complex dilatation is

µ f (x) = µD f (x) = ∂z f (x)
/

∂z f (x)

and its distortion function is K f (x) = K (D f (x)), which are defined almost every-
where.

We use the notation M(Rm×n) for the set of signed Radon measures on Rm×n

with finite mass. By the Riesz representation theorem, M(Rm×n) can be identified
with the dual of the space C0(R

m×n) of continuous functions vanishing at infinity.
Given ν ∈ M(Rm×n) with finite first moment we use the notation

ν =
∫

Rm×n
Adν(A)

and call ν the barycenter of ν.
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Next, we turn to convex integration. The basic building block for us in solving
partial differential inclusions is the following lemma. Here, and in the rest of the
paper, we will say that a mapping f : � → R2, continuous up to the boundary, is
piecewise affine if there exists a countable family of pairwise disjoint open subsets
�i ⊂ � with |∂�i | = 0 and ∣∣∣� \

⋃
i

�i

∣∣∣ = 0,

such that f is affine on each subset �i . In a similar way we define piecewise
quadratic functions u : � → R, meaning that u is C1 up to the boundary and
coincides with a quadratic function on each �i .

Lemma 2.1. Let α ∈ (0, 1), ε, δ > 0 and let � ⊂ Rn be a bounded domain. Let
A, B ∈ Rm×n with rank(A − B) = 1 and suppose C = λA + (1 − λ)B for some
λ ∈ (0, 1).

(i) There exists a piecewise affine Lipschitz mapping f : � → Rm such that

(a) f (x) = Cx if x ∈ ∂�,

(b) [ f − C]Cα(�) < ε,

(c) | {x ∈ � : |∇ f (x) − A| < δ} | = λ|�|,
(d) | {x ∈ � : |∇ f (x) − B| < δ} | = (1 − λ)|�|.

(ii) If in addition A, B ∈ Rn×n
sym , then the map f in part (i) can be chosen so that

f = ∇u for some piecewise quadratic u ∈ W 2,∞(�).

Proof. Part (i) of the lemma is standard in the literature (see [29, Lemma 3.1]), but
usually with C0 instead of Cα approximation in (b). For reader’s convenience we
recall the idea of this argument. We may assume A − B = a ⊗ en and define two
auxiliary functions,

s(t) = λ(1 − λ) + t
[
(1 − λ)χ(−λ,0)(t) − λχ(0,1−λ)(t)

]
(2.5)

and, with δ′ < 1
n|a|δ,

w(x) = δ′
[

s
( xn

δ′
)

−
n−1∑
i=1

|xi |
]

.

Let now f0(x) = C(x) + w(x)a. In the polytope �0 = {x ∈ Rn : w(x) > 0} the
function f0 satisfies (a) and (c),(d), while (b) is satisfied by choosing δ′ sufficiently
small.

For an arbitrary domain �, f is obtained by rescaling f0. That is, fixing r > 0
we cover � by small copies of �0 up to measure zero, so that

∣∣∣� \
∞⋃

i=1

(ai + ri�0)

∣∣∣ = 0 (2.6)
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with ri < r , and then place in each copy the rescaled function

fri ,ai (x) = ri f0(r
−1
i (x − ai )) + C(ai ).

This implies (a), (c) and (d), but also (b) follows: As a Lipschitz function f ∈ Cα

and its Cα norm decreases when scaling and letting r → 0.
An alternative way to construct f would be by extending first s 1-periodically

to R and then setting f (x) = C(x) + δ[s(xn/δ)] a. Then D f ∈ {A, B} a.e., but
f does not have correct boundary values. These can be achieved by deforming f
near ∂� ; see e.g. [21] which does this but obtains only dist (D f (x), [A, B]) < δ

in the exceptional set. However, arguing as in (ii) below one may further deform f
to have dist (D f (x), {A, B}) < δ almost everywhere.

Part (ii) is essentially done in [21], but we need to do some more work in order
to obtain the exact volume fractions (c) and (d). Let A, B, C ∈ R2×2

sym be as in the
lemma. Then, by [21, Proposition 3.4] for every ε, δ > 0 there exists a piecewise
quadratic u = u(λ, A, B) ∈ W 2,∞(�, R2) such that

(1.1) u(x) = 1
2 〈Cx, x〉 if x ∈ ∂�,

(1.2)
∣∣{x ∈ � : D2u(x) = A

}∣∣ > (1 − ε)λ|�|,
(1.3)

∣∣{x ∈ � : D2u(x) = B
}∣∣ > (1 − ε)(1 − λ)|�|,

(1.4) dist
(
D2u(x), [A, B]) < δ a.e. in �.

However, we need a function u such that D2u(x) belongs to a δ neighborhood of
{A, B} instead of a neighborhood of the whole segment [A, B]. To achieve this, we
iterate the construction of u to produce a sequence of piecewise quadratic functions
{ui }∞i=1 with the following properties: writing

Ui =
{

x ∈ � : dist
(

D2ui , {A, B}
)

< (1 − 2−i )δ
}

we construct by induction the functions ui so that

(2.1) ui (x) = 1
2 〈Cx, x〉 if x ∈ ∂�,

(2.2)
∣∣{x ∈ � : D2ui (x) = A

}∣∣ > (1 − ε)λ|�|,
(2.3)

∣∣{x ∈ � : D2ui (x) = B
}∣∣ > (1 − ε)(1 − λ)|�|,

(2.4) u j (x) = ui (x) for x ∈ Ui whenever j ≥ i ,

(2.5) |� \ Ui+1| ≤ 1
4 |� \ Ui | and Ui ⊂ Ui+1,

(2.6) dist
(
D2ui , [A, B]) < (1 − 2−i )δ a.e. in �.

We can use (1.1)-(1.4) to define u1, after replacing δ by δ/2. Suppose then that ui
is given. Since ui is piecewise quadratic, � \ Ui has a decomposition

� \ Ui =
(⋃

j

Ũ j

)
∪ N
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where |N | = 0 and Ũ j are open sets on which D2ui = C̃ for some constant matrix
C̃ = C̃ j with dist (C̃, [A, B]) < (1 − 2−i )δ. Hence we can write

C̃ = λ̃A + (1 − λ̃)B + D̃,

where 0 < λ̃ < 1, and |D̃| ≤ (1 − 2−i )δ. Therefore, if we set Ã = A + D̃ and
B̃ = B + D̃

C̃ = λ̃ Ã + (1 − λ̃)B̃, (2.7)

with | Ã − A|, |B̃ − B| < (1 − 2−i )δ and

rank( Ã − B̃) = rank(A − B) = 1.

Thus, we can use again [21, Proposition 3.4] in each Ũ j to produce ũ j such that

(3.1) ũ j (x) = 1
2 〈C̃x, x〉 (modulo an affine function) if x ∈ ∂Ũ j

(3.2)
∣∣∣{x ∈ Ũ j : D2ũ j ∈

{
Ã, B̃

} }∣∣∣ > 3
4 |Ũ j |.

(3.3) dist
(

D2ui , [ Ã, B̃]
)

< 2−i−1δ a.e. in Ũ j

Then the function ui+1 obtained from ui by replacing ui by ũ j on Ũ j (modulo an
affine function) fulfills the properties (1)-(6).

It follows from (2.1) and (2.6) that the sequence {ui } converges strongly in
W 2,∞ to a piecewise quadratic function uλ with the following properties:

(4.1) uλ = 1
2 〈Cx, x〉 on ∂�

(4.2)
∣∣{x ∈ � : D2ui (x) = A

}∣∣ > (1 − ε)λ|�|,
(4.3)

∣∣{x ∈ � : D2uλ(x) = B
}∣∣ > (1 − ε)(1 − λ)|�|,

(4.4) dist
(
D2uλ(x), {A, B}) < δ a.e. in �.

The mapping uλ fulfills all the desired properties, except possibly we do not obtain
the exact volume proportions required in (c) and (d). If this is the case, we may
assume without loss of generality that

µuλ = | {x ∈ � : |D2u(x) − A| < δ
} |

|�|
satisfies λ(1 − ε) < µuλ < λ. Fix ε = 1

2 so that

λ

2
< µuλ < λ, (2.8)

and choose Â ∈ [A, B] ∩ B(A, δ) so that

C = λ̂ Â + (1 − λ̂)B,
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where λ̂ = λ + ε1 for some small 0 < ε1 < δ/2. For arbitrary ε2 > 0 we can
repeat the above construction with λ̂ in place of λ to obtain a function u

λ̂
equal to

1/2〈Cx, x〉 on the boundary and such that dist (D2u
λ̂
(x), {A, B}) < δ and

µu
λ̂

> λ̂(1 − ε2).

Choose ε2 > 0 so that
µu

λ̂
> λ. (2.9)

From (2.8) and (2.9) we deduce that

t
def= µu

λ̂
− λ

µu
λ̂
− µuλ

satisfies t ∈ (0, 1), and λ = tµu
λ̂
+ (1 − t)µuλ . Finally we divide � in two regions

�λ, �λ̂
with |�λ| = t |�| and |�

λ̂
| = (1 − t)|�|. We put �λ = ∪i�i,λ ∪ N

and �
λ̂

= ∪i�i,λ̂ ∪ N where �i,λ, �i,λ̂ are rescaled copies of � as in (2.6). In
each �i,λ we place a rescaled copies of uλ and in each �i,λ̂ a rescaled copy of
u

λ̂
. This defines our final mapping u. It is easy to see that the volume fraction

µu = tµ
λ̂

+ (1 − t)µλ = λ, in other words the function u satisfies the volume
requirements exactly, and hence satisfies (a), (c) and (d). To obtain (b) we perform
the same rescaling and covering as in part (i).

The matrices A and B in Lemma 2.1 are said to be rank-one connected and the
corresponding measure λδA + (1 − λ)δB ∈ M(Rm×n) is called a laminate of first
order. Because the lemma provides piecewise affine maps, the construction can be
iterated by modifying the map f in the regions where it is affine. For example,
suppose we have two further rank-one connected matrices C1, C2 such that

B = λ′C1 + (1 − λ′)C2. (2.10)

Then in the open set {|∇ f (x) − B| < δ}, f can be replaced by a map (again given
by the lemma) whose gradient oscillates on a much smaller scale between neigh-
borhoods of C1 and C2.

Notice that, as in (2.7), (2.10) implies that if |∇ f (x) − B| < δ, then ∇ f (x) =
λ′C̃1+(1−λ)C̃2 where C̃1, C̃2 are rank-one connected and they lie in corresponding
neighborhoods of C1 and C2. Thus, on each region where f is affine, we can apply
Lemma 2.1 to obtain the new mapping. On the level of the gradient distribution this
amounts to replacing δB by λ′δC1 + (1−λ′)δC2 . This type of iteration motivates the
following definition ([10, 30, 32]).

Definition 2.2. The family of laminates of finite order L(Rm×n) is the smallest
family of probability measures in M(Rm×n) with the properties

(i) L(Rm×n) contains all Dirac masses.
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(ii) Suppose
∑N

i=1 λiδAi ∈ L(Rm×n) and A1 = λB + (1 − λ)C where λ ∈ [0, 1]
and rank(B − C) = 1. Then the probability measure

N∑
i=2

λiδAi + λ1(λδB + (1 − λ)δC )

is also contained in L(Rm×n).

The process of obtaining new measures via (ii) is called splitting.

Proposition 2.3. Let ν = ∑N
i=1 αiδAi ∈ L(Rm×n) be a laminate of finite order

with barycenter ν = A. Then, for every α ∈ (0, 1), 0 < δ < min |Ai − A j |/2 and
every bounded open set � ⊂ Rn, there exists a piecewise affine Lipschitz mapping
f : � → Rm such that

(i) f (x) = Ax on ∂�,

(ii) [ f − A]Cα(�) < δ,

(iii) | {x ∈ � : |∇ f (x) − Ai | < δ} | = αi |�| for each i , thus

(iv) dist (∇ f (x), spt ν) < δ a.e. in �.

