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A metric approach to a class
of doubly nonlinear evolution equations

and applications
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Abstract. This paper deals with the analysis of a class of doubly nonlinear evo-
lution equations in the framework of a general metric space. We propose for such
equations a suitable metric formulation (which in fact extends the notion of Curve
of Maximal Slope for gradient flows in metric spaces, see [5]), and prove the exis-
tence of solutions for the related Cauchy problem by means of an approximation
scheme by time discretization. Then, we apply our results to obtain the existence
of solutions to abstract doubly nonlinear equations in reflexive Banach spaces.
The metric approach is also exploited to analyze a class of evolution equations in
L1 spaces.

Mathematics Subject Classification (2000): 35K55 (primary); 49Q20, 58E99
(secondary).

1. Introduction

Let B be a separable Banach space, T a positive number, and let us consider two
proper functionals � : B → (−∞, +∞] and E : [0, T ] × B → (−∞, +∞], such
that

� is convex and lower semicontinuous, �(v) ≥ �(0) = 0 ∀v ∈ B,

E(t, ·) : B → (−∞, +∞] is lower semicontinuous for a.e. t ∈ (0, T ).

Hereafter, we shall denote by ‖ · ‖ the norm on B and by ‖ · ‖∗ the norm on the dual
space B ′. We consider the abstract doubly nonlinear evolution equation

∂�(u′(t)) + ∂E(t, u(t)) 	 0 in B ′ a.e. in (0, T ), (DNE)

where ∂� denotes the subdifferential in the sense of convex analysis of �, while
we provisionally denote by ∂E a suitable version of the subdifferential of E with
respect to the second variable (in fact, we take ∂E to be the convex subdifferential
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of E with respect to the variable u if the functional u 
→ E(t, u) is convex). Clearly,
in the quadratic case �(u) := 1

2‖u‖2
B for all u ∈ B, (DNE) reduces to a gradient

flow equation.
This differential inclusion in fact arises in several applicative contexts, ranging,

among others, from thermomechanics (where it may be understood as a generalized
balance relation, see e.g. [25, 43]), to the modeling of rate-independent evolutions.
Without going into details, we point out that, within the realm of these applications,
the functional � may be interpreted as a dissipation potential, while E is an en-
ergy functional. Indeed, there is nowadays a quite wide literature on the analysis
of (DNE), which we briefly review, distinguishing the case in which the functional
� has a superlinear growth at infinity from the linear-growth case.

The most general well-posedness results (earlier ones were obtained in [6, 13,
48]), for the Cauchy problem associated with (DNE) in the superlinear case for �

date back to the papers [15, 16], along with applications to a broad class of PDE
models, for phase transition phenomena, which can be recast in the general form
(DNE). In the setting of a Hilbert space in [15], and of a reflexive Banach space
in [16], the existence of solutions to (DNE) is proved via approximation by time dis-
cretization, and passage to the limit by compactness and monotonicity techniques.
In [15, 16], the functional E takes the form E(t, u) := �(u) − 〈�(t), u〉 for all
(t, u) ∈ (0, T ) × B, � being a convex functional, so that the convex subdifferential
in (DNE) is given by ∂E = ∂�−�. In fact, this crucial convexity assumption allows
to exploit maximal monotone operator techniques. We recall that, in the same set-
ting, long-time behavior results for (DNE) have recently been obtained in [46, 47].

In the linear-growth case, equation (DNE) arises in connection with rate-in-
dependent problems. Indeed, in such situations the dissipation functional � is
positively homogeneous of degree 1, whence ∂�(λv) = ∂�(v) for all λ ≥ 0
and v ∈ B. Therefore, a solution to (DNE) remains a solution if the time vari-
able is rescaled, thus modeling phenomena insensitive to changes in the time scale.
Rate-independent models indeed occur, for instance, in elastoplasticity [19, 20, 24,
29–32], in damage [39], in the quasistatic evolution of fractures [21, 28], in shape
memory alloys [38, 40, 41], and in several other contexts, see the survey [33] and
the references therein. Existence, approximation, uniqueness, and regularity of so-
lutions to the Cauchy problem for (DNE) in the rate-independent case have been
proved in [35,42], again in the setting of a reflexive Banach space and of a smooth,
convex energy functional E . However, the aforementioned applications to contin-
uum mechanics problems lead to possibly non smooth and (highly) non convex
energy functionals, as well as to ambient spaces which are neither reflexive, nor
dual of separable spaces (for example, L1 spaces for shape memory alloys), or
even lack a linear structure (like in the applications to fractures). In fact, the non
convexity of E may be a counterpart of the latter feature, as shown in Section 3.3
later on by the example of a non convex functional defined on a Banach manifold.
These considerations have indeed motivated the development of an abstract, ener-
getic formulation of rate-independent problems in [42], which can be in fact given
in a purely topological framework, see [28]. We may mention that, in the same
spirit, global variational principles for doubly nonlinear evolution equations (both
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in the superlinear and in the rate-independent case), have been recently proposed
in [34, 49, 51].

However, the analysis of the doubly nonlinear equation (DNE) in the case of
a non convex, non smooth energy functional and of a more general ambient space
still remains open. In the fully general case, one may indeed face the problem of
giving meaning to the pointwise formulation (DNE) itself. For example, if the space
B does not enjoy the Radon-Nikodým property (like in the case of L1 spaces), ab-
solutely continuous curves with values in B need not be a.e. differentiable with
respect to the variable t , so that the pointwise time derivative appearing in (DNE)
may not be defined. Furthermore, in the absence of a linear structure on the am-
bient space, the notion of (Gâteaux)-derivative/subdifferential of a functional does
not make sense anymore. These drawbacks can be overcome by resorting to suit-
able surrogates of derivative notions, which have been introduced in the realm of
Analysis in Metric Spaces. In particular, we refer to the notions proposed within
the theory of Curves of Maximal Slope for gradient flows in metric spaces, which
was initiated by E. De Giorgi in the seminal paper [18] and has been subsequently
developed in [3, 4, 27] and in the recent monograph [5].

The goal of this paper is to analyze (DNE) in the framework of a general metric
space. Indeed, we shall provide a suitable purely metric formulation of (DNE), in
fact adapting the notion of Curve of Maximal Slope to the doubly nonlinear case.
Then, we shall prove an existence and approximation result for the related Cauchy
problem in the case of a superlinear dissipation functional.

In the forthcoming papers [36,37], we shall instead develop the analysis of rate-
independent problems in a metric framework. More precisely, we shall study rate-
independent metric evolutions as the vanishing viscosity limit of doubly nonlinear
metric evolutions driven by a superlinear dissipation. Let us point out that this
asymptotic analysis has been recently addressed in the paper [22], for general rate-
independent problems in a finite-dimensional framework, as well as in [20], in the
more specific case of quasistatic evolutions in plasticity with softening.

The metric formulation

For simplicity, we introduce the metric formulation of equation (DNE) when the
functional E is independent of the t variable, postponing the general discussion to
Section 2.4. In order to give some insight into the metric approach, we first develop
some heuristic calculations in a smooth case and with an ambient Banach space.

Hence, we suppose that � ∈ C1(B), that its Fenchel-Moreau conjugate �∗ is
in C1(B ′) too, and that E ∈ C1(B) (nevertheless, we do not require E to be convex).
Under these smoothness assumptions,

∂�(u) = {D�(u)}, ∂E(u) = {DE(u)} for all u ∈ B,

∂�∗(v) = {D�∗(v)} for all v ∈ B ′.

Thus, the doubly nonlinear equation (DNE) turns out to be

D�(u′(t)) + DE(u(t)) = 0 for a.e. t ∈ (0, T ) . (1.1)
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By a convex analysis argument, (1.1) is equivalent to

�(u′(t)) + �∗(−DE(u(t))) ≤ 〈−DE(u(t)), u′(t)〉 for a.e. t ∈ (0, T ) , (1.2)

(where 〈·, ·〉 denotes the duality pairing between B ′ and B). Let us point out
that (1.2) in fact holds as an equality, as the converse inequality is true thanks to
the definition of �∗; however, in view of the metric formulation we are going to
introduce later on, we prefer to state (1.2) in this form. Now, taking into account
the chain rule formula

〈DE(u(t)), u′(t)〉 = d

dt
E(u(t)) for a.e. t ∈ (0, T ) , (1.3)

we can equivalently rephrase (1.1) as

d

dt
E(u(t)) ≤ −�(u′(t)) − �∗(−DE(u(t))) for a.e. t ∈ (0, T ) , (1.4)

which again in fact holds as an equality. To fix ideas, let us choose

�(u) := 1

p
‖u‖p ∀ u ∈ B , so that

�∗(v) := 1

q
‖v‖q∗ ∀ v ∈ B ′ , 1 < p < ∞,

1

p
+ 1

q
= 1.