Moreover, if Ai ∈ Rn×n
sym , then the map f can be chosen so that f = ∇u for some

u ∈ W 2,∞(�).

Proof. The proof is by induction using Lemma 2.1, which proves the result for first
order laminates. For higher order laminates the precise argument is given in [30,
Lemma 3.2] with the C0 norm instead of the Cα and matrices in Rn×n . The case of
symmetric matrices is handled using part ii) of Lemma 2.1 instead of part i).

Finally, we recall the definition of certain semiconvex envelopes of sets of
m × n matrices (for more information see [22, 28, 32]).

Definition 2.4. Let E ⊂ Rm×n be a closed set. The polyconvex hull of E is given
by

E pc =
{
ν : ν ∈ M(Rm×n), spt ν ⊂ E and det(ν) =

∫
Rm×n

det(A)dν(A)

}
.

Similarly, the lamination hull of E is given by

Elc = {ν : ν is a laminate of finite order with spt ν ⊂ E} ,

and the first lamination hull is

Elc,1 = {ν : ν is a laminate of first order with spt ν ⊂ E} .

In particular, since the determinant is an affine function on the rank-one lines of
M(Rm×n), we have Elc,1 ⊂ Elc ⊂ E pc.
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3. Isotropic equations

For proving Theorems 1.2 and 1.3 we start, as in [30], by transforming the set of
solutions to the isotropic PDE into solutions to a suitable differential inclusion.
Definition 3.1. For a set ∆ ⊂ C ∪ {∞}, let

E∆ =
{

A ∈ R
2×2 : A = (a+, a−) with a− = µa+ for some µ ∈ ∆

}
, (3.1)

i.e. E∆ is the set of matrices with the second complex dilatation belonging to ∆. If
µ = ∞ the condition a− = µa+ means that a+ = 0. In particular, for ∆ = {0}, let
E0 denote the set of conformal matrices. Similarly, E∞ is the set of anti-conformal
matrices.

From (2.1) we see that E∆ is invariant under precomposition by conformal
mappings, i.e. that

E∆ = E∆ A for all A ∈ E0 \ {0} . (3.2)

Lemma 3.2. Let K ≥ 1 with k = K−1
K+1 and let 1 ≤ p ≤ ∞. Suppose � ⊂ R2 is a

bounded domain. Then u ∈ W 1,p(�, R) is a weak solution to

div (ρ(x)∇u(x)) = 0

for some coefficient function ρ ∈ L∞(�,
{

K , 1
K

}
) if and only if u = f1 where

f = ( f1, f2) : � → R2 satisfies

∇ f ∈ E{k,−k}. (3.3)

Proof. It is convenient to identify R2 with C, so that f1 = �( f ). Accordingly, let
us write f = u + iv. Then

2∂z f = ∂x u + ∂yv + i(∂yu − ∂xv),

2∂z f = ∂x u − ∂yv + i(∂yu + ∂xv).

Hence the condition ∇ f ∈ E{k,−k}, or ∂z f = µ∂z f with µ ∈ {−k, k}, is equivalent
to the system

(1 − µ)∂x u = (1 + µ)∂yv,

(1 − µ)∂yu = −(1 + µ)∂xv.

In other words
1 − µ

1 + µ
∇u = J∇v, (3.4)

where J = (
0 1−1 0

)
. But in a simply connected 2-dimensional domain � an L p

vector-field is divergence-free if and only if it has the form J∇v for some Sobolev
function v. Hence (3.4) is equivalent to

div

(
1 − µ

1 + µ
∇u

)
= 0.
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3.1. Upper critical exponent

Our proof of Theorem 1.2 makes strong use of the ideas developed by Kirchheim
in [21, Chapter 3.3]. First, we define an appropriate closed and bounded subset
X ⊂ W 1,2 containing certain weak solutions to (3.3). Since bounded subsets of
W 1,2 are metrizable in the weak topology w, we deduce that (X, w) is a metric
space. In particular, we are then in a setting where one can apply Baire category
methods. Indeed we shall show, similarly as in [21], that functions in X are points
of continuity of the map ∇ : (X, w) → L2 only if they satisfy the inclusion (3.3).
From this we deduce, using the fact that ∇ is a Baire-1 mapping, that the solutions to
(3.3) form in X a residual set, i.e. its complement is of first Baire category. Finally
we show that the set of functions in X for which (1.4) holds in any fixed ball B(x, r)

is also residual, and for this we use the staircase laminate construction introduced
in [15]. Combining these facts gives Theorem 1.2.

We will define the set X starting from the differential inclusion (3.3). We then
need X to be weakly closed, and if we would analyze this property more system-
atically we would arrive at the concept of G-closure due to Spagnolo. Indeed it is
not difficult to see that the set 
k introduced below is nothing but the interior of
the G-closure of {−k, k}, with respect to equations of the type (1.6); in fact similar
computations as those in Lemma 3.5 can be found in [14] and [33].
Definition 3.3. For each 0 < k < 1 let

∆k =
{

reiφ ∈ C : r < k, r2 cos2 φ >
(1 − r2)(r2 − k4)

(1 − k2)2

}
,

cf. Figure 3.1. Also, using the notation (3.1), define U = E∆k ⊂ R2×2.

k k1 1

i

i−

−

Figure 3.1. The set ∆k in the complex plane.

Note that ∆k , and hence U , is open and that E{k,−k} ⊂ U .
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Definition 3.4. Let X be the closure in the weak topology of W 1,2 of the set

X0 =

 f ∈ W 1,∞(�, R

2) :
• f piecewise affine
• ∇ f (x) ∈ U a.e.
• f (x) = x on ∂�


 . (3.5)

Certainly, f = I d ∈ X0 so the set X is not empty. In Lemma 3.7 we show that X is
a bounded subset of W 1,2 and hence it is metrizable in the weak topology.

Lemma 3.5. Let E{k,−k} be as in Lemma 3.2 and write Elc,1
{k,−k} = (E{k,−k})lc,1 for

its first lamination hull. Then

Elc,1
{k,−k} = E pc

{k,−k} = E∆k
,

with ∆k given in Definition 3.3.

Proof. Since automatically Elc,1
{k,−k} ⊂ E pc

{k,−k} we only need to prove the reverse

inclusion. Hence let W ∈ E pc
{k,−k}. Then by definition W = ν for some probability

measure ν supported on E{k,−k} with ν satisfying

det(ν) =
∫

det(A) dν(A). (3.6)

The crucial information to use here is that det(A) = (1 − k2)|a+|2 for every A ∈
E{k,−k}. Thus F �→ det F is a convex function when restricted to E{k,−k}.

Let us now write
ν = λνk + (1 − λ)ν−k

where ν±k are probability measures with spt νk ⊂ Ek and spt ν−k ⊂ E−k and
barycenters

Y =
∫

A dνk(A) ∈ Ek and Z =
∫

A dν−k(A) ∈ E−k,

respectively. Then (3.6) reads as

det(W ) = λ

∫
Ek

det(A)dνk(A) + (1 − λ)

∫
E−k

det(A)dν−k(A).

By Jensen’s inequality and the convexity of det|E±k it follows that

det W ≥ λ det Y + (1 − λ) det Z . (3.7)

On the other hand in two dimensions the determinant is a quadratic form, and by
direct calculation we obtain

det(λY + (1 − λ)Z) = λ det(Y ) + (1 − λ) det(Z) − λ(1 − λ) det(Z − Y ).
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Recalling that

W = ν̄ = λν̄k + (1 − λ)ν̄−k = λY + (1 − λ)Z ,

we deduce det(Y − Z) ≤ 0.
Now consider pairs tY and s Z with t, s > 0 such that for some λ′ ∈ (0, 1) we

have λ′(tY ) + (1 − λ′)(s Z) = W . Linear independence gives

λ′ = λ

t
and s = 1 − λ

1 − λ′ ,

so that such pairs are parametrized by t ∈ (λ, ∞) with s = s(t) → ∞ as t →
λ. Let d(t) = det(tY − s(t)Z). By the calculation above d(1) ≤ 0 and since
det Y, det Z > 0 we have d(t) → +∞ as t → λ. Thus there exists t0 ∈ (λ, 1] such
that d(t0) = 0. But then t0Y ∈ Ek and s(t0)Z ∈ E−k are rank-one connected, and
so W ∈ Elc,1

{k,−k}.

Next we obtain an explicit description of the lamination hull. A matrix W =
(w+, w−) lies in the first lamination hull of E{k,−k} if and only if there exists λ ∈
[0, 1], and matrices Y = (y+, y−) ∈ Ek and Z = (z+, z−) ∈ E−k such that

W = λY + (1 − λ)Z and |y+ − z+| = |y− − z−|
Substituting y− = ky+, z− = −kz+, w− = µw+ and writing t = (1 − 2λ) a
calculation gives that W ∈ Elc,1

{k,−k} if and only if

|µ + kt | = k|k + tµ|
for some t ∈ [−1, 1].

Let p(t) = |µ + kt |2 − k2|k + tµ|2. Then p(t) is a quadratic polynomial in t ,
with leading term k2(1 − |µ|2)t2, and moreover X ∈ Elc,1 if and only if p(t) has a
root in the interval [−1, 1]. Notice that

p(1) = (1 − k2)|µ + k|2 ≥ 0, p(−1) = (1 − k2)|µ − k|2 ≥ 0.

Therefore if p is concave it has no roots in [−1, 1]. So we may assume |µ| < 1
and then if p has a root in [−1, 1], the minimum of p also lies in [−1, 1]. The
discriminant of p is:

D = 4k2
{

(1 − k2)2(�µ)2 − (1 − |µ|2)(|µ|2 − k4)
}

and the minimum is at

t0 = − (1 − k2)�µ

k(1 − |µ|2) .
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Suppose D ≥ 0. Then if |µ| > k,

t2
0 = (1 − k2)2(�µ)2

k2(1 − |µ|2)2
≥ |µ|2 − k4

k2(1 − |µ|2) > 1

whereas if D ≥ 0 and |µ| ≤ k, then

|t0| = (1 − k2)|�µ|
k(1 − |µ|2) ≤ (1 − k2)

(1 − |µ|2) ≤ 1.

We have shown that p has a root in [−1, 1] if and only if D ≥ 0 and |µ| ≤ k. In
turn, these inequalities are a precise description of 
k .

Remark 3.6. Lemma 3.5 implies that for each A ∈ U there are rank-one connected
B, C ∈ E{k,−k} such that A ∈ [B, C] ⊂ U . Later we will need the further informa-
tion that in case A lies in the interior, i.e. A ∈ U , then (except for the endpoints)
the whole interval (B, C) ⊂ U .

Namely, consider the half-interval (B, A], and for t ∈ (0, 1) let

W = t A + (1 − t)B.

We claim that W ∈ U . A simple continuity argument shows that for any ε > 0
there exists δ > 0 so that for any W̃ with |W − W̃ | < δ there exists B̃ ∈ Ek with
|B − B̃| < ε and such that det(B̃ − W̃ ) = 0. Let

Ã = 1

t
(W̃ − (1 − t)B̃),

so that W̃ = t Ã + (1 − t)B̃ and

|A − Ã| ≤ 1

t
(|W − W̃ | + ε).

This last inequality implies that for sufficiently small ε > 0 and for W̃ sufficiently
close to W we have that Ã ∈ U . But as det( Ã− B̃) = 0 and U is lamination convex,
we deduce that W̃ ∈ U for all W̃ sufficiently close to W . This implies that W ∈ U .

3.1.1. Points of continuity of ∇
Next we collect the functional analytic facts needed in the sequel.

Lemma 3.7. The space (X, w) is compact and metrizable, and for any f ∈ X we
have ∇ f (x) ∈ U a.e. in �. In particular f is K -quasiconformal with f = I d
on ∂�. The metric d on X is equivalent to the metrics induced by the L∞ and L2

norms on X. Furthermore, the set of continuity points of the map ∇ : (X, w) →
L2(�, R2×2) is residual in (X, w).
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Proof. The key fact behind our argument is that we are dealing with elliptic equa-
tions, in particular with quasiregular mappings. Let X0 be as in Definition 3.4. To
prove that its weak closure (X, w) is metrizable we need to show that X0 is bounded
in W 1,2.

There is no loss of generality in assuming that � ⊂ B(0, 1
2 ). Therefore for f ∈

X0 the Lipschitz mapping f̃ = f χ� + xχB(0,1)\� is a well defined K -quasiregular
mapping (actually K -quasiconformal) by the definition of U . Thus, � f̃ = u is a
weak solution to

div (σ (x)∇u(x)) = 0 in B(0, 1),

where σ is a measurable matrix function satisfying (1.1). This is seen similarly
as in the proof of Lemma 3.2; for details see e.g. [2]. Testing the equation with
v(x) = u(x) − x1 yields the estimate∫

B(0,1)

|∇u|2 ≤ C(K ),

and using the same argument for �( f̃ ) we obtain that∫
B(0,1)

|∇ f̃ |2 ≤ C(K ). (3.8)

Finally, the Sobolev embedding theorem (or alternatively, the maximum principle)
yields the required bound,

‖ f ‖W 1,2(�) ≤ C(K ) (3.9)

for f in X0. By the weak lower semicontinuity of the W 1,2 norm we have the same
bound for f in X .

The estimates show that in the weak topology induced by W 1,2, the space
(X, w) is metrizable with metric d = dX . By the compactness of the Sobolev
embedding, (X, w) embeds continuously in L2(�). Since (X, w) itself is compact,
the embedding is an homeomorphism between (X, ‖‖L2) and (X, w).

Next, X0 is a bounded family of K -quasiconformal mappings, and as such
sets are normal, also all f ∈ X are K -quasiconformal. We may hence use proper-
ties of these maps. For instance, the weak convergence in W 1,2 and uniform con-
vergence are equivalent notions for bounded families of K -quasiconformal maps,
hence (X, w) is homeomorphic to (X, ‖‖L∞). As a second example, by the higher
integrability of quasiregular mappings [1] we have that for f ∈ X∫

|∇ f |p ≤ C(K , p) (3.10)

for every 2 < p < 2K
K−1 .

To prove that ∇ f (x) ∈ U a.e. for any f ∈ X we will use the weak continuity
of F �→ det F in W 1,p for p > 2 [10].
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Given f ∈ X we have a sequence { fn} ⊂ X0 with fn ⇀ f in W 1,2(�). Then
also fn ⇀ f in W 1,p(�) for some p > 2 by (3.10). Thus, det(∇ fn) ⇀ det(∇ f )

in L
p
2 . Using Mazur’s Lemma there exists 0 ≤ λ

j
n ≤ 1 with

∑
j λ

j
n = 1 such that

as n → ∞, ∑
j

λ
j
n(∇ f j (x), det(∇ f j (x))) → (∇ f (x), det(∇ f (x)) a.e.

For almost every x the convex combinations define a sequence of probability mea-
sures

νn
x =

∑
j

λ
j
nδ∇ f j (x) ∈ M(R2×2)

converging to probability measures νx supported in E{k,−k} such that

∇ f (x) =
∫

E{k,−k}
Adνx (A), and det(∇ f (x)) =

∫
E{k,−k}

det(A)dνx (A).

According to the definition in Section 2 this means that for almost every x , ∇ f (x) ∈
U pc for any f ∈ X , and U pc = U by Lemma 3.5. The measure νx is the gradient
Young measure generated by the sequence { fn} and in fact the above reasoning is a
typical application of Young measure theory, see for example [28].

We now turn to the category concepts. For a reference see [21] or [31]. We de-

fine (
h)i j (x) = f i (x+he j )− f i (x)

h to be matrix of differential quotients of f (recall
that we have extended functions in X by the identity outside � so that 
h f (x) is
defined a.e. in �). For all Sobolev functions f ∈ W 1,2 we have that

lim
h→∞ ‖∇ f − 
h( f )‖L2(�,R2×2) = 0.

On the other hand, each 
h is a continuous operator from L2(�,R2)→L2(�,R2×2).
Since (X, w) is homeomorphic to (X, ‖‖L2) it follows that 
h is continuous as a
map from (X, w) → L2(�, R2×2). Therefore ∇ : (X, w) → L2(�, R2×2) is a
pointwise limit of continuous mappings. This is the definition of a Baire-1 mapping,
also called a function of first Baire class. It is part of Baire’s theorem that the
points of continuity of such functions form a residual set in (X, w) (See [21, page
53], [31, Theorem 7.3].)

Lemma 3.8. The set of points of continuity in (X, d) of ∇ satisfy ∇ f (x) ∈ E{k,−k}
almost everywhere.

The proof is exactly as in [21, Proposition 3.17]. Here we reproduce the argu-
ment for the reader’s convenience. The main point is that if f is piecewise affine
with an affine piece A ∈ U \ E{k,−k}, then (since U = Elc,1

{k,−k}) there exists a rank-

one segment through A in U of length proportional to the dist (A, E{k,−k}). This
permits us, with the help of Lemma 2.1, to produce a perturbation of f showing
that it cannot be a point of continuity.
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Proof. Suppose for a contradiction that the set
{

x ∈ � : ∇ f (x) ∈ U \ E{k,−k}
}

has

positive measure, where f ∈ X is a point of continuity of ∇. Then by Lusin’s
theorem there exists a compact �0 ⊂ � (with |�0| = m > 0) such that ∇ f is
continuous on �0 and ∇ f (�0) ∩ E{k,−k} = ∅. Since ∇ f (�0) is compact,

ε = 1

2
dist (∇ f (�0), E{k,−k}) > 0. (3.11)

Let
V = Nε (∇ f (�0)) ∩ U

be the ε−neighborhood of ∇ f (�0) in U . Since U = Elc,1
{k,−k}, to any A ∈ V

there exists a rank-one segment connecting Ek to E−k and containing A. In fact,
as dist (A, E{k,−k}) ≥ ε by (3.11), there exists a rank-one matrix CA ∈ R2×2 with
|CA| ≥ ε such that

[A − CA, A + CA] ⊂ U . (3.12)

Moreover, according to Remark 3.6 we have

A ∈ U ⇒ [A − CA, A + CA] ⊂ U . (3.13)

Lastly, since f is a point of continuity of ∇ : (X, w) → L2(�, R2×2), there exists
δ > 0 such that

‖∇g − ∇ f ‖L2 <
1

8
ε
√

m whenever dX (g, f ) < δ and g ∈ X. (3.14)

We now show that (3.12) - (3.14) give the desired contradiction. For this, take a se-
quence of piecewise affine functions X0 � fn → f in (X, d). Since f is a point of
continuity of ∇, we have ∇ fn → ∇ f in measure, i.e. | {x : |∇ fn(x) − ∇ f (x)| > ε} | ≤
ε−2‖∇ fn − ∇ f ‖2

L2 → 0 as d( fn, f ) → 0. Therefore there exists n and �1 ⊂ �0

with |�1| > m
2 so that

d( fn, f ) <
δ

2
, ‖∇ fn − ∇ f ‖L2 <

1

8
ε
√

m and ∇ fn(�1) ⊂ V ∩ U .

Furthermore, as � is covered up to measure zero by open sets on which fn is affine,
there exists finite number of disjoint open sets Gi ⊂ � such that fn(x) = Ai x + ai
for x ∈ Gi ,

[Ai − Ci , Ai + Ci ] ⊂ U
for some rank-one matrix Ci with |Ci | > ε and | ⋃ Gi | > m

2 .
Next note that by Lemma 3.7 there is no loss of generality in replacing d by the

sup-norm ‖‖L∞ on X . For each i , Lemma 2.1 (with A = Ci , B = −Ci ) supplies a
piecewise affine function φi ∈ W 1,∞

0 (Gi , Rm) such that ‖φi‖∞ < δ
2 and

dist (∇φi (x), {±Ci }) < min
{ε

2
, dist ({Ai ± Ci } , ∂U)

}
(3.15)
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Let g = fn + ∑
χGi φi . Then by (3.15), ∇g(x) ∈ U i.e. g ∈ X0, and

d(g, f ) ≤ d(g, fn) + d( fn, f ) <
δ

2
+ δ

2
= δ.

On the other hand, using Cauchy-Schwarz and (3.15)

∫
⋃

Gi

∣∣∇g − ∇ fn
∣∣2 ≥ 1

| ⋃ Gi |
(∑

i

∫
Gi

|∇φi |
)2

>
ε2

4

∣∣ ⋃ Gi
∣∣ >

ε2m

8
.

Hence

‖∇g − ∇ f ‖L2 ≥ ‖∇g − ∇ fn‖L2 − ‖∇ fn − ∇ f ‖L2 >
1

8
ε
√

m,

which is in contradiction with (3.14).

Corollary 3.9. The set of mappings f in X such that ∇ f (x) ∈ E{k,−k} is residual.

3.1.2. Staircase laminates and integrability

We will complete the argument for Theorem 1.2 by producing a sequence of lam-
inates supported in U such that their 2K

K−1 -moment diverges. We use the staircase
construction introduced in [15].

Proposition 3.10. Every A ∈ U is the center of mass of a sequence of laminates of
finite order νn ∈ L supported in U such that

lim
n→∞

∫
R2×2

|λ| 2K
K−1 dνn = ∞ (3.16)

E0

E   k

Ek

E

−

∞

Figure 3.2. The strong staircase: the black dots are the support of the measure νn and
the cross is it’s barycenter νn . The shaded area is the set of diagonal matrices in U .
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Proof. For the case where A = I , the identity matrix, the result was shown by
the second author in [15]. The idea was to construct so called staircase laminates,
laminate measures νn satisfying (3.16) and supported in E{k,−k} ∩ D, where D
denotes diagonal matrices (see Figure 3.2).

For later purposes we sketch the construction of these measures. Set in confor-
mal coordinates

Ck = 1

1 + k
(1, k), C−k = 1

1 + k
(1, −k), Pn =

(
n + 1

2
,

1

2

)
,

and let

λn
1 = 1 + k

2kn + 1 + k
, λn

2 = (1 + k)

2k(n + 1)
. (3.17)

Since in conformal coordinates I = (1, 0), we have

nI = λn
1nC−k + (1 − λn

1)Pn,

Pn = λn
2(n + 1)Ck + (1 − λn

2)(n + 1)I,

and moreover that the pairs nC−k , Pn and (n + 1)Ck , (n + 1)I , respectively, are
rank-one connected. Thus,

νnI =
(
λn

1δnC−k + (1 − λn
1)

(
λn

2δ(n+1)Ck + (1 − λn
2)δ(n+1)I

))
(3.18)

is a laminate.
Now we set ν1 = ν1I . It contains a term (1 − λ1

1)(1 − λ1
2)δ2I . The laminate

ν2 is obtained by replacing δ2I by ν2I . In general, νn contains a term �n
i=1(1 −

λi
1)(1 − λi

2)δ(n+1)I and νn+1 is obtained from it by replacing δnI by νnI . By taking
logarithms, it follows from (3.17) that

�n
i=1(1 − λi

1)(1 − λi
2) ≈ n

−2K
K−1 .