Then, (1.4) becomes

d

dt
E(u(t)) ≤ − 1

p
‖u′(t)‖p − 1

q
‖ − DE(u(t))‖q∗ for a.e. t ∈ (0, T ) .

Let us point out that the above formulation highlights the role of the norms of the
derivatives u′(t) and −DE(t, u(t)), rather than of the derivatives themselves. That
is why, (1.4) appears to be a suitable formulation for going over to a purely met-
ric framework, where one may (only) dispose of notions surrogating the norm of
the pointwise derivative of a curve, and the norm of the Gâteaux derivative of a
functional.

We now briefly recall such notions (referring to [3, 4], [5, Chapter 1], and to
the next sections for further details), in the context of a (separable) metric space
(X, d). In this framework, it is possible to define the notion of absolute continuity
of a curve with values in X , and to prove that, if u : (0, T ) → X is absolutely
continuous, the limit

|u′|(t) := lim
h→0

d(u(t), u(t + h))

h
exists for a.e. t ∈ (0, T ), (1.5)

defining the metric derivative of the curve u. It can be readily checked that, if X
is a Banach space B and if the absolutely continuous curve u : (0, T ) → B is a.e.
differentiable on (0, T ), then

|u′|(t) = ‖u′(t)‖ for a.e. t ∈ (0, T ). (1.6)
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Nonetheless, as we are going to see in Section 7, the notion of metric derivative is
significant even in spaces like L1, in which the link (1.6) between the metric and
the pointwise derivatives is no longer available for general absolutely continuous
curves.

In the same way, given a functional E : X → (−∞, +∞] and a point u ∈
dom(E), following [18] we define the (local) slope of E at u as

|∂E | (u) := lim sup
v→u

(E(u) − E(v))+

d(u, v)
. (1.7)

Again, it can be shown that, in the Banach space case,

if E : B → (−∞,+∞] is (Fréchet) differentiable at u ∈ dom(E),

then |∂E | (u) = ‖DE(u)‖∗.
(1.8)

More in general, if E is convex, then |∂E | is related to the (convex) subdifferential
∂E of E by

|∂E | (u) = min {‖ξ‖∗ : ξ ∈ ∂E(u)} ∀ u ∈ dom(∂E) . (1.9)

The chain rule formula (1.3) translates in the metric setting as

d

dt
E(u(t)) ≥ −|u′|(t) · |∂E | (u(t)) for a.e. t ∈ (0, T )

for any absolutely continuous curve u : (0, T ) → X .
(1.10)

We remark that, in the case of a smooth functional E : B → (−∞, +∞], the above
chain rule inequality results from (1.3), (1.8), and the Cauchy-Schwarz inequality;
we have the same interpretation in the case of a convex functional as well, due
to (1.9) and the well-known chain rule for the subdifferential in the sense of convex
analysis. We refer to Section 2.4 for a detailed discussion of the chain rule (1.10) in
the case of a time-dependent functional.

We are now in the position of stating the metric analog of (1.4), of course
replacing the derivatives of the curve and of the functional with the metric deriva-
tive (1.5) and the local slope (1.7). Since we are now dealing with scalar notions,
the role of the dissipation � shall be played by a function

ψ : [0, +∞) → [0, +∞), convex and lower semicontinuous,

with ψ(0) = 0 and lim
x→+∞

ψ(x)

x
= +∞.

(1.11)

Hence, supposing that the functional E : X → (−∞, +∞] complies with the chain
rule (1.10), we say that an absolutely continuous curve

u : (0, T ) → X satisfies the metric formulation of (DNE) if

the map t ∈ (0, T ) 
→ E(u(t)) is absolutely continuous and
d

dt
E(u(t)) ≤ −ψ

(|u′|(t)) − ψ∗(|∂E | (u(t))
)

for a.e. t ∈ (0, T ).

(1.12)
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It can be easily checked that, when ψ(x) = 1
2 x2 for all x ∈ [0, +∞), the above

formulation coincides with the metric formulation of gradient flows, see [4, 5, 18].
The main result of this paper (Theorem 3.5 later on) states the existence of

absolutely continuous curves complying with the above metric formulation, sup-
plemented by an initial condition. The proof is performed by passing to the limit
in an approximation scheme based on time discretization (see Section 3.1). The
variational scheme yielding the approximate solutions is indeed the metric analog
of the implicit Euler scheme used for doubly nonlinear evolution equations in Ba-
nach spaces (see [15,16,42]). As a matter of fact, such a scheme has been proposed
in [4, 17] as a possible way to approximate gradient flows in metric spaces, in the
framework of the theory of Minimizing Movements. Exploiting some technical tools
of this theory, we have been able to show that the approximate solutions converge to
a curve solving the Cauchy problem for (1.12). Without going into many details, let
us point out that the whole procedure works out under some lower semicontinuity
and coercivity assumptions on E (which substantially enable to carry out the ap-
proximation scheme and to obtain compactness of the approximate solutions), joint
with the lower semicontinuity of the map u 
→ |∂E | (u) and the chain rule (1.10).

Applications: the reflexive case

The main applications of our metric approach are to (a class of) doubly nonlinear
evolution equations of the form

∂�(u(t), u′(t)) + ∂E(t, u(t)) 	 0 in B ′ for a.e. t ∈ (0, T ) , (1.13)

in the setting of
a separable reflexive Banach space B,

the functional � having a superlinear growth with respect to the second variable.
Existence results for a class of equations of the type (1.13) (which are often called
quasivariational due to the dependence of the dissipation functional on the state
variable u), have been recently obtained in the papers [7, 8] for a superlinear dissi-
pation, while the quasivariational rate-independent case has been analyzed in [35].
In fact, in this paper we are able to deal with dissipation functionals in (1.13) of the
form

�(u, v) := ψ(‖v‖u) ∀ u, v ∈ B ,

where ψ is as in (1.11) and

{‖ · ‖u}u∈B is a family of norms on B, inducing the Finsler distance

d(v, w) := inf

{∫ 1

0
‖u′(t)‖u(t)dt : u : [0, 1]→ B, u(0)=v, u(1)=w

}
∀v, w∈ B.

(1.14)
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In the setting of the metric space (B, d), it is possible to prove that relation (1.6)
between the metric and the pointwise derivative of an absolutely continuous curve
still holds in a suitable form (see Section 6). Likewise, relations (1.8)–(1.9) between
the slope and the (sub-)differential of E carry over to this Finsler setting if E is,
for instance, a λ-convex or a C1 perturbation of a convex functional. As a result,
every absolutely continuous curve fulfilling the metric formulation (1.12) is in fact
a solution of the pointwise differential inclusion (1.13). Thus, our main metric
result, Theorem 3.5, yields the existence of absolutely continuous curves solving
the Cauchy problem related to (1.13), cf. Theorem 8.3 later on. A typical parabolic
evolution equation which can be rephrased in the abstract form (1.13), with B =
L p(�), is the following generalized Allen-Cahn equation

α(u, ut ) |ut |p−2ut − 
u + u3 − u = h a.e. in � × (0, T ), (1.15)

ut denoting the partial time derivative of u. Here, p ≥ 1, � is a bounded domain
in Rd , d ≥ 1, α : R2 → (0, +∞) a continuous function, bounded from below and
from above, 
 is the Laplace operator, and h : � × (0, T ) → R some source term.
In fact, (1.15) is the prototype of the parabolic doubly nonlinear equations we shall
address in Section 8.2. More precisely, we shall deduce from Theorem 8.3 the exis-
tence of solutions to a suitable initial-boundary value problem for (a generalization
of) (1.15).

Applications: the L1 case

We shall also apply our metric approach to the analysis of (doubly nonlinear) metric
evolutions in the metric space L1(�), with the distance induced by the L1(�)-norm.
As already mentioned, absolutely continuous curves on a time interval (0, T ) with
values in L1(�) are not, in general, a.e. differentiable on (0, T ), so that the met-
ric formulation (1.12) does not lead to a pointwise formulation any more. Hence,
in Section 7 we shall focus on purely metric evolutions only, in the case of the
dissipation functional

ψ(x) := 1

2
x2 ∀ x ≥ 0. (1.16)

In fact, in Section 7.2 we shall analyze the evolution driven in L1(�), by the
quadratic ψ (1.16) and by an energy functional of Ginzburg-Landau type, and prove
an existence result (Theorem 7.5). However, in Section 7.1 we shall preliminarily
compare the metric and the pointwise formulations on some simpler examples. For
instance, we shall consider, in the case � = (0, 1), the quadratic energy functional
E : L1(0, 1) → [0, +∞]

E(u) :=


1

2

∫ 1

0
u2(x) dx if u ∈ L2(0, 1),

+∞ otherwise
∀ u ∈ L1(0, 1) . (1.17)
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It can be checked that the local slope of E in the metric space L1(0, 1) is

|∂E | (u) =
{

‖u‖L∞(0,1) if u ∈ L∞(0, 1) ,
+∞ otherwise

∀ u ∈ L2(0, 1) .