Then (3.16) follows.
The measures νn are supported in E{k,−k} ⊂ ∂U . We shift them to obtain

measures supported in the interior of U . Declare, ν̃n(·) = νn(·+(1, 0)). As spt ν̃n ⊂
U ∩ D we have the claim for A = (2, 0). Next, for matrices Q ∈ E0 the claim
follows from the conformal invariance of U , replacing the laminates ν̃ = ∑

λ jδA j

by Q#ν̃ = ∑
λ jδA j Q .

Finally, for A ∈ U\E0 we use the fact thatU is a lamination convex, cf. Lemma
3.5. We claim that for every A ∈ U there is a rank-one segment [P, Q], contained
in U and with one end point Q ∈ E0, such that A = λP + (1 −λ)Q and λ ∈ [0, 1).
Indeed, writing A = (a+, a−) in conformal coordinates, let Q = (a+−a−, 0) ∈ E0.
Clearly rank(A − Q) ≤ 1, since A − Q = (a−, a−). Because U is lamination
convex and contains E0, it also contains the whole segment [A, Q]. Furthermore,
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as U is open, A is interior point for an extended segment [P, Q] ∈ U . The required
laminates can then be defined as

ν̃n = λδP + (1 − λ)Q#νn,

where νn are the laminates with barycenter I constructed above.

Proposition 3.11. For every ball B = B(x0, r0) ⊂ � the set

X B,M =
{

f ∈ X :
∫

B
|∇ f | 2K

K−1 ≤ M

}

is closed and has no interior in X.

Proof. By lower-semicontinuity of the Dirichlet norms X B,M is closed in the weak
topology of W 1,2(�).

Suppose for a contradiction that X B,M has nonempty interior for some B and
M . Then there exists f ∈ X0 ∩ X B,M and ε > 0 such that∫

B
|∇g| 2K

K−1 ≤ M

whenever g ∈ X with d(g, f ) < ε.
Take any subdomain �0 ⊂ B where f is affine, say f (x) = Ax with A ∈ U .

By Proposition 3.10 there exists a laminate ν ∈ L with barycenter ν = A such that∫
R2×2 |λ| 2K

K−1 dν > 2M . Let φ j be the corresponding mapping obtained by applying
Proposition 2.3 to ν, �0 and ε = δ = 1

j with j large enough. By property (iii) of
the proposition it holds that∫

�0

|∇φ j | 2K
K−1 ≥

∫
R2×2

|λ| 2K
K−1 dν − (

1

j
)

2K
K−1 ≥ M.

Combining this together with property (iv) we deduce that f j = f +χ�0(φ j − A) ∈
X\X B,M . However by property (ii) ‖ f j − f ‖∞ ≤ 1

j and hence lim j→∞ d( f j , f ) =
0. This is a contradiction.

Corollary 3.12. The set of points in X such that
∫

B |∇ f | 2K
K−1 < ∞ for some ball

B = B(x0, r) ⊂ � is of first category in (X, d).

Proof. This follows since{
f ∈ X :

∫
B

|∇ f | 2K
K−1 < ∞ for some B = B(x0, r)

}
=

∞⋃
M=1

∞⋃
i=1

X Bi ,M

where Bi is an enumeration of balls in � with rational centers and radii. There-
fore since each X Bi ,M is of first category, the (countable) union is also of first
category.
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Combining Corollaries 3.9 and 3.12 yields the following result, proving Theo-
rem 1.2.

Theorem 3.13. Let K > 1 and k = K−1
K+1 . For any bounded open set � ⊂ R2 there

exists a mapping f ∈ W 1,2(�; R2) with the following properties:

(i) f (x) = x on ∂�,
(ii) ∇ f (x) ∈ E{k,−k} a.e. in �,

(iii) for any ball B ⊂ � we have
∫

B |∇ f (x)| 2K
K−1 dx = ∞.

3.2. Lower critical exponents

In the following J = (0, 1) in conformal coordinates, i.e.

J

(
x1
x2

)
=

(
x1

−x2

)
,

is the complex conjugation. This subsection consists essentially of two parts. First
we deal with the geometry of E{k,−k}, in particular we show that any matrix A lies
on a rank-one connection between E{k,−k} and E∞ whose length is proportional to
|A|. Then we define the staircase laminates in Lemma 3.16. However, in contrast
with the case of the upper exponent, we have no apriori bounds on the gradient, and
so it becomes crucial to know precisely where the gradients of the approximating
sequence lie.

In the second part we proceed with convex integration. The setting is quite
general once the specific geometric properties have been established. In Proposi-
tion 3.17 we show the existence of piecewise affine maps f with the desired inte-
grability property given by (3.33), which solve the inclusion up to a small L∞ error.
Moreover, the size of the error can be made to depend on |∇ f |. Then in Theorem
3.18 we show that the L∞ error can be successively removed.

The general scheme of passing from approximate solutions to exact solutions
is to define an approximating sequence of piecewise affine maps whose gradients
lie in smaller and smaller neighborhoods of the set E{k,−k}. Following Gromov’s
original terminology such neighboring sets are called in-approximations. In our
case the in-approximations are the sets

On =
{

A ∈ R
2×2 : dist (A, E{k,−k}) < 2−n min(1, |A|−k)

}
,

so that the approximating sequence satisfies ∇ fn ∈ On . Because fn is piecewise
affine, we can modify it locally (on affine pieces) to obtain fn+1. The main estimate
is in (3.53). It guarantees that the limit mapping lies in the weak Lebesgue space
LqK

w , where qK = 2K
K+1 is the lower critical exponent.

Having made the size of the error depend on the size of the gradient gives us
a very general method to solve differential inclusions in the L p setting, applicable
also in higher dimensions, see [17]. For the specific case, when the critical exponent
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satisfies qK < 2, some simplifications could have been made. However we have
preferred to present here the general method.

We begin with two simple lemmas regarding the geometry of rank-one lines in
R2×2:

Lemma 3.14. Let A, B ∈ R2×2 with det B �= 0 such that det(A − B) = 0. Then

|B| ≤ √
2K (B)|A|,

where K (B) is the distortion of B introduced in (2.4). In particular, if A ∈ R2×2

and Q ∈ Ek such that det(A − Q) = 0, we have

dist (A, Ek) ≤ |A − Q| ≤ (1 + √
2K )dist (A, Ek).

Proof. We work in conformal coordinates, writing

A = (a+, a−), B = (b+, b−).

First we assume that det B > 0. From (2.2) we see that in this case there exists
µ ∈ C with |µ| < 1 so that

b− = µb+.

From (2.4) we obtain |µ| = K (B)−1
K (B)+1 .

Since det(A − B) = 0, one has

|b+ − a+| = |µb+ − a−| .
Consequently,

|b+| − |a+| ≤ |µ| |b+| + |a−|, i.e. |b+| ≤ |a+| + |a−|
1 − |µ| .

Hence, using (2.2)

|B|2 = 2(1 + |µ|2)|b+|2 ≤ 2
1 + |µ|2

(1 − |µ|)2 (|a+| + |a−|)2 ≤ 2
(1 + |µ|)2

(1 − |µ|)2
|A|2

= 2K (B)2|A|2.
In case det B < 0 we use matrices AJ and B J in the above computation, and arrive
at the same conclusion.

Lastly, let A ∈ R2×2 and Q ∈ Ek , and let Q0 ∈ Ek such that dist (A, Ek) =
|A − Q0|. Then, applying the first part of the lemma with A − Q0 and Q − Q0 we
obtain that

|Q − Q0| ≤ √
2K |A − Q0|.

Hence
|A − Q| ≤ |A − Q0| + |Q − Q0| ≤ (1 + √

2K )|A − Q0|
= (1 + √

2K )dist (A, Ek).
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Lemma 3.15. Let K > 1 and k = K−1
K+1 . Then every A ∈ R2×2 \ {0} lies on

a rank-one segment connecting E∞ and Ek. To be precise, there exist matrices
P ∈ E∞ \ {0} and Q ∈ Ek \ {0} with det(P − Q) = 0 such that A ∈ [P, Q].
Moreover,

1

cK
|A| ≤ |P − Q|, |P|, |Q| ≤ cK |A|, (3.19)

where cK > 1 depends only on K . The same holds if we replace Ek with E−k .

Proof. It suffices to prove the lemma for Ek . Suppose in conformal coordinates
A = (a, b). Then for every t ∈ R \ {0},

A = (a, ka) + 1

t
(0, tb − tka) = P + 1

t
Qt

where P ∈ Ek and Qt ∈ E∞. Here P, Qt are rank-one connected if and only if
|a| = |ka + t (ka − b)|. By elementary geometry, there is precisely one positive
t = t0 > 0 for which this happens.

Note that s := 1 + 1/t > 1. Hence we may write

A = 1

s
(s P) + 1

ts
(s Qt ),

where clearly s P ∈ Ek, s Qt ∈ E∞ are rank-one connected; also s−1 + (ts)−1 = 1.
Concerning the estimates in (3.19), first of all observe that

dist (A, E∞) + dist (A, Ek) ≤ |A − P| + |A − Q| = |P − Q|.
Since E∞ and Ek are linearly independent, we obtain,

1

cK
|A| ≤ |P − Q|.

Moreover, from Lemma 3.14 we have

|P| ≤ cK |A|, |Q| ≤ cK |A|, |Q| ≤ cK |P|, and |P| ≤ cK |Q|,
hence from the triangle inequality

|P − Q| ≤ |P| + |Q| ≤ (1 + cK ) min(|P|, |Q|),
from which the remaining inequalities in (3.19) follow.

With the next lemma, we construct one step in our staircase laminate. The
steps of the staircase are the sets

Sn = n J SO(2) =
{
(0, neiθ ) : θ ∈ [0, 2π ]

}
. (3.20)

The measures are more complicated than in the case of upper exponent (3.18) since
we want the center of mass to be any matrix in a neighborhood of Sn .
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Lemma 3.16. Let 0 < r < 1
2 . Then there exists a constant cK such that for each

n ∈ N and A ∈ R2×2 with
dist (A,Sn) < r (3.21)

there exists a laminate νA of third order with the following properties:

• ν A = A,
• spt νA ⊂ E{k,−k} ∪ Sn+1,

• spt νA ⊂
{
ξ ∈ R2×2 : c−1

K n < |ξ | < cK n
}

.

Moreover, it holds that(
1 − cK

r

n

)
βn ≤ νA (Sn+1) ≤

(
1 + cK

r

n

)
βn+2, (3.22)

where

βn = 1 − 1 + k

n
. (3.23)

E   k−

E0

Ek

 ~ 

 ~  ~ 
R

 ~ 
R

 ~ 
(n + 1) C −kR

A

E ∞ 

C kt

P
P

 (n+ 1) JR

Figure 3.3. One weak step towards infinity.

Proof. Using Lemma 3.15 there exists P ∈ E∞ and Q ∈ Ek with rank(P − Q) = 1
such that A = λ1 P + (1 − λ1)Q for some λ1 ∈ [0, 1] and so that (3.19) holds.
By assumption (3.21) there exists a matrix R ∈ SO(2) such that |A − n J R| <

r . Lemma 3.14, applied to A − n J R and P − n J R, together with the fact that
P − n J R ∈ E∞, yields

|P − n J R| <
√

2r. (3.24)



28 KARI ASTALA, DANIEL FARACO AND LÁSZLÓ SZÉKELYHIDI JR.

Hence |P − A| < 3r , and furthermore |P − Q| > n
cK

by (3.19). But then

λ1 = |A − Q|
|P − Q| ≥ 1 − |P − A|

|P − Q| ≥ 1 − cK
r

n
. (3.25)

Now J P is conformal, so that J P = t R̃ for some t > 0 and R̃ ∈ SO(2). Thus
P = t J R̃, and so (3.24) gives

n|J R| − √
2r < t |J R̃| < n|J R| + √

2r.

Therefore, (since |J R| = |J R̃| = √
2)

|t − n| < r. (3.26)

Define the matrices

Ck = 1

1 + k
(1, k), C−k = 1

1 + k
(−1, k) (3.27)

in conformal coordinates. Note that C±k ∈ E±k and det(J − C±k) = 0. Let

P̃ =
(

−1 − (t − n)

2
, n + 1 + (t − n)

2

)
.

By direct calculation

t J = λ2tCk + (1 − λ2)P̃,

P̃ = λ3(n + 1)C−k + (1 − λ3)(n + 1)J,

where

λ2 = 1 + k − (t − n)(1 + k)

2n + 1 + k + (t − n)(1 − k)
, (3.28)

λ3 = (1 − t + n)(1 + k)

2(n + 1)
. (3.29)

Moreover det(tCk − P̃) = 0. Therefore according to Definition 2.2

νA =λ1

(
λ2δtCk R̃ + (1 − λ2)

(
λ3δ(n+1)C−k R̃ + (1 − λ3)δ(n+1)J R̃

))

+ (1 − λ1)δQ

is a laminate with barycenter A and

νA

({
(n + 1)J R̃

})
= λ1(1 − λ2)(1 − λ3). (3.30)
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Note that from Lemma 3.14 we get c−1
K n < |Q| < cK n, hence

spt νA ⊂
{
ξ ∈ R

2×2 : c−1
K n < |ξ | < cK n

}
.

It remains to obtain the estimate (3.22).2 By direct calculation we find

(1 − λ2)(1 − λ3) = n + (t − n)

n + 1

2n + 1 − k + (t − n)(1 + k)

2n + 1 + k + (t − n)(1 − k)
. (3.31)

Recall that (t − n) is bounded in (3.26) by r < 1, which we treat as a small param-
eter. First we bound (3.31) from above:

(1 − λ2)(1 − λ3) =
(

1 + t − n

n

)
n

n + 1

(
1 − 2k(1 − (t − n))

2n + 1 + k + (t − n)(1 − k)

)

≤
(

1 + r

n

) (
1 − 1

n + 1

) (
1 − k

n + 1
+ k

r

n + 1

)

≤
(

1 + cK
r

n

) (
1 − 1

n + 1

) (
1 − k

n + 1

)
,

where cK is a constant so that

k
r

n + 1

(
1 + r

n

)
≤ (cK − 1)

r

n

(
1 − k

n + 1

)
.

Moreover(
1 − 1

n + 1

) (
1 − k

n + 1

)
= 1 − 1 + k

n + 1
+ k

(n + 1)2
≤ 1 − 1 + k

n + 2
,

hence we deduce

(1 − λ2)(1 − λ3) ≤
(

1 + cK
r

n

) (
1 − 1 + k

n + 2

)
.

The bound from below is very similar:

(1 − λ2)(1 − λ3) ≥
(

1 − r

n

) (
1 − 1

n + 1

) (
1 − k

n
− k

r

n

)

≥
(

1 − cK
r

n

) (
1 − 1

n + 1

) (
1 − k

n

)

≥
(

1 − cK
r

n

) (
1 − 1 + k

n

)
.

2 In fact from (3.26) we have that λ2 = 1+k
2n + r O( 1

n ) and λ3 = 1+k
2n + r O( 1

n ), and the correct
asymptotics for νA

(
Sn+1

)
can be deduced from this and (3.25). Nevertheless we give the precise

calculation to obtain the estimate for all n ∈ N and all 0 < r < 1/2.
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Combining with (3.25) we finally obtain(
1 − cK

r

n

)
βn ≤ νA

({
(n + 1)J R̃

})
≤

(
1 + cK

r

n

)
βn+2.

Iterating Lemma 3.16 would yield the analogue of Proposition 3.10. Instead of
doing this, however, it seems more convenient to construct directly approximate
solutions to the differential inclusion ∇ f (x) ∈ E{k,−k} whose gradient distributions
behave like the staircase laminate (see (3.33) below). It is important to note that the
mapping we obtain is piecewise affine.

Proposition 3.17. Let K > 1 and k = K−1
K+1 . Let α ∈ (0, 1), δ > 0 and τ :

[0, ∞) → (0, 1] a continuous, non-increasing function with∫ ∞

1

τ(t)

t
dt < ∞. (3.32)

Then, there exists δ0 > 0 depending on τ and K such that for any bounded open
set � ⊂ R2 and any nonzero matrix F with dist (F, E∞) < δ0|F | there exists
a piecewise affine mapping f ∈ W 1,1(�; R2) ∩ Cα(�; R2) with the following
properties:

(i) f (x) = Fx on ∂�,

(ii) [ f − F]Cα(�) < δ,

(iii) dist
(∇ f (x), E{k,−k}

)
< τ (|∇ f (x)|) a.e. in �,

and there exists a constant cK ,τ > 1 so that for all t > |F | we have

c−1
K ,τ |F | 2K

K+1 t−
2K

K+1 <
|{x ∈ � : |∇ f (x)| > t}|

|�| < cK ,τ |F | 2K
K+1 t−

2K
K+1 . (3.33)

Proof. First of all, by considering F̃ = |F |−1 F , δ̃ = |F |−1δ and

τ̃ (t) =
{

|F |−1τ(|F |t) if |F | ≥ 1,

τ (t) if |F | < 1,

we can reduce to the case
dist (F,S1) < δ0.

Indeed, if f̃ satisfies (i)-(iii) and (3.33) with F̃ , δ̃ and τ̃ , then f = |F | f̃ satisfies (i)
and (ii) with F and δ,

dist (∇ f, E{k,−k}) = |F |dist (∇ f̃ , E{k,−k})
< |F |τ̃ (|F |−1|∇ f |) ≤ τ(|∇ f |),
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and
|{x ∈ � : |∇ f (x)| > t}| =

∣∣∣{x ∈ � : |∇ f̃ (x)| > |F |−1t
}∣∣∣ .

Also, in case |F | ≥ 1, we have∫ ∞

1

τ̃ (t)

t
dt = 1

|F |
∫ ∞

|F |
τ(t)

t
dt ≤

∫ ∞

1

τ(t)

t
dt.

Furthermore if (iii) is fulfilled for some τ0 ≤ τ , then it is also fulfilled for τ . There-
fore we may assume without loss of generality that

τ(0) < 1/4 min
(

c−1
K , dist (J, E{k,−k})

)
, (3.34)

where cK is the constant from Lemma 3.16.
We define a sequence of piecewise affine mappings { fn} inductively, using re-

peatedly Proposition 2.3 and Lemma 3.16. Let f1(x) = Fx in �. For the inductive
step we assume the existence of a piecewise affine Lipschitz mapping fn : � → R2

such that

(a) fn(x) = Fx on ∂�,

(b) [ fn − F]Cα(�) < (1 − 2−n)δ,

(c) dist
(∇ fn(x), E{k,−k} ∪ Sn

)
< τ(|∇ fn(x)|) a.e. in �,

and
�n

def= {
x ∈ � : dist

(∇ fn(x), E{k,−k}
) ≥ τ(|∇ fn(x)|)}

satisfies

n−1∏
j=1

(
1 − cK

τ( j)

j

)
β j ≤ |�n|

|�| ≤
n−1∏
j=1

(
1 + cK

τ( j)

j

)
β j+2. (3.35)

To show that f1 satisfies the inductive hypothesis, we now choose δ0 appropriately.
Indeed, it suffices to ensure that dist (F,S1) < δ0 implies

dist (F,S1) < τ(|F |) and dist (F, E{k,−k}) > τ(|F |), (3.36)

since in this case (c) is satisfied, and �1 = � hence (3.35) is also satisfied. Using
the monotonicity of τ and (3.34) we see that (3.36) will follow for sufficiently small
δ0 > 0 (depending only on τ and K ).

To obtain fn+1 we modify fn on the set �n . Because fn is piecewise affine,
we have a decomposition into pairwise disjoint open subsets �n,i such that

∣∣∣�n \
∞⋃

i=1

�n,i

∣∣∣ = 0,
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and fn(x) = Ai x+bi in �n,i for some Ai with dist (Ai ,Sn) < τ(|Ai |) and bi ∈ R2.
First of all we claim that

dist (Ai ,Sn) < τ(n). (3.37)

Indeed, by assumption there exists R ∈ SO(2) such that |n J R − Ai | < τ(|Ai |) ≤
1/4. In particular |Ai | ≥ |n J R| − 1/4 = n

√
2 − 1/4 ≥ n for all n ∈ N. But then

(3.37) follows from the monotonicity of τ .
For each i we use Proposition 2.3 with the laminate νAi from Lemma 3.16 to

obtain a piecewise affine Lipschitz mapping gi : �n,i → R2 with

(d) gi (x) = Ai x + bi on ∂�n,i ,

(e) [gi − fn]Cα(�n,i ) < 2−(n+1+i)δ,

(f) c−1
K n < |∇gi (x)| < cK n a.e. in �n,i ,

(g) dist
(∇gi (x), E{k,−k} ∪ Sn

)
< τ(cK n) a.e. in �n,i ,

and (
1 − cK

τ(n)

n

)
βn

≤ 1

|�n,i |
∣∣∣∣{x ∈ �n,i : dist (∇gi (x),Sn) < τ(cK n)

}∣∣∣∣
≤

(
1 + cK

τ(n)

n

)
βn+2.

(3.38)

We then define

fn+1(x) =
{

fn(x) if x ∈ � \ ⋃∞
i=1 �n,i

gi (x) if x ∈ �n,i

It is clear that fn+1(x) = Fx on ∂�, and from (e) we get [ fn+1 − fn]Cα(�) <

2−(n+1)δ, hence (b) follows. Because τ is non increasing, (c) follows from (f) and
(g). Finally (3.35) follows from (3.38).

Observe that on �\�n we have that ∇ fn+1 = ∇ fn almost everywhere. There-
fore �n+1 ⊂ �n , so that the sequence { fn} is obtained by modification on a nested
sequence of open sets �n whose measure satisfies

|�|
n−1∏
j=1

(
1 − cK

τ( j)

j

)
β j ≤ |�n| ≤ |�|

n−1∏
j=1

(
1 + cK

τ( j)

j

)
β j+2.

By the condition (3.32) on τ and since τ(1) < 1/2c−1
K , the products

∞∏
j=1

(
1 − cK

τ( j)

j

)
= c1, and

∞∏
j=1

(
1 + cK

τ( j)

j

)
= c2
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are finite and nonzero: 0 < c1 < c2 < ∞. For the factor
∏n

j=1 β j we take

logarithms, recalling that k + 1 = 2K
K+1 , to obtain that

∣∣∣∣∣log

(
n∏

j=1

β j

)
+ 2K

K + 1
log n

∣∣∣∣∣ < c. (3.39)

Therefore there exists a constant cτ,K > 1, depending only on K and on
∫ ∞

1
τ(t)

t dt ,
such that

1

cτ,K
n− 2K

K+1 ≤ |�n| ≤ cτ,K n− 2K
K+1 , (3.40)

and in particular |�n| → 0 as n → ∞. Therefore the limit f (x) = limn→∞ fn(x)

exists pointwise almost everywhere and f is piecewise affine. Moreover, it satisfies
(i)-(iii) by our construction.