Hence, an absolutely continuous curve u : (0, T ) → L1(0, 1) fulfills the metric
formulation (1.12) in L1(0, 1), with the choices (1.16)–(1.17), if

the map t ∈ (0, T ) 
→ 1

2

∫ 1

0
u2(x, t) dx is absolutely continuous and

d

dt

(∫ 1

0
u2(x, t) dx

)
≤ −|u′|(t)2 − ‖u(t)‖2

L∞(0,1) for a.e. t ∈ (0, T ).

(1.18)

On the other hand, the evolution equation corresponding to (1.18) is (DNE), driven
by the dissipation potential

�(u) := 1

2
‖u‖2

1 ∀ u ∈ L1(�) (1.19)

and by the energy functional E (1.17), namely

‖ut (t)‖1Sign(ut (x, t)) + u(x, t) 	 0 for a.e. (x, t) ∈ (0, 1) × (0, T ) , (1.20)

where we denote by Sign the multivalued operator

Sign(r) :=


1 if r > 0,
[−1, 1] if r = 0,
−1 if r < 0

.

As a matter of fact, in Section 7.1, we shall calculate an explicit solution of (the
Cauchy problem for) (1.20) and show that it also fulfills the metric formulation
(1.18).

Plan of the paper

In Section 2 we fix the metric setup in which we are going to develop our theory,
and accordingly give the preliminary definitions of metric derivative, slope, and
chain rule condition. In fact, we extend these notions to the framework of a non-
symmetric distance 
 on the space X , and we also allow 
 to take value +∞.
Further, besides the topology induced by 
, we are also going to deal with another
topology σ on X , possibly weaker, which mimics the role of the weak topology
in the Banach space case. Section 3 is devoted to the construction of the approx-
imation scheme for (the Cauchy problem related to) (1.12), and to the statement
of our existence and approximation Theorem 3.5. Subsequently, we illustrate such
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result on the simple example of a time-independent functional defined on an in-
finite dimensional Banach manifold. The proof of Theorem 3.5 is carried out in
several steps in Section 4. Starting from Section 5, we develop the main appli-
cations of our results to the Banach space setting. Indeed, Sections 5 and 6 are
devoted to preliminaries, the former in the setting of a separable Banach space, and
the latter of a separable reflexive Banach space, endowed with a Finsler (asymmet-
ric) distance induced by a family of sublinear functionals (in fact, a generalization
of the setup (1.14)). Throughout these sections, we investigate the link between
slopes and subdifferentials, and prove (a version of) formula (1.9) for a broad class
of functionals, encompassing λ-convex functionals and C1-perturbations of convex
functionals. We show that these functionals also comply with the chain rule (1.10)
in the general Banach space case. Moreover, we provide some technical results
enabling to switch from the metric formulation (1.12) back to the pointwise for-
mulation (1.13) in the Finsler, reflexive case. Building on the material developed
in Section 5, in Section 7 we investigate metric evolutions in L1 spaces and also
provide some examples with explicit computations of the metric solution. Finally,
on the basis of Section 6, in Section 8 we develop the aforementioned applications
first in the setting of a general reflexive Banach space, with a Finsler asymmetric
distance, secondly in the space L p(�), 1 < p < ∞.
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Part I: the metric theory

2. The metric setup

2.1. Asymmetric distances and metric derivatives

General assumptions

In a
Hausdorff topological space (X, σ ), (2.1)

we are given a reference point xo ∈ X and

a possibly non symmetric (asymmetric) distance 
 : X × X →[0,+∞], fulfilling


(u, v) = 0 ⇔ u = v ∀u, v ∈ X,


(u, v) ≤ 
(u, w) + 
(w, v) ∀u, v, w ∈ X,

(2.2)
We set

δ(u,v) := min
[

(u,v), 
(v, u)

]
, Xu :={

v∈ X :
(u,v)<+∞}
, X0 := Xxo . (2.3)

Observe that we could always assume that 
 is finite, by restricting our discussion
to the space X0; nevertheless, sometimes it could be useful to allow a more flexible
choice of the reference point xo.

Remark 2.1. A typical non-symmetric distance 
 allowed to take the value +∞
is defined on the space X = L1(�), � being a measurable subset of Rd , by


(u, v) =
{

‖u − v‖L1 if u ≥ v a.e. in �,
+∞ else

∀ u, v ∈ L1(�).

Indeed, this example is relevant within applications to damage problems, see [39].

Metric 
-derivatives

It is easy to extend the notion of metric derivative (see [3]) of an absolutely contin-
uous curve in X to a possibly nonsymmetric setting.

First, for 1 ≤ p ≤ +∞ we define

ACp(a, b; X)

:=
{
v : (a, b) → X : ∃ m ∈ L p(a, b) s.t. 
(v(s), v(t)) ≤

∫ t

s
m(r)dr

}
,

(2.4)

denoting by AC(a, b; X) the space AC1(a, b; X). Note that, if one disposes of a
distance d on the ambient space X fulfilling

∃ κ1, κ2 > 0 : κ1 d(u, v) ≤ δ(u, v) ≤ κ2d(u, v) ∀ u, v , ∈ X.
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then ACp(a, b; X) is included in the usual space of absolutely continuous curves in
the metric space (X, d) (see [3]).

The following result is the natural extension of [5, Theorem 1.1.2].

Proposition 2.2. For any v ∈ ACp(a, b; X), 1 ≤ p ≤ +∞, the limits

|v′|(t) := lim
h↓0


(v(t), v(t + h))

h
= lim

h↓0


(v(t − h), v(t))

h
(2.5)

exist and are equal for a.e. t ∈ (a, b); the function |v′| is in L p(a, b) and fulfills


(v(s), v(t)) ≤
∫ t

s
|v′|(r)dr ∀a < s ≤ t < b. (2.6)

Furthermore,
|v′|(t) ≤ m(t) for a.e. t ∈ (a, b) (2.7)

for any function m ∈ L p(a, b) fulfilling


(v(s), v(t)) ≤
∫ t

s
m(r)dr ∀a < s ≤ t < b. (2.8)

Proof. Let us fix v ∈ ACp(a, b; X) and let m ∈ L p(a, b) fulfill (2.8). Let us
introduce for any s ∈ (a, b) the function ls : (a, b) → [0, +∞) by

ls(t) := 
(v(s), v(t)) ∀t ∈ (a, b).

By the definition (2.4) of ACp(a, b; X), we get the following inequality(
ls(t2) − ls(t1)

)+ ≤ 
(v(t1), v(t2)) ≤
∫ t2

t1
m(r) dr ∀ a < t1 ≤ t2 < b, (2.9)

whence we deduce that the map t 
→ gs(t) := ls(t) − ∫ t
a m(r) dr is non increasing

on (a, b), in particular a.e. differentiable. Moreover, from (2.9) we get(
l ′s(t)

)+ ≤ �(t) := lim inf
h↓0


(v(t), v(t + h))

h
for a.e. t ∈ (a, b). (2.10)

Note that � is a measurable positive function on (a, b), fulfilling

0 ≤ �(t) ≤ lim inf
h↓0

1

h

∫ t+h

t
m(r) dr = m(t) for a.e. t ∈ (a, b). (2.11)

Thus, � ∈ L p(a, b); moreover, since ls(t) = ∫ t
a m(r) dr + gs(t) and g is non

increasing, the singular part of the distributional derivative of ls is a non positive
measure and therefore (2.10) yields


(v(s), v(t)) = ls(t) ≤
∫ t

s
(l ′s(r))+ dr ≤

∫ t

s
�(r) dr ∀a < s ≤ t < b. (2.12)
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Further, let us consider the measurable function �̃ : (a, b) → [0, +∞) defined by

�̃(t) := lim sup
h↓0


(v(t), v(t + h))

h
∀t ∈ (a, b).