Finally, the distribution function of ∇ f can be estimated as follows. Using (f),
for n ∈ N we have

|∇ f (x)| >
n

cK
in �n, and |∇ f (x)| < cK n in � \ �n.

For given t > cK let n1 be the integer part of cK t and n2 the integer part of c−1
K t .

Then
�n1+1 ⊂ {x ∈ � : |∇ f (x)| > t} ⊂ �n2,

and therefore (3.33) follows from (3.40). Lastly, (3.33) implies that ∇ fn is uni-
formly bounded in L1, hence f ∈ W 1,1 by dominated convergence.

Concerning the constant cK ,τ in (3.33) we remark that, as the proof shows, it de-
pends monotonically on τ , in other words if τ1 ≤ τ2 then cK ,τ1 ≤ cK ,τ2 .

Using Proposition 3.17 we can now construct a sequence of approximate solu-
tions to the differential inclusion that converge to a real solution.

Theorem 3.18. Let K > 1, k = K−1
K+1 and let F be any 2 × 2 matrix. For any

α ∈ (0, 1), δ > 0 and for any bounded open set � ⊂ R2 there exists a mapping
f ∈ W 1,1(�; R2) ∩ Cα(�; R2) with the following properties:

(i) f (x) = Fx on ∂�,

(ii) [ f − F]Cα(�) < δ,

(iii) ∇ f (x) ∈ E{k,−k} a.e. in �,

(iv) for any ball B ⊂ � there exists a constant cB > 1 such that

1

cB
t−

2K
K+1 < |{x ∈ B : |∇ f (x)| > t}| < cBt−

2K
K+1 (3.41)

for all t ≥ 1.
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In particular f ∈ W 1,q(�) for all q < 2K
K+1 , but for any ball B ⊂ � we have∫

B |∇ f (x)| 2K
K+1 dx = ∞.

Proof. The proof is similar to the proof of Proposition 3.17 in that we construct a
sequence of piecewise affine mappings converging to a solution by modifying affine
pieces. An important difference is that at each step we modify our sequence almost
everywhere in the domain � in order to obtain (3.41) in every ball. Therefore it
becomes crucial to control the L1-norm of the difference ∇ fn+1 − ∇ fn . Let

τ(t) = min(1, t−k).

After multiplication with a constant if necessary, we may assume without loss of
generality that |F | < 1.

Let f0(x) = Fx . Our plan is to construct a sequence of piecewise affine
mappings fn ∈ W 1,1(�) ∩ Cα(�) such that

• fn(x) = Fx on ∂�,

• [ fn+1 − fn]Cα(�) < 2−(n+1)δ,

• ‖∇ fn+1 − ∇ fn‖L1(�) < cK 2−n ,

• dist (∇ fn(x), E{k,−k}) < 2−nτ(|∇ fn(x)|) a.e. x ∈ �.

For such a sequence the limit f will exist in W 1,1(�) ∩ Cα(�), and will hence
satisfy (i),(ii) and (iii) in the theorem. The main emphasis will be on obtaining
(3.41).

To obtain fn+1 from fn , decompose � into a union of pairwise disjoint open
sets of diameter no more than 1

n with∣∣∣� \
⋃

i

�n
i

∣∣∣ = 0,

so that fn is affine in each �n
i , with ∇ fn = An

i . In each �n
i we replace fn with

a new mapping having the same affine boundary values on ∂�n
i . The induction

hypothesis here is that An
i ∈ On , where

On =
{

A ∈ R
2×2 : dist (A, E{k,−k}) < 2−nτ(|A|)

}
.

Step 1. In order to keep the notation simple, we first show how to construct the new
mapping with linear boundary values given by some A ∈ R2×2 which satisfies the
induction hypothesis:

Claim: Let A ∈ On for some n ∈ N, i.e.

dist (A, Ek) < 2−nτ(|A|).
For any open subset ω ⊂ � and any η > 0 there exists a piecewise affine mapping
h ∈ W 1,1(�) ∩ Cα(�) with the following properties:
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(a) h(x) = Ax on ∂ω,
(b) [h − A]Cα(ω) < η,
(c) dist (∇h(x), E{k,−k}) < 2−(n+1)τ (|∇h(x)|) a.e. x ∈ ω,
(d)

∫
ω

|∇h(x) − A| dx ≤ cK 2−n|ω|,
(e) there exists an open subset ω̃ ⊂ ω and δ̃ > 0, depending on n such that,

(e1) |∇h(x) − A| < cK 2−n a.e. x ∈ ω \ ω̃,

(e2) δ̃t−
2K

K+1 < | {x ∈ ω̃ : |∇h| > t} | < cK 2−nt−
2K

K+1 |ω| for t > 1,
(e3) if |A| ≥ cK , then |ω̃| ≤ 2−n|ω|.

Here cK > 1 is some fixed constant depending only on K .

E   k−

E0

Ek

E ∞ 

A2

P2

A

A1

Q1

Q2

P1

On+1

On

Figure 3.4. One step in the construction: first A is split using the measure µA in (3.45)
into {P1, P2, Q1, Q2}, and then P1 and P2 are replaced by the staircase constructed in
Proposition 3.17. In the figure, since A �= 0 we can take Q2 = Q0 lying in the line
between A1 and P2.

Proof of Claim: First of all there exists Q0 ∈ Ek with det(A − Q0) = 0. This
follows for example by invoking Lemma 3.15. In turn Lemma 3.14 implies that

|A − Q0| ≤ (1 + √
2K )2−nτ(|A|).

Let A1, A2 ∈ R2×2 be matrices on the line going through A and Q0 (if A = Q0,
then take any rank-one line through A) with the property that

Q0 = 1

2
A1 + 1

2
A2 and |A j − Q0| = (1 + √

2K )2−nτ(|A|) for j = 1, 2.
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Then, using Lemma 3.14 we deduce that

2−nτ(|A|) ≤ dist (A j , Ek) ≤ (1 + √
2K )2−nτ(|A|) for j = 1, 2. (3.42)

Moreover by construction

|A j − A| ≤ 2(1 + √
2K )2−nτ(|A|),

and there exists λ ∈ [0, 1] such that

A = λA1 + (1 − λ)A2.

Note also that |A1 − A2| ≤ cK 2−nτ(|A|) ≤ cK |A2| from (3.42), so that

1

cK
|A2| ≤ |A1| ≤ cK |A2|. (3.43)

Now we invoke Lemma 3.15 (notice that A1, A2 are nonzero because of (3.42)) to
find nonzero matrices Pj ∈ E∞ and Q j ∈ Ek and numbers λ j ∈ [0, 1] for j = 1, 2
such that

A j = λ j Pj + (1 − λ j )Q j ,

where
1

cK
|A j | ≤ |Pj | ≤ cK |A j |, (3.44)

and, using Lemmas 3.15 and 3.14,

λ j = |A j − Q j |
|Pj − Q j |

satisfies
1

cK

2−nτ(|A|)
|A j | ≤ λ j ≤ cK

2−nτ(|A|)
|A j | .

In summary, the measure

µA = λ
(
λ1δP1 + (1 − λ1)δQ1

) + (1 − λ)
(
λ2δP2 + (1 − λ2)δQ2

)
(3.45)

is a laminate (of second order) with barycenter µ̄A = A. Let

λA = λλ1 + (1 − λ)λ2,

so that, using (3.43),

1

cK

2−nτ(|A|)
|A1| ≤ λA ≤ cK

2−nτ(|A|)
|A1| . (3.46)
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Using the laminate µA, for any η > 0 and any open subdomain ω ⊂ � Proposition
2.3 provides a piecewise affine Lipschitz mapping g : ω → R2 with g(x) = Ax if
x ∈ ∂ω, [g − A]Cα(ω) < η/2, and for some ε > 0 to be chosen later

|{x ∈ ω : dist (∇g(x), {P1, P2}) < ε}| = λA|ω|,
|{x ∈ ω : dist (∇g(x), {Q1, Q2}) < ε}| = (1 − λA)|ω|.

Let ω̃ = {x ∈ ω : dist (∇g(x), {P1, P2}) < ε}. Since g i s piecewise affine, there
exists a decomposition of ω̃ into pairwise disjoint open subsets ω̃i , with
|ω̃ \ ⋃∞

i=1 ω̃i | = 0, such that g(x) = P̃i x + bi in ω̃i for some bi ∈ R2 and

P̃i ∈ Bε(P1) ∪ Bε(P2). (3.47)

Let τ̃ = 2−nτ and δ̃0 the corresponding parameter given by Proposition 3.17. We
choose ε small enough so that dist(P̃i , E∞) ≤ δ̃0|P̃i |. Since P1, P2 ∈ E∞ \ {0} we
can use Proposition 3.17 in each subset ω̃i . By replacing g in each subset ω̃i with
the mappings provided by Proposition 3.17 we obtain a piecewise affine mapping
h : ω → R2 such that h(x) = Ax on ∂ω, [h − A]Cα(ω) < η, and

|∇h(x) − A| < cK 2−na.e x ∈ ω \ ω̃, (3.48)

which is e1. Furthermore, since Q j ∈ Ek for j = 1, 2 we can ensure that ε is
sufficiently small so that

dist (Q, E{k,−k}) < 2−(n+1)τ (|Q|) for all Q ∈ Bε(Q1) ∪ Bε(Q2).

Combining this with Proposition 3.17 (iii) yields

dist
(∇h(x), E{k,−k}

)
< 2−(n+1)τ (|∇h|) a.e. in ω.

Moreover, (3.33) in Proposition 3.17 together with (3.43) and (3.44) leads to

1

cK
|A1| 2K

K+1 t−
2K

K+1 <
|{x ∈ ω̃ : |∇h(x)| > t}|

|ω̃| < cK |A1| 2K
K+1 t−

2K
K+1 (3.49)

for all t > |A1|. So far we have proved that h satisfies the properties (a),(b),(c) and
(e1) in the claim.

Recall that |ω̃| = λA|ω|, so that (e3) follows directly from (3.46). We now
prove that h is close to A in W 1,1 which is the key to obtain the strong convergence
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in W 1,1 of the sequence { fn}. Note that |A| ≤ cK |A1|, hence∫
ω

|∇h(x) − A|dx ≤
∫

ω̃

|∇h(x)| + |A|dx +
∫

ω\ω̃
|∇h(x) − A|dx

≤
∫ ∞

|A1|
|{x ∈ ω̃ : |∇h(x)| > t}| dt + cK |A1||ω̃| + cK 2−n|ω|

≤ cK

∫ ∞

|A1|
|A1| 2K

K+1 t−
2K

K+1 dt |ω̃| + cK |A1||ω̃| + cK 2−n|ω|

≤ 2cK |A1|λA|ω| + cK 2−n|ω|

≤ (2c2
K + cK )2−n|ω|,

where we have used (3.48), (3.49) and (3.46).
Finally, to prove (e2) we use (3.46) and that k = K−1

K+1 to deduce from (3.49)
that

|{x ∈ ω̃ : |∇h(x)| > t}| < cK |A1|kτ(|A|)2−nt−
2K

K+1 |ω|.
On the other hand by our construction we have |A1| ≤ cK max(1, |A|), therefore

|{x ∈ ω̃ : |∇h(x)| > t}| < cK 2−nt−
2K

K+1 |ω|, (3.50)

which is the upper bound in (e2). The lower bound in e2 follows directly from (3.49)
since A1 �= 0 by (3.42). In fact by combining (61) and (65) we can put δ̃ = 1

cK
2−n

if |A| ≥ 1 and δ̃ = 1
cK

2−2n otherwise, so that δ̃ only depends on n and not on A,
though this is not needed in the proof.

Step 2. By applying the above construction in each �n
i (with η = 2−(n+i+1)δ) we

construct the sequence fn such that fn(x) = Fx on ∂�,

dist (∇ fn(x), E{k,−k}) < 2−nτ(|∇ fn(x)|) a.e. x ∈ �,

and

[ fn+1 − fn]Cα(�) < 2−(n+1)δ, (3.51)∫
�

|∇ fn+1 − ∇ fn|dx < cK 2−n. (3.52)

Thus the sequence converges strongly to some limit f in W 1,1(�) and Cα(�), and
this limit satisfies f (x) = Fx on ∂�, [ f − F]Cα < δ, and ∇ f (x) ∈ E{k,−k} almost
everywhere in �. To conclude with the proof of the theorem, we need to provide
estimates from above and below for the distribution function of the gradient ∇ f .
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To get an estimate from above, let �̃n
i denote the open subset corresponding to

�n
i in (e) of the claim. For any t > 1 we have

|{x ∈ � : |∇ fn+1(x)| > t}| =
∞∑

i=1

∣∣{x ∈ �n
i : |∇ fn+1(x)| > t

}∣∣

=
∞∑

i=1

∣∣∣{x ∈ �̃n
i : |∇ fn+1(x)| > t

}∣∣∣
+

∣∣∣{x ∈ �n
i \ �̃n

i : |∇ fn+1(x)| > t
}∣∣∣ ,

which, by (e1) and (e2), is bounded by

≤ cK

∞∑
i=1

2−n
∣∣�n

i

∣∣ t−
2K

K+1 + ∣∣{x ∈ � : |∇ fn(x)| > t − cK 2−n}∣∣

≤ cK 2−n|�|t− 2K
K+1 + ∣∣{x ∈ � : |∇ fn(x)| > t − cK 2−n}∣∣ .

Since f0(x) = Fx with |F | < 1, we deduce that for any t > 2cK + 1 and any
n ∈ N

|{x ∈ � : |∇ fn(x)| > t}| ≤ cK |�|t− 2K
K+1 , (3.53)

which yields the upper bound in (3.41).
For the estimate from below, let B ⊂ � be an open ball. For large enough

n0 ∈ N there exists i such that �
n0
i ⊂ B and ∇ fn0 = An0

i with |An0
i | ≥ cK . By (e2)

of the claim there exists a constant δ̃ > 0 (depending on n0) such that

∣∣∣{x ∈ �̃
n0
i : |∇ fn0+1(x)| > t

}∣∣∣ > δ̃t−
2K

K+1 for all t > 1.

Recall that fn0+2 was obtained by applying Step 1 in each subdomain of �̃
n0
i where

fn0+1 is affine. Since
{

x ∈ �̃
n0
i : |∇ fn0+1(x)| > t

}
can be decomposed into a

union of such subdomains, (e1) and (e3) yield that

∣∣∣{x ∈ �̃
n0
i : |∇ fn0+2(x)| > t

}∣∣∣
≥ (1 − 2−n0−1)

∣∣∣{x ∈ �̃
n0
i : |∇ fn0+1(x)| > t + 2−n0−1cK

}∣∣∣
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Iterating we obtain that

|{x ∈ B : |∇ fn(x)| > t}| ≥
∣∣∣{x ∈ �̃

n0
i : |∇ fn(x)| > t

}∣∣∣
≥

n∏
j=n0+2

(1 − 2− j )

∣∣∣{x ∈ �̃
n0
i : |∇ fn0+1(x)| > t + cK

}∣∣∣

> c
∣∣∣{x ∈ �̃

n0
i : |∇ fn0+1(x)| > 2t

}∣∣∣
> cδ̃ t−

2K
K+1

(3.54)

for all t > cK , where c =∏∞
j=1(1 − 2− j ) > 0. In turn (3.41) follows from (3.53)

and (3.54) using the strong W 1,1 convergence fn → f . This concludes the proof
of the theorem.

Remark 3.19. Theorem 3.18 shows that there exist distributional solutions of equa-
tions of the form

div σ∇u = 0, with σ ∈ L∞
(

�,

{
K ,

1

K

})
,

with u ∈ Cα(�) ∩ W 1,1(�) for which

| {x ∈ B : |∇u(x)| > t} | ∼ t−
2K

K+1

for any ball B ⊂ �. By appropriate modifications (using the laminates from Propo-
sition 3.10 instead of Lemma 3.16) the same techniques can be used to show the
existence of weak solutions u ∈ W 1,2(�) with

| {x ∈ B : |∇u(x)| > t} | ∼ t−
2K

K−1

for any ball B ⊂ �. We also remark that the positive result in Theorem 1.1 in

fact holds in the stronger form that any weak solution with ∇u ∈ L
2K

K+1 (�) in fact

satisfies ∇u ∈ L
2K

K−1
weak(�) (see [1]).

Remark 3.20. In the papers [42, 43] B. Yan constructed very weak quasiregular
mappings f : � → Rn for n ≥ 3 such that ∇ f (x) satisfies that ‖∇ f ‖n = ρ det ∇ f
where ρ(x) ∈ {1, K } and f − Ax ∈ W 1,p

0 (�) for p < nK
K+1 where A is any n × n

matrix. A question raised in [42] is whether such mappings exist fulfilling the more
demanding condition

‖∇ f ‖n = K det ∇ f a.e. (3.55)

For n = 2 Theorem 3.18 answers this in positive and in fact the control on the
range of the gradient is substantially more precise than (3.55). We also remark
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that although Yan also used convex integration to obtain very weak quasiregular
mappings, he used radial stretchings as the basic building blocks (see [42, Proposi-
tion 4.2]), leading to mappings which are unbounded. In contrast our construction
yields examples in Hölder spaces. It is an interesting question what happens in
higher dimensions (see [17]).

Remark 3.21. It can be easily seen that by minor modifications Theorems 3.13 and
3.18 yield very weak solutions with the same properties to the classical Beltrami
equation. We just need to replace the definition of E
 with

{A = (a+, a−) : a− = µa+ for some µ ∈ ∆}

and observe that the geometric properties necessary for the proof, Lemmas 3.14,
3.15 and 3.16 still hold.

Remark 3.22. Very weak solutions which fail to be solutions are really false solu-
tions in the sense that they do not enjoy any of the special properties of honest weak
solutions, like openness and discreteness, unique continuation, maximum princi-
ples and so forth. The investigation of this type of pathological solutions to elliptic
equations started with the classical example by Serrin [37], see also [20] for the
concept of weak minimizer. Other types of very weak quasiregular mappings can
be found in [19, Theorem 6.5.1,Theorem 11.6.1]. It is interesting to note however,
that our mappings are Hölder continuous for any exponent 0 < α < 1. A different
type of Hölder continuous very weak quasiregular mapping has been constructed
by Jan Maly, [25], using radial functions.

Remark 3.23. We conclude the section by discussing why we were not able to use
the Baire Category argument as for the upper exponent. The Baire category argu-
ment for the upper exponent was based in finding a set U ∈ R2×2 (the quasiconvex
hull of E) which would contain the range of gradients of weak limits in W 1,2 of
exact solutions subject to fixed boundary datum. In turn, the set X of Theorem 1.2
is the set of solutions to the “relaxed problem” ∇ f ∈ U , again subject to fixed
boundary datum (cf. Definition 3.4). The crucial information was that with this def-
inition the set X is bounded in W 1,2, and therefore the weak topology is metrizable.
Therefore we could recover exact solutions as points of continuity of the gradient
in X . To repeat the argument for the lower exponent we would like to do the same
in the W 1,q topology where q < 2K

K+1 . However, as Theorem 3.18 shows, for any
F ∈ R2×2 we can find a sequence f j such that D f j (x) ∈ E{k,−k} a.e in � and D f j

converge to F weakly in W 1,q for every q < 2K
K+1 . Thus, the corresponding hull U

would be the entire R2×2, and hence X would have to be the entire W 1,q . A way
to go around this problem is to work with subsets of E{k,−k}, which still support
the appropriate staircase laminate but have smaller quasiconvex hulls (i.e associ-
ated sets U ). Unfortunately, it seems that these sets U must still contain rank-one
half-lines, which prevents us from having a bound for X in any W 1,q for q > 1.
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4. Equations in non-divergence form

We follow here basically the same lines of reasoning as in the case of isotropic
equations, since from the point of view of differential inclusions the structure of
both problems is very similar. The entire construction lies in the set of 2 by 2
symmetric matrices R2×2

sym ∼ R3. Also, note that

A(v) = a+v + a−v

is symmetric if and only if a+ ∈ R.
For a set ∆ ⊂ C ∪ {∞} we use the notation

E∆ = {
B = (b+, b−) : 2b+ = µb− + µb− for some µ ∈ ∆

} ⊂ R
2×2
sym . (4.1)

Then E0 consists of anticonformal matrices and E∞ is the space of symmetric con-
formal matrices, that is, the one dimensional real subspace spanned by the identity.
Observe that compared with the case of equations in divergence-form, the roles of
conformal and anticonformal matrices are now reversed.

We start by reinterpreting the equation as a differential inclusion. Recall that
for A, B ∈ R2×2

sym , (2.1) implies

Tr(AB) = 2�(a+b+ + a−b−) = 2a+b+ + (a−b− + a−b−). (4.2)

Lemma 4.1. Let K ≥ 1 and k = K−1
K+1 and 1 ≤ p ≤ ∞. Let � ⊂ R2 be a bounded

domain. Then u ∈ W 2,p(�, R) is a solution to

Tr
(

A(x)D2u(x)
)

= 0 in � (4.3)

for some A ∈ L∞(�, R2×2
sym ) with

A(x) ∈
{(

1√
K

0

0
√

K

)
,

( √
K 0

0 1√
K

)}
a.e. x ∈ � (4.4)

if and only if
D2u(x) ∈ E{k,−k} a.e. x ∈ �.

Proof. Suppose first A = (a+, a−), B = (b+, b−) ∈ R2×2
sym with A positive definite.

Set µA = a−/a+. Using (4.2) we may write the equation

Tr(AB) = 0 (4.5)

in conformal coordinates and obtain b+ = −�(µAb−) or, equivalently,

B ∈ E{−µA}. (4.6)

Hence u solves (4.3) for a general A(x) if and only if D2u(x) ∈ E{−µA(x)} for
almost every x ∈ �. On the other hand, (4.4) is equivalent to

µA(x) = ± K − 1

K + 1
= ±k

and this observation completes the proof.



L p THEORY OF ELLIPTIC EQUATIONS 43

E k

E   k−

Figure 4.1. The rank-one cone in R
2×2
sym , as axis the a+-axis, and the symmetric strong

staircase (cf. Figure 3.2).

4.1. Upper exponents

As in the isotropic case, also for Theorem 1.6 the first step is to define the appropri-
ate complete metric space.
Definition 4.2. Let

U =
{

A ∈ R
2×2
sym : |a+| < k|�a−|

}
,

and let X be the closure in the weak topology of W 2,2 of the set

X0 =


 u ∈ W 2,∞(�, R

2) :
• u piecewise quadratic
• D2u(x) ∈ U a.e.

• u(x) = |x |2
2 on ∂�

• ∇u(x) = x on ∂�


 .

Lemma 4.3. With the above definitions,

E
lc,1
{k,−k} = E

pc
{k,−k} = U

Proof. First we prove that E
pc
{k,−k} ⊂ U . Let

f (A) = |a+|2 − k2|�a−|2,
where �z = (z + z̄)/2 and �z = (z − z̄)/(2i). Then for all A ∈ R2×2

sym

A ∈ U if and only if f (A) ≤ 0.