Arguing as in (2.10), we deduce from (2.8) that

�̃(t) ≤ m̃(t) for a.e. t ∈ (a, b) (2.13)

for any m̃ ∈ L p(a, b) for which inequality (2.8) holds. Thus, due to (2.12) we find

�̃(t) ≤ �(t), hence ∃|v′|(t) := lim
h↓0


(v(t), v(t + h))

h
for a.e. t ∈ (a, b),

and |v′|(t) ∈ L p(a, b) by (2.11). Moreover, (2.12) yields (2.6). We have thus
proved the first part of the statement. The second one follows from (2.13).

Finally, the existence of the second limit of (2.5) follows from the same argu-
ment, applied to the reversed curve v̂(t) := v(a +b− t) and to the reversed distance

̂(u, v) := 
(v, u). In particular


(v(s), v(t)) = 
̂(v̂(a + b − t), v̂(a + b − s)) ≤
∫ a+b−s

a+b−t
|v̂′|(r) dr

=
∫ t

s
|v̂′|(a + b − r) dr.

(2.14)

By the minimality property (2.7) (applied to v and v̂) we get

|v′|(t) = |v̂′|(a + b − t) for a.e. t ∈ (a, b), (2.15)

which yields the identity between the two limits in (2.5).

2.2. 
-slopes

In the setup specified by (2.1)-(2.2), let E : X → (−∞, +∞] be a functional with
proper domain E = dom(E) = {

u ∈ X : E(u) < +∞}
. Hereafter, we shall

suppose that
E is σ -sequentially lower semicontinuous. (2.16)

We now introduce the notion of local and relaxed slope in the framework of the
asymmetric distance 
: the following definition mimics in an obvious way the
usual definitions of slope given in the setting of a symmetric distance, for which we
refer to [3, 5].

Definition 2.3. The 
-local slope of the functional E at a point u ∈ dom(E) is

|∂E |(u) := lim sup

(u,v)→0

(E(u) − E(v))+


(u, v)
. (2.17)
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The 
-relaxed slope |∂−E | of E at a point u ∈ dom(E) ∩ X0 is defined by

|∂−E |(u) := inf
{

lim inf
n↑∞ |∂E |(un) : un

σ
⇀ u, sup{
(xo, un), E(un)}<+∞

}
.

(2.18)

Note that if D ∩ Xu = {u} then |∂E |(u) = 0; |∂−E | is (a version of) the (sequential)
lower semicontinuous envelope of |∂E | with respect to to the topology σ , along
sequences in X0 of bounded energy and bounded distance with respect to xo.

2.3. Time dependent families of energy functionals

In this paper we deal with families of time-dependent functionals Et: X→(−∞,+∞],
t ∈ [0, T ]. In order to avoid further technical difficulties, we will only consider a
quite “regular” dependence with respect to time: we thus assume that the proper
domain of Et is fixed, i.e.

D := dom(Et ) ∀ t ∈ [0, T ], and we set D0 := D ∩ X0 . (2.19a)

We also suppose that the functionals are uniformly bounded from below, letting

−C0 := inf
t∈[0,T ],v∈D

Et (v) > −∞ , (2.19b)

and that

∀ v ∈ D the function t 
→ Et (v) is differentiable in [0, T ], with derivative ∂tEt (v)

(2.19c)
which satisfies

|∂tEt (v)| ≤ C1(Et (v) + 
(xo, v) + 2C0) ∀ t ∈ [0, T ], v ∈ D0 (2.19d)

for a suitable constant C1 ≥ 0.

Remark 2.4. Let us point out that (2.19d) (which has been proposed in [33, §3]),
and the Gronwall Lemma yield the following estimate

Et (v) ≤ (Es(v) + 2C0C1|t − s| + C1
(xo, v)|t − s|) exp(C1|t − s|)
∀t, s ∈ [0, T ], v ∈ D0.

(2.20)

We will often impose some lower semicontinuity-compactness conditions on se-
quences with equibounded energy Et ; thanks to the previous remark, the particular
choice of the time t is not relevant, so that we can state our assumptions for a fixed
arbitrary time. We thus introduce the auxiliary quantity

F(v) := 2C0 + 
(xo, v) + E0(v) (2.21)
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and note that we have, for a suitable constant C > 0,

1

C
sup

t∈[0,T ]

(
2C0 + 
(xo, v) + Et (v)

)
≤ F(v) ≤ C inf

t∈[0,T ]

(
2C0 + 
(xo, v) + Et (v)

)
∀ v ∈ D0.

(2.22)

Therefore, the t-energy Et (un) of a 
-bounded sequence {un} ⊂ D0 remains bounded
if and only if supn F(un) < +∞: in this case supn∈N,s∈[0,T ] Es(un) < +∞.

2.4. The purely metric formulation of the Cauchy Problem (DNE)

Chain rule and curves of maximal slope

It is not difficult to check that if v : [0, T ] → D is a curve and t̄ ∈ (0, T ) is a
point such that there exists the metric 
-derivative |v′|(t̄), the map t 
→ Et (v(t)) is
continuously differentiable at t̄ , and |∂Et̄ |(v(t̄)) < +∞, then

d

dt
Et (v(t))

∣∣∣
t=t̄

≥ ∂tEt̄ (v(t̄)) − |v′|(t̄) · |∂Et̄ |(v(t̄)). (2.23)

In this paper we are interested in finding curves of maximal slope, i.e. attaining
equality in (2.23):

d

dt
Et (v(t))

∣∣∣
t=t̄

= ∂tEt̄ (v(t̄)) − |v′|(t̄) · |∂Et̄ |(v(t̄)). (2.24)

In a linear Euclidean framework, this would be equivalent to imposing that the
velocity vector and the gradient of the functional Et have opposite directions at
each time. Of course, we should complement this condition with a relation between
their moduli of the type

|∂Et̄ |(v(t̄)) = h
(|v′|(t̄)), (2.25)

h : [0, +∞) → [0, +∞) being a continuous, surjective, and increasing map. By
introducing its convex primitive function and its Legendre-Fenchel-Moreau trans-
form

ψ(x) :=
∫ x

0
h(r) dr, ψ∗(y) = sup

x≥0
xy − ψ(x),

and recalling that for arbitrary couples of non negative real numbers x, y ≥ 0

xy ≤ ψ(x)+ψ∗(y), y = h(x) = ψ ′(x) ⇔ xy = ψ(x)+ψ∗(y), (2.26)

we thus end up with the differential characterization

d

dt
Et (v(t)) = ∂tEt (v(t)) − ψ

(|v′|(t)) − ψ∗(|∂Et |(v(t))
)
, t ∈ (0, T ). (2.27)
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We may further consider a relaxed version of (2.27): first of all, we would like to
replace the slope |∂Et | with its lower semicontinuous envelope |∂−Et | (2.18), which
enjoys better convergence properties. This is meaningful only if |∂−Et | is strong
enough to control the time derivative of the energies Et along absolutely continuous
curves. We fix this property in the following definition:

Definition 2.5 (Chain rule for the relaxed slope). Let Et , t ∈ [0, T ], be a family
of functionals fulfilling (2.19a,b,c,d). We say that |∂−Et | satisfies the chain rule
condition if for any curve v ∈ AC(0, T ; X0) with∫ T

0
|v′|(t) · |∂−Et |(v(t))dt < +∞, sup

t∈(0,T )

Et (v(t)) < +∞, (2.28)

the map t 
→ Et (v(t)) is absolutely continuous, and

d

dt
Et (v(t)) ≥ ∂tE(t, v(t)) − |v′|(t) · |∂−Et |(v(t)) for a.e. t ∈ (0, T ). (2.29)

We may also drop the continuity assumption on h, by considering monotone sur-
jective graphs instead of maps: in this case, we simply replace the relation h = ψ ′
with the subdifferential condition h = ∂ψ and (2.25) by

|∂Et |(v(t)) ∈ h
(|v′|(t)).

We can therefore consider an arbitrary real function

ψ : [0, +∞) → [0, +∞], convex and lower semicontinuous,

with ψ(0) = 0, superlinear growth lim
x↑+∞

ψ(x)

x
= +∞,

and non empty int
(
dom(ψ)

) = (0, a), a ∈ (0, +∞].
(2.30)

Collecting all the above remarks, we can now state our metric formulation of (the
Cauchy Problem related to) (DNE).

Problem 2.6 (Metric formulation of (DNE)). Suppose that the chain rule condi-
tion stated in Definition 2.5 holds true. Given u0 ∈ D0, find a curve u ∈AC(0,T ;X0)

such that

u(0) = u0, the map t 
→ Et (u(t)) is absolutely continuous on (0, T ), and (2.31)
d

dt
Et (u(t))≤∂tEt (u(t))−ψ

(|u′|(t))−ψ∗(|∂−Et |(u(t))
)

for a.e. t ∈(0,T ). (2.32)

For instance, the choice ψ(x) := x p/p, x ∈ [0, +∞), p ≥ 1, with conjugate
ψ∗(x) = x p′

/p′, 1/p + 1/p′ = 1, of course fits in this framework. In this case,
(2.32) reduces to

d

dt
Et (u(t)) ≤ ∂tEt (u(t)) − |u′|p(t)

p
− |∂−Et |p′

(u(t))

p′ .
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Finally, let us point out for later convenience that, by an elementary convex anal-
ysis argument, if the chain rule of Definition 2.5 is satisfied, then any absolutely
continuous curve fulfilling (2.32) indeed fulfills for a.e. t ∈ (0, T )

d

dt
Et (u(t)) − ∂tEt (u(t)) = −|u′|(t)|∂−Et |(u(t))

= −ψ
(|u′|(t)) − ψ∗(|∂−Et |(u(t))

)
,

(2.33)

namely the inequality in (2.32) is equivalent to an equality.

Remark 2.7 (Link with the metric theory of gradient flows.). Let us point out
that our metric approach to (DNE) is tightly linked to the general theory devel-
oped in [5] (see also the references therein) for gradient flow equations in metric
spaces. More precisely, following the terminology of [5, Chapter 1], the chain rule
property of Definition 2.5 is (with slight changes) equivalent to requiring |∂−E | to
be an upper gradient, whereas the metric analog of our definition of solution is the
notion of curve of maximal slope.

2.5. Topological assumptions

Let us collect here all the topological assumptions relating the asymmetric distance

 and the functionals ψ and Et , t ∈ [0, T ], to the topology σ of X .

Sequential semicontinuity. If {un}, {vn}, u, v ∈ X0 satisfy

sup
n

(F(un) + F(vn)) < +∞ and (un, vn)
σ
⇀ (u, v),

then

lim inf
n↑∞ 
(un, vn) ≥ 
(u, v), lim inf

n↑+∞ Et (un) ≥ Et (u) ∀ t ∈ [0, T ], (2.34)

lim sup
n↑+∞

∂tEt (un) ≤ ∂tEt (u) ∀ t ∈ [0, T ]. (2.35)

Strengthened sequential semicontinuity. Further, in the case in which ∂ψ is not
single valued (this means that ψ is not differentiable in the interior of its domain,
or that (cf. (2.30)) a < ∞, ψ(a) < +∞ and ψ ′−(a) < +∞), we also assume
that for every sequence tn ∈ [0, T ], un ∈ D0 such that

sup
n

(
F(un) + |∂Etn |(un)

)
< +∞, 
(u, un) → 0, tn ↓ t,

we have

lim sup
n↑+∞

Etn (un) − Et (un)

tn − t
≤ ∂tEt (u). (2.36)

Note that (2.36) surely holds if the following slightly stronger version of (2.35)
is satisfied

sup
n

F(un)<+∞, 
(u,un)→0, tn ↓ t ⇒ lim sup
n↑+∞

∂tEtn (un)≤∂tEt (u). (2.37)
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Sequential compactness. If a sequence {un} ⊂ X0 satisfies sup
n∈N

F(un) < +∞,

then
∃ u ∈ X and a subsequence {unk } σ -converging to u. (2.38)

A few remarks on the above assumptions are in order.

Remark 2.8 (Topology comparison). Due to (2.34) and (2.38), we have

sup
n

F(un) < +∞, δ(un, u) → 0 ⇒ un
σ
⇀ u. (2.39)

In fact, any σ -sequential limit point v of un (whose existence follows from the
compactness assumption) satisfies, by (2.34), δ(u, v) ≤ lim infn↑+∞ δ(u, un) =
limn↑+∞ δ(u, un) = 0. Thus, v coincides with u.

Remark 2.9 (
-completeness of the sublevels of E). It is not difficult to check
that the sublevels of E satisfies the following completeness property with respect to
the asymmetric distance 
: any sequence un ∈ X0 satisfies

lim
n→∞ sup

m>0

(un,un+m)=0, sup

n
E(un)<+∞ ⇒∃ ! u : un

σ
⇀ u, lim

n→∞ 
(un,u)=0.

(2.40)

3. The main result

We shall construct a solution u ∈ AC(0, T ; X) to Problem 2.6 by passing to the
limit in a suitable approximation scheme by time discretization.

In the sequel, we adopt the convention of denoting by the symbols C and C ′
all the accessory positive constants occurring in the estimates.

3.1. Approximation

We fix a time step τ > 0, to which there corresponds a partition

Pτ :={t0 =0< t1 <. . .< tn <. . .< tN−1 < T ≤ tN }, tn :=nτ, N ∈N, (3.1)

of the interval (0, T ). We consider the following recursive minimization scheme

Problem 3.1 (Variational approximation scheme). Given U 0
τ :=u0, find U 1

τ,. . .

. . . , U N
τ ∈ X fulfilling

U n
τ ∈ Jτ (tn, U n−1

τ ) := Argmin
u∈X

{
τψ

(

(U n−1

τ , u)

τ

)
+ Etn (u)

}
, (3.2)

for n = 1, . . . , N .
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Lemma 3.2. Under the lower semicontinuity-compactness assumptions (2.19a)–
(2.19b) and (2.34)-(2.38) on E , and the growth-convexity conditions (2.30) on ψ ,
for all τ > 0 and u0 ∈ D Problem 3.1 admits at least one solution {U n

τ }N
n=1.

Further, if u0 ∈ D0 then U n
τ ∈ D0 for all n = 1, . . . , N.

The proof is a standard application of the well-known direct method in the Calculus
of Variations.

Approximate solutions

Let U τ and U τ be, respectively, the left-continuous and right-continuous piecewise
constant interpolants of the values {U n

τ }N
n=1 fulfilling U τ (tn) = U τ (tn) = U n

τ for
all n = 1, . . . , N , i.e.,

U τ (t)=U n
τ ∀t ∈(tn−1, tn], U τ (t)=U n−1

τ ∀t ∈[tn−1, tn), n =1, . . . , N .

(3.3)
Furthermore, let tτ , tτ : [0, T ] → [0, T ] be defined by

tτ (0)= tτ (0) :=0, tτ (t) := tk for t ∈(tk−1,tk], tτ (t) := tk−1 for t ∈[tk−1,tk). (3.4)

Of course, for every t ∈ [0, T ] we have tτ (t) ↓ t and tτ (t) ↑ t as τ ↓ 0.
We introduce another family of interpolants, due to E. De Giorgi, between the

discrete values U n
τ .

Definition 3.3 (De Giorgi variational interpolants). We denote by Ũτ any inter-
polant of the discrete values {U n

τ }N
n=0 obtained by solving the problem


Ũτ (0) = u0, and, for t = tn−1 + r ∈ (tn−1, tn],

Ũτ (t) ∈ Jr (t, U n−1
τ ) := Argminu∈X

{
rψ

(

(U n−1

τ ,u)

r

)
+ Et (u)

}
,

(3.5)

such that the map t 
→ Ũτ (t) is Lebesgue measurable in (0, T ).

Remark 3.4 (Measurability of Ũτ ). Since the map s 
→ Js(tn−1, U n−1
τ ) is σ -

compactly valued and upper semicontinuous, the existence of a measurable selec-
tion Ũτ (tn−1 + r) ∈ Jr (tn−1 + r, U n−1

τ ), r ∈ (tn−1, tn], is ensured by [14, Corol-
lary III.3, Theorem III.6].

Note that when t = tn , the minimization scheme in (3.5) coincides with the
one in (3.2), so that we can always assume that

Ũτ (tn) = U τ (tn) = U τ (tn) = U n
τ , for every n = 1, . . . , N . (3.6)
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3.2. Statement of the main result

Theorem 3.5 (Main existence and approximation result). In the metric frame-
work discussed in Sections 2.1 and 2.2, let us suppose that ψ complies with (2.30)
and that the family of functionals Et , t ∈ [0, T ], satisfies (2.19a)–(2.19d), the topo-
logical assumptions (2.34)-(2.38) of Section 2.5, and the chain rule condition of
Definition 2.5.

Then, for any u0 ∈ D0 and any sequence τn ↓ 0 as n ↑ ∞, there exists a
subsequence (still labeled τn) and a curve u ∈ AC(0, T ; X0) such that

U τn (t)
σ
⇀ u(t), U τn

(t)
σ
⇀ u(t), Ũτn (t)

σ
⇀ u(t) ∀t ∈ [0, T ], (3.7)

where
u is a solution to Problem 2.6, thus satisfying also (2.33), (3.8)

and the energy identity∫ t

s
ψ(|u′|(r)) dr +

∫ t

s
ψ∗ (|∂−Er |

(
u(r)

))
dr + Et

(
u(t)

)
= Es

(
u(s)

) +
∫ t

s
∂tEr

(
u(r)

)
dr

(3.9)

for every s, t ∈ [0, T ]. In addition, the following convergences hold as n ↑ ∞∫ t

0
ψ

(

(U τn

(r), U τn (r))

τn

)
dr −→

∫ t

0
ψ(|u′|(r)) dr ∀t ∈ [0, T ], (3.10)

∫ t

0
ψ∗ (|∂Er |(Ũτn (r))

)
dr −→

∫ t

0
ψ∗ (|∂−Er |(u(r))

)
dr ∀t ∈ [0, T ], (3.11)

Etτn (t)

(
U τn (t)

) → Et
(
u(t)

)
, Et

(
Ũτn (t)

) → Et (u(t)) ∀t ∈ [0, T ], (3.12)

and for a.e. t ∈ (0, T )lim inf
n↑∞ |∂Et |(Ũτn (t)) = |∂−Et |(u(t)) if |u′|(t) �= 0,

lim inf
n↑∞ ψ∗ (|∂Et |(Ũτn (t))

) = ψ∗ (|∂−Et |(u(t))
) = 0 if |u′|(t) = 0

. (3.13)

Finally, let
I := {

t ∈ (0, T ) : |u′|(t) �= 0
}
. (3.14)

Then,

i) if ψ∗ as well has superlinear growth, i.e. limx↑+∞ ψ∗(x)
x = +∞, we have the

further convergence

|∂Et |(Ũτn ) → |∂−Et |(u) in L1(I) as n ↑ ∞; (3.15)
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ii) in the general case, there exists a non increasing sequence {On}n of Borel sub-
sets of (0, T ) such that ∩n On = ∅ and, denoting by In the indicator function of
the set (0, T ) \ On, there holds

In · |∂Et |(Ũτn ) → |∂−Et |(u) in L1(I) as n ↑ ∞. (3.16)

3.3. An example on an infinite Banach manifold

We consider two Hilbert spaces V and H , such that V is densely and compactly
embedded in H (we identify H ≡ H ′ ⊂ V ′), and we denote by (·, ·) and ‖ · ‖ the
scalar product and the norm in H and by ‖ · ‖V the norm in V . We define the metric
space (X, 
) via

X = {u ∈ H : ‖u‖ = 1} , 
(u1, u2) := ‖u1 − u2‖ ∀ u1, u2 ∈ X ,

and take as σ the topology induced by the distance 
. We consider a functional
Ê ∈ C1(V ) fulfilling

Ê is convex and ∃�1, �2 > 0 s.t. Ê(v) ≥ �1‖v‖2
V − �2 ∀ v ∈ V , (3.17)

and we define E : X → (−∞, +∞] by

E(u) :=
{
Ê(u) for u ∈ V ∩ X ,
+∞ otherwise

∀ u ∈ X. (3.18)

The following results shed light on the local slope of E and on its chain rule prop-
erties.

Lemma 3.6. Under the above assumptions, we have for all u ∈ dom(E)

|∂E | (u) < +∞ ⇔ DÊ(u) ∈ H , and in this case

|∂−E |(u) = |∂E | (u) = ‖DÊ(u) − (DÊ(u), u)u‖ .

(3.19)

Proof. We fix u ∈ dom(E) and note that for all w ∈ V \ {0} such that (w, u) = 0
there exists a curve γ : [−ρ, ρ] → X with γ ∈ C1([−ρ, ρ]; V ) and γ ′(0) = w.
Then,

E(u) − E(γ (r))


(u, γ (r))
→ DÊ(u)[w]

‖w‖ as r → 0.

Being w arbitrary, we infer that

|∂E | (u)≥ sup
w∈V \{0},(w,u)=0

DÊ(u)[w]
‖w‖ ≥ sup

v∈V \{0}
DÊ(u)[v]−(DÊ(u),u)(v,u)

‖v‖

= ‖DÊ(u) − (DÊ(u), u)u‖ ,

(3.20)
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where the second inequality follows by writing every v ∈ V \{0} as v = (v, u)u+w,
and noting that (w, u) = (v, u) − (v, u)(u, u) = 0. On the other hand, for u ∈
dom(E) and v ∈ X one has (E(u) − E(v))+ > 0 if and only if v ∈ X ∩ V . Hence,
if DÊ(u) ∈ H we estimate

(E(u) − E(v))+

‖v − u‖ ≤
(

DÊ(u)[v − u]
)+

‖v − u‖

≤
(

DÊ(u)[v − u] − (DÊ(u), u)(u, v − u)
)+

‖v − u‖

+
(
(DÊ(u), u)(u, v − u)

)+

‖v − u‖

≤ ‖DÊ(u) − (DÊ(u), u)u‖

+ (DÊ(u), u)+ 1 − (u, v)√
2(1 − (u, v))

,

(3.21)

the first inequality due to the convexity of Ê and the last one to the identity ‖v −
u‖2 = 2(1 − (u, v)), since ‖u‖ = ‖v‖ = 1. We take the lim sup of (3.21) as
‖v − u‖ → 0 and conclude the converse inequality of (3.20). Hence, the formula
for |∂E | ensues. Using this, it is easy to check that the map u 
→ |∂E | (u) is lower
semicontinuous, whence (3.19).

Lemma 3.7. Under the above assumptions, the functional E defined by (3.18) com-
plies with the chain rule of Definition 2.5.

Proof. Let us point out that any curve u ∈ AC(0, T ; X) is a.e. differentiable with
values in H , so that

|u′|(t) = ‖u′(t)‖ for a.e. t ∈ (0, T ). (3.22)

Now, if u fulfills (2.28), necessarily u(t) ∈ V (whence E(u(t)) = Ê(u(t))) for all
t ∈ [0, T ]). Besides, the fact that |∂E | (u(t)) < +∞ for a.e. t ∈ (0, T ) yields by
Lemma 3.6 that DÊ(u(t)) ∈ H for a.e. t ∈ (0, T ). Since Ê is smooth on H , it
satisfies the chain rule

d

dt
E(u(t)) = d

dt
Ê(u(t)) = (u′(t), DÊ(u(t))) for a.e. t ∈ (0, T ). (3.23)

The constraint ‖u(t)‖ = 1 for all t ∈ [0, T ] implies that

(u′(t), u(t)) = 0 for a.e. t ∈ (0, T ). (3.24)
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Hence, recalling (3.19) and (3.22), we deduce that

d

dt
Ê(u(t)) =

(
u′(t), DÊ(u(t)) − (DÊ(u(t)), u(t))u(t)

)
≥ −‖u′(t)‖ |∂E | (u(t))

for a.e. t ∈ (0, T ) ,

namely the chain rule inequality (2.29).

Hence, the metric formulation (2.31)–(2.32) associated with the energy func-
tional E (3.18) and with the quadratic dissipation ψ(r) := 1

2r2 for all r ≥ 0 reads

find u ∈ AC(0, T ; X) s.t. the map t ∈ (0, T ) 
→ E(u(t))

is absolutely continuous, and

d

dt
E(u(t)) ≤ −1

2
‖u′(t)‖2 − 1

2
‖DÊ(u(t)) − (DÊ(u(t)), u(t))u(t)‖2

for a.e. t ∈ (0, T ).

(3.25)

In view of (3.17), E complies with the assumptions of our main Theorem 3.5, pro-
viding existence and approximation of a solution u ∈ AC(0, T ; X) to the Cauchy
problem for (3.25) for any initial datum u0 ∈ V ∩ X . It follows from the related en-
ergy identity (3.9) that u has the further regularity u ∈ H1(0, T ; H)∩L∞(0, T ; V ).
In fact, using the chain rule (3.23), (3.24), the energy identity (3.9) and the Cauchy-
Schwarz inequality we deduce that u solves the gradient flow equation{

u′(t) = −
(

DÊ(u(t)) − (DÊ(u(t)), u(t))u(t)
)

for a.e. t ∈ (0, T ) ,

‖u(t)‖ = 1 ∀ t ∈ [0, T ] .

4. Proof of the main result

4.1. Estimates for the (ψ)-Moreau-Yosida approximation

In this section we collect some general properties of the time-incremental problem
(3.2). Namely, given r > 0, t ∈ (0, T ), and u ∈ X , we study the minimization
problem

inf
v∈X

{
rψ

(

(u, v)

r

)
+ Et+r (v)

}
. (4.1)

Note that, in the case 
 is a distance on X , ψ(x) := x2/2, and the functional E
does not depend on t , (4.1) actually reduces to

inf
v∈X

{
d2(v, u)

r
+ E(v)

}
, (4.2)
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which is related to the Moreau-Yosida approximation of E . The properties of the
minimization problem (4.2) have been thoroughly studied in [5] (see also [45]). In
fact, Lemmas 4.4 and 4.5 below are an extension to our framework of analogous
results contained in [5, Chapter 3]. Besides the time dependence of the energy
functionals, one of the main difficulties here is given by the general choice of the
function ψ : indeed, we neither assume that ψ is strictly convex, nor that it is every-
where differentiable or even everywhere finite on [0, +∞).

Definition 4.1 (ψ-Moreau-Yosida approximation). For r > 0, we consider

Et,r (u; v) := rψ

(

(u, v)

r

)
+ Et+r (v),

and define the ψ-Moreau-Yosida approximation Et,r of the functionals E by

Et,r (u) := inf
v∈X

Et,r (u; v). (4.3)

We also denote by Jr (t, u) the set where the infimum in (4.3) is attained, i.e.

Jt,r (u) := Argmin
v∈X

Et,r (u; v). (4.4)

Remark 4.2 (Simplifying assumptions). By adding a positive constant to Et , we
can always assume that C0 = −1 in (2.19b), i.e.

inf
t∈[0,T ], v∈D

Et (v) ≥ 1; (4.5)

we can therefore set
F(v) := 
(xo, v) + E0(v) (4.6)

with

1

A
sup

t∈[0,T ]

(

(xo,v)+Et (v)

)
≤F(v)≤ A inf

t∈[0,T ]

(

(xo,v)+Et (v)

)
∀ v ∈ D, (4.7)

|∂tEt (v)| ≤ AF(v) ∀ v ∈ D, (4.8)

Et (v)≤(Es(v) +C1
(xo,v)|t − s|) exp(C1|t − s|) ∀t, s ∈[0, T ], v∈D, (4.9)

for a suitable constant A > 0 (all inequalities being trivial if v ∈ D \ D0).

Remark 4.3 (Elementary properties of ψ). Being 0 a minimum point for ψ , it is
immediate to check that ψ is non decreasing on dom(ψ). We denote by ψ ′− and
ψ ′+ respectively the (non decreasing) left and right derivatives of ψ on D(ψ) (we
set ψ ′+(a) = +∞), which satisfy

ψ ′−(x) ≤ ψ ′+(x), ∂ψ(x) = [ψ ′−(x), ψ ′+(x)] ∀ x ∈ dom(ψ). (4.10)

Since ψ has a superlinear growth, the conjugate function ψ∗ is finite at each y ∈
[0, +∞), non decreasing, and satisfies ψ∗(0) = 0.
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The following result collects some properties of Et,r .

Lemma 4.4. Under the same assumptions as in Theorem 3.5 and Remark 4.2, there
exists a constant C > 0 such that for every t ∈ [0, T ], u ∈ D0 there holds

F(ur ) ≤ CF(u) ∀ 0 < r ≤ min
(
1, T − t

)
, ur ∈ Jt,r (u), (4.11)

and

Et,r2(u) − CF(u)r2 ≤ Et,r1(u) − CF(u)r1 ≤ Et(u)

for every 0 < r1 < r2 ≤ min
(
1, T − t

)
;

(4.12)

in particular, the map r 
→ Et,r (u) is a linear perturbation of a non increasing
function and has bounded variation. Moreover,

lim
r↓0

sup
ur ∈Jt,r (u)


(u, ur ) = 0, lim
r↓0

Et,r (u) = Et(u), (4.13)

and

|∂Et+r |(ur ) ≤ ψ ′+
(


(u, ur )

r

)
if ur ∈ Jt,r (u) and 0 ≤ 
(u, ur )

r
< a. (4.14)

Proof.
Step 1: proof of (4.11). First of all, let us point out that the minimality of ur and
(4.7) yield

rψ

(

(u, ur )

r

)
≤ Et+r (u) ≤ AF(u) ∀ ur ∈ Jt,r (u). (4.15)

Let us now fix ρ > 0 so that ψ∗(ρ) < 1/2 and therefore, being r ≤ 1,

rψ

(

(u, ur )

r

)
≥ ρ
(u, ur ) − rψ∗(ρ) ≥ ρ
(u, ur ) − 1/2;

by the minimality of ur we thus get for C := 2A(1 + ρ−1)

F(ur ) ≤ C
(
ρ
(u, ur ) − 1/2 + Et+r (ur )

)
≤ C

(
rψ

(

(u, ur )

r

)
+ Et+r (ur )

)
≤ CEt+r (u) ≤ C AF(u),

the latter two passages following from (4.15).

Step 2: proof of (4.12). We first observe that, for every 0 < r1 < r2

Et,r2(u; v) − Et,r1(u; v) ≤ r2ψ

(

(u, v)

r2

)
− r1ψ

(

(u, v)

r1

)
+

∫ r2

r1

∂tEt+θ (v) dθ (4.16)

≤ A(r2 − r1)F(v) ∀ v ∈ D, (4.17)
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the last passage due to (4.8) and the fact that the map r 
→ rψ(x/r) is non in-
creasing. Choosing v = ur1 and recalling that Et,r2(u) ≤ Et,r2(u; ur1) we get by
(4.11)

Et,r2(u) − Et,r1(u) ≤ A(r2 − r1)F(ur1) ≤ C A(r2 − r1)F(u).

Step 3: proof of (4.13). From (4.15) and the definition of ψ∗ we get

M
(u, ur ) ≤ AF(u) + rψ∗(M) ∀ M > 0, ∀ r ≤ T − t, ∀ ur ∈ Jt,r (u).

Taking the supremum with respect to ur and the lim sup as r ↓ 0 we get

M lim sup
r↓0

sup
ur ∈Jt,r (u)


(u, ur ) ≤ AF(u) ∀ M > 0,

yielding the first limit in (4.13).
To check the second one, we note that, by (4.12), (4.13), (2.20), and the lower

semicontinuity of the functional u 
→ Et(u),

Et(u) ≥ lim sup
r↓0

Et,r (u) ≥ lim inf
r↓0

Et+r (ur ) ≥ Et(u).

Step 4: proof of (4.14). We may assume a < +∞, the case a = +∞ being easier
to handle. Hence, we fix r > 0, ur ∈ Jr (t, u) such that 
(u, ur ) < a, and for
simplicity we set E(u) := Et+r (u). We also suppose that |∂E |(ur ) > 0: otherwise,
the inequality would be trivial. Note that,

|∂E |(ur )= lim sup

(ur ,v)→0

(E(ur ) − E(v))+


(ur , v)
= lim sup


(ur ,v)→0, 
(u,v)>
(u,ur )

(E(ur ) − E(v))+


(ur , v)
.

Indeed, since |∂E |(ur ) > 0, there exists a sequence {vk} with 
(ur , vk) → 0 as
k ↑ ∞ and k̄ ∈ N such that

|∂E |(ur )= lim
k↑+∞

(E(ur )−E(vk))
+


(ur ,vk)
, with E(vk)<E(ur ),


(u,vk)

r
<a, (4.18)

for k ≥ k̄, the latter inequality following from the fact that 
(u, ur ) < a and

(ur , vk) → 0. Hence, 
(u, vk)>
(u, ur ) for all k ≥ k̄: otherwise, if 
(u, vk) ≤

(u, ur ), the minimization (4.1) would lead to

E(ur ) + rψ

(

(u, ur )

r

)
≤ E(vk) + rψ

(

(u, vk)

r

)
≤ E(vk) + rψ

(

(u, ur )

r

)
,
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(the second passage by the monotonicity of ψ), contrary to (4.18). Furthermore, for
every k ≥ k̄

E(ur ) − E(vk)


(ur , vk)
≤ r

ψ
(


(u,vk)
r

)
− ψ

(

(u,ur )

r

)

(ur , vk)

≤
ψ

(

(u,vk)

r

)
− ψ

(

(u,ur )

r

)

(u,vk)

r − 
(u,ur )
r

,

the first inequality following from (4.1), and the second one by the triangle inequal-
ity. Therefore, noting that 0 < 
(u, vk) − 
(u, ur ) ≤ 
(ur , vk) → 0, we have

|∂E |(ur ) = lim sup

(ur ,vk)→0

(E(ur ) − E(vk))
+


(ur , vk)

≤ lim inf

(ur ,vk)→0

ψ
(


(u,vk)
r

)
− ψ

(

(u,ur )

r

)

(u,vk)

r − 
(u,ur )
r

≤ lim sup
h↓0

ψ
(


(u,ur )
r + h

)
− ψ

(

(u,ur )

r

)
h

= ψ ′+
(


(u, ur )

r

)
.

Before proving the following lemma, which will play a crucial role later on, we re-
call for the reader’s convenience the well-known duality formula relating ψ and ψ∗

ψ∗(y) = yx − ψ(x) ∀y ∈ [ψ ′−(x), ψ ′+(x)]. (4.19)

Moreover, in the case in which D(ψ) = [0, a], with a < +∞, and � := ψ ′−(a) <

+∞, there holds

ψ∗(y) ≤ ψ∗(�) = �a − ψ(a) ∀y ≤ �,

ψ∗(y) = ya − ψ(a) = ψ∗(�) + (y − �)a ∀y > �.

(4.20)

Indeed, the first inequality follows from the monotonicity of ψ∗; on the other
hand, recalling that ∂ψ(a) = [�, +∞) and that ∂ψ∗ = (∂ψ)−1, we conclude
that ∂ψ∗(y) = {a} for y > �, whence the second of (4.20).

Lemma 4.5. Under the same assumptions as in Theorem 3.5, for every t ∈ [0, T ),
u ∈ D0, and for a.e. r > 0

the map r 
→ Et,r (u) is differentiable,

ψ ′−
(

(u, ur )/r

)
< +∞ at each point ur ∈ Jt,r (u),

(4.21)
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and

d

dr
Et,r (u) ≤ ∂tEt+r (ur ) − ψ∗

(
ψ−′

(

(u, ur )

r

))
, (4.22)

d

dr
Et,r (u) ≤ ∂tEt+r (ur ) − ψ∗ (|∂Et+r |(ur )) , (4.23)

where we adopt the convention of writing ψ ′−(0) = 0. In particular, we have

r0ψ

(

(u, ur0)

r0

)
+

∫ r0

0
ψ∗ (|∂Et+r |(ur )) dr + Et+r0(ur0)

≤ Et(u) +
∫ r0

0
∂tEt+r (ur ) dr,

(4.24)

for every 0 < r0 ≤ T − t and ur0 ∈ Jt,r0(u).

Proof. Preliminarily, let us point out that (4.16) yields for any r1, r2 > 0

Et,r2(u) − Et,r1(u) ≤ r2ψ

(

(u, ur1)

r2

)
− r1ψ

(

(u, ur1)

r1

)

+
(
Et+r2(ur1) − Et+r1(ur1)

)
.

(4.25)

Step 1: proof of (4.22). Since by (4.12) the map r 
→ Et,r (u) is a linear perturba-
tion of a monotone map, it is also almost everywhere differentiable on (0, +∞); let
r be a point of differentiability and let us choose r1 := r and r2 := r + h, h > 0,
(so that 
(u, ur )/(r + h) ∈ D(ψ) as well) in (4.25); we also set

G(h) :=Et,r+h(u)−Et+r+h(ur ) so that
d

ds
Et,s(u)

∣∣∣
s=r

= d

dh
G(h)

∣∣∣
h=0

− ∂tEt+r (ur ).

When 
(u, ur ) > 0 (4.25) yields, with easy calculations,

G(h)−G(0)

h
≤ 1

h

(
(r + h)ψ

(

(u, ur )

r + h

)
− rψ

(

(u, ur )

r

))

≤ψ

(

(u, ur )

r + h

)
− 
(u, ur )

r + h

ψ
(

(u,ur )

r+h

)
−ψ

(

(u,ur )

r

)

(u,ur )

r+h − 
(u,ur )
r

.

(4.26)

Letting h ↓ 0, also taking into account that ψ is continuous on int(dom(ψ)) we
have

ψ
(


(u,ur )
r+h

)
− ψ

(

(u,ur )

r

)

(u,ur )

r+h − 
(u,ur )
r

↑ ψ ′−
(


(u, ur )

r

)
as h ↓ 0.
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Therefore, we infer that

G ′(0) ≤ ψ

(

(u, ur )

r

)
− 
(u, ur )

r
ψ ′−

(

(u, ur )

r

)
=−ψ∗

(
ψ−′

(

(u, ur )

r

))

and the same relation holds even when 
(u, ur ) = 0, by the convention ψ ′−(0) = 0.

Step 2: proof of (4.23). If 
(u,ur)=0, then we may note that ψ∗(ψ ′+(
(u,ur)/r))=
ψ∗(ψ ′+(0)) = −ψ(0) = 0, so that (4.23) follows from (4.14), the monotonicity of
ψ∗, and (4.22).

The same argument shows that (4.23) is an immediate consequence of (4.14)
and (4.22) when ∂ψ is single valued, since in that case ψ ′− = ψ ′+.

In order to prove (4.23) in the general case, we can assume without loss of
generality that |∂Et+r |(ur ) > 0, and that

|∂Et+r |(ur ) ≥ ψ ′−
(


(u, ur )

r

)
.

If not, we would trivially conclude (4.23) from (4.22). On the other hand, by (4.14)

|∂Et+r |(ur ) ≤ ψ ′+
(


(u, ur )

r

)
, thus |∂Et+r |(ur ) ∈ ∂ψ

(

(u, ur )

r

)
. (4.27)

Let us denote by x the number 
(u,ur )
r : arguing as in the proof of Lemma 4.4, we

can select a sequence {vk} fulfilling


(ur , vk) → 0 as k ↑ ∞, 
(u, ur ) < 
(u, vk),

|∂Et+r |(ur ) = lim
k↑∞

Et+r (ur ) − Et+r (vk)


(ur , vk)
.

(4.28)

We also set

rk := 
(u, vk)

x
>


(u, ur )

x
= r,

noting that

rk ↓ r as k ↑ ∞, and

lim sup
k↑∞

Et+r (ur ) − Et+r (vk)


(ur , vk)
≤ lim sup


(ur ,vk)→0

Et+r (ur ) − Et+r (vk)

x(rk − r)

(4.29)
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by the triangle inequality. Therefore,

d

ds
Et,s(u)

∣∣∣
s=r

= lim
k↑∞

Et,rk (u) − Et,r (u)

rk − r

≤ lim inf
k↑∞

1

rk − r

(
Et+rk (vk) + rkψ

(

(u, vk)

rk

)
− Et+r (ur ) − rψ

(

(u, ur )

r

))

= lim inf
k↑∞

1

rk −r

(
ψ(x)(rk −r)+(

Et+rk (vk)−Et+r (vk)
)+(Et+r (vk)−Et+r (ur ))

)
≤ ψ(x) + lim sup

k↑∞
Et+rk (vk) − Et+r (vk)

rk − r
− lim

k↑∞
Et+r (ur ) − Et+r (vk)

rk − r

≤ ∂tEt+r (ur ) + ψ(x) − x |∂Et+r |(ur ) = ∂tEt+r (ur ) − ψ∗ (|∂Et+r |(ur )) , (4.30)

where the fifth passage follows from (2.36), (4.28), and (4.29), whereas the last
identity is due to (4.19) and (4.27).

We argue analogously in the case in which int
(
dom(ψ)

) = (0, a), with a <

+∞, and 
(u, ur )/r = a. Indeed, we repeat (4.28)-(4.30), the only difference
being that the final identity in (4.30) follows now from (4.20).
Step 3: proof of (4.24). We note that for every r0 > 0 and every (measurable)
selection ur ∈ Jr (t, u), r ∈ (0, r0],

ψ

(

(u, ur0)

r0

)
+ Et+r0(ur0) − Et(u)=Et,r0(u) − lim

r↓0
Et,r (u)≤

∫ r0

0

d

dr
Et,r (u) dr

≤
∫ r0

0

(
∂tEt+r (ur ) − ψ∗ (|∂Et+r |(ur ))

)
dr,

where we have used (4.13) in the first passage, the monotonicity (up to a linear
perturbation) of r 
→ Et,r (u) in the second passage and, finally, (4.23).

4.2. Estimates for the approximate solutions

A priori estimates

Preliminarily, we recall the following well-known Discrete Gronwall Lemma:

Lemma 4.6. Let B, b, and κ be positive constants with 1 − b ≥ 1
κ

> 0 and let
{an} ⊂ [0, +∞) be a sequence satisfying

an ≤ B + b
n∑

k=1

ak ∀n ∈ N.

Then, {an} can be bounded by

an ≤ κ Beκ bn ∀ n ∈ N. (4.31)
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Proposition 4.7 (A priori estimates). Under the assumptions of Theorem 3.5, for
τ > 0 let {U n

τ