Let A ∈ E
pc
{k,−k}, so that by Definition 2.4 there exists a probability measure ν with

spt ν ⊂ E{k,−k}, ν = A, and det A = ∫
det dν. Note that f can be written as3

f (A) = |a+|2 − |a−|2 + |�a−|2 + (1 − k2)|�a−|2
= det A + |�a−|2 + (1 − k2)|�a−|2,

3 In technical terms f is polyconvex, see [28].
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so that from Jensen’s inequality we get

f (A) ≤
∫

E{k,−k}
f (B) dν(B).

Since b+ = ±k�b− for every B ∈ E{k,−k} we obtain f (A) ≤ 0 and hence A ∈ U .
On the other hand U ⊂ E

lc,1
{k,−k}. To see this let A ∈ U so that a+ ∈ R and

|a+| < k|�a−|, and consider the rank-one line l(t) = (a+ + t, a− + ti). Since
�l−(t) = �a− for all t ∈ R, it is clear that there exist t1 < 0 < t2 such that
|l+(t j )| = k|�l−(t j )|, and hence l(t1), l(t2) ∈ E{k,−k}. This means that U ⊂
E

lc,1
{k,−k}.

The proof is completed by observing that ∂U = E{k,−k} and that E
lc,1
{k,−k} ⊂

E
pc
{k,−k}.

Remark 4.4. The above lemma is equivalent to characterizing the G-closure for
equations of the type

2∂z f = µ∂z f + µ∂z f , (4.7)

where µ ∈ {k, −k}.
Now we can repeat the arguments in Section 3 almost word for word. The only

difference is that we need to use the part (ii) of Lemma 2.1 to stay in symmetric
matrices.

Lemma 4.5. The space (X, w) from Definition 4.2 is metrizable, with metric d, and
for any f ∈ X we have D2u(x) ∈ U a.e. in �. Furthermore the set of continuity
points of the map D2 : (X, w) → L2(�, R2×2

sym ) is of second category in (X, w).

Proof. We can use elliptic regularity here as well to obtain that X is metrizable.
Indeed, by [2, Theorem 3.6]4 there exists an uniform constant c = c(K , �) such
that ∫

�

|D2u|2 ≤ c

for every u ∈ X . Therefore the weak W 2,2 topology on X is metrizable.
Since fu = (ux , −uy) is K -quasiregular and affine on the boundary of �,

we obtain that D fu ∈ W 1,p(�) for p > 2. Thus we obtain continuity of the
determinant with respect to the topology of X , and this implies, as in Lemma 3.7,
that D2u(x) ∈ U pc = U . The rest of the proof is exactly the same as in Lem-
ma 3.7.

Lemma 4.6. The set of points of continuity in (X, d) of D2 satisfy that D2u(x) ∈
E{k,−k} almost everywhere.

4 Alternatively this estimate can be obtained directly by noting that any f ∈ X0 satisfies |� f | ≤
k|∂2

1 f − ∂2
2 f | and using the Calderón-Zygmund theory of the Laplacian.
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Proof. We can repeat line by line the proof of Lemma 3.8. The only difference is
at (3.15) where we have to use part (ii) of Lemma 2.1 instead of part (i).

Corollary 4.7. The set of mappings in X such that D2u(x) ∈ E{k,−k} is of second
category.

4.1.1. Laminates and Integrability

Proposition 4.8. Every A ∈ U is the center of mass of a sequence {µn}∞n=1 of
laminates of finite order supported in U such that

lim
n→∞

∫
R

2×2
sym

|λ| 2K
K−1 dµn = ∞. (4.8)

Proof. Recall that the laminates constructed in [15] are supported in the setE{k,−k}∩
D where D denotes diagonal matrices, cf. the proof of Proposition 3.10. In other
words we have a sequence of laminates νn satisfying νn = I = (1, 0),

spt νn ⊂
{

A ∈ R
2×2 : a+, a− ∈ R and a− = ±ka+

}
,

and

lim
n→∞

∫
R2×2

|λ| 2K
K−1 dνn = ∞.

But then we just need to interchange the roles of a+ and a− to obtain the required
laminates µn in the case the matrix A = I (compare also Figures 3.2 and 4.1).
More precisely, if T is the linear transformation T ((a+, a−)) = (a−, a+), then T
preserves rank-one lines and hence µn = T#νn are laminates such that µn = (0, 1),

spt µn ⊂ E{k,−k},

and (4.8) holds.
For the general case note first that shifting the supports of νn by the matrix

R = (0, 1) keeps the support in U . That is, the measures ν̃n(·) = νn(· + (0, 1)) are
supported in U , satisfy (4.8) and have barycenter R.

Next, note that the set E{k,−k} is invariant under multiplication with scalars and
under addition of matrices with conformal coordinates (0, ti) (with t ∈ R). Using
this invariance we obtain laminates with center of mass in the anticonformal plane
E0. Finally, any A ∈ U is rank-one connected to E0 along translates of the rank
one line {(t, t) : t ∈ R}. Thus, we can argue as in the Proposition 3.10 to obtain
laminates with center of mass A ∈ U .

Since the remaining arguments are exactly analogous to those in Section 3 we
just quote the final outcome, proving Theorem 1.6.

Proposition 4.9. The set of points in X such that
∫

B(x,r)
|D2u| 2K

K−1 = ∞ for all
B(x, r) ⊂ � is second category in (X, d).
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Theorem 4.10. Let K > 1 and k = K−1
K+1 . For any bounded open set � ⊂ R2 there

exists a function u ∈ W 2,2(�; R2) with the following properties:

(i) u(x) = |x |2
2 on ∂�,

(ii) D2u(x) ∈ E{k,−k} a.e. in �,

(iii) for any ball B ⊂ � we have
∫

B |D2u(x)| 2K
K−1 dx = ∞.

4.2. Lower critical exponent

As in the case of the upper exponent the proofs here are very similar, we just indicate
the main steps. First we need to deal with the geometry of rank-one connections to
E{k,−k}.

Lemma 4.11. For every A ∈ R2×2
sym \{0} there exists P ∈ E∞\{0} and Q ∈ Ek \{0}

with rank (P − Q) = 1 such that A ∈ [P, Q] and

1

cK
|A| ≤ |P − Q|, |P|, |Q| ≤ cK |A|. (4.9)

The same holds if we replace Ek with E−k .

Proof. It suffices to prove the lemma for Ek . Let A = (a+, a−) ∈ R2×2
sym , and

assume that a+ ≥ k�a−. Then P = (a+ + |a−|, 0) ∈ E∞ and det(P − A) = 0.
Therefore the line

l(t) = P + t (−|a−|, a−)

is a rank-one line with l(0) = P , l(1) = A. Moreover

l+(t) − k�l−(t) = a+ + (1 − t)|a−| − kt�a− ≥ 0

for 0 ≤ t ≤ 1 and there exist t0 ≥ 1 so that l+(t0) = k�l−(t0), in other words
l(t0) ∈ Ek . Therefore we can take Q = l(t0).

If a+ ≤ �a−, then we argue the same way, this time with P = (a+ − |a−|, 0)

and l(t) = P + t (|a−|, a−).
The estimates (4.9) follow from Lemma 3.14 in the same way as in the proof

of Lemma 3.15.

Next, we find that laminates with the required integrability exists also in this
setting. In fact the situation is simpler because the steps of the staircase consist of
single (conformal) matrices this time (cf. (3.20)).

Lemma 4.12. Let A ∈ Br (nI ) for some 0 < r < 1/2. There exists a laminate νA
of third order with the following properties:

• ν A = A,

• spt νA ⊂ E{k,−k} ∪ {(n + 1)I },
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• spt νA ⊂
{
ξ ∈ R2×2 : c−1

K n < |ξ | < cK n
}

,

• (1 − cK
r
n )βn ≤ νA ({(n + 1)I }) ≤ (1 + cK

r
n )βn+2,

where

βn = 1 − 1 + k

n
, (4.10)

and cK > 1 is a constant only depending on K .

Proof. Let

Ck = 1

1 + k
(k, 1), C−k = 1

1 + k
(k, −1) (4.11)

in conformal coordinates. If A = nI = (n, 0), the claim follows by considering the
laminate

νA =
(
λ1δnCk + (1 − λ1)

(
λ2δ(n+1)C−k + (1 − λ2)δ(n+1)I

))
,

with

λ1 = 1 + k

2n + 1 + k
, (4.12)

λ2 = (1 + k)

2(n + 1)
. (4.13)

It is not difficult to check that νA is indeed a laminate with center of mass ν A = nI .
Note again the similarity with the proof of Lemma 3.16 in the case r = 0. This is
by definition a laminate, and

νA ({(n + 1)I }) = (1 − λ1)(1 − λ2) = n

n + 1

2n + 1 − k

2n + 1 + k
,

so that
βn ≤ νA ({(n + 1)I }) ≤ βn+2.

The argument for general A ∈ B(nI, r) combines this with Lemma 4.11, just as in
the case of isotropic equations in Lemma 3.16.

Proposition 4.13 (The symmetric weak staircase). Let K > 1 and k = K−1
K+1 . Let

α ∈ (0, 1), δ > 0 and τ : [0, ∞) → (0, 1] a continuous, non-increasing function
with

∫ ∞
1

τ(t)
t dt < ∞.

There exists δ0 > 0 such that for any bounded open set � ⊂ R2 and any
nonzero matrix F ∈ R2×2

sym with dist (F, E∞) < δ0|F | there exists a piecewise

quadratic function u ∈ W 2,1(�, R) ∩ C1,α(�, R) with the following properties:

(i) u(x) = 1
2 〈Fx, x〉 on ∂�,



48 KARI ASTALA, DANIEL FARACO AND LÁSZLÓ SZÉKELYHIDI JR.

(ii) [u − 1
2 〈Fx, x〉]C1,α(�) < δ,

(iii) dist
(
D2u(x), E{k,−k}

)
< τ

(|D2u(x)|) a.e. in �,

and there exists a constant cK ,τ > 0 so that for all t > |F | we have

c−1
K ,τ |F | 2K

K+1 t−
2K

K+1 <

∣∣{x ∈ � : |D2u(x)| > t
}∣∣

|�| < cK ,τ |F | 2K
K+1 t−

2K
K+1 . (4.14)

Proof. The proof is a verbatim repetition of the proof of Proposition 3.17 for
isotropic equations. The difference is that the step laminates are those from Lem-
ma 4.12 and that since the laminates are supported in symmetric matrices we can
approximate (in the sense of Proposition 2.3) the laminates by distributions of sec-
ond derivatives of functions.

Theorem 4.14. Let K > 1, k = K−1
K+1 and let F be any symmetric 2×2 matrix. For

any α ∈ (0, 1), δ > 0 and for any bounded open set � ⊂ R2 there exists a function
u ∈ W 2,1(�; R) ∩ Cα(�; R) with the following properties:

(i) u(x) = 1
2 〈Fx, x〉 on ∂�,

(ii) [u − 1
2 〈Fx, x〉]C1,α(�) < δ,

(iii) D2u(x) ∈ E{k,−k} a.e. in �,

(iv) for any ball B ⊂ � there exists a constant cB > 1 such that

1

cB
t−

2K
K+1 <

∣∣∣{x ∈ B : |D2u(x)| > t
}∣∣∣ < cBt−

2K
K+1

for all t ≥ 1.

In particular u ∈ W 2,q(�) for every q < 2K
K+1 , but for any ball B ⊂ � we have∫

B |D2u(x)| 2K
K+1 dx = ∞.

Proof. The scheme of the proof for the corresponding theorem for isotropic equa-
tions, Theorem 3.18 can be followed line by line, replacing always Lemma 3.15 by
Lemma 4.11 and part (i) of Lemma 2.1 by part (ii).
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Boston, MA, 1999.
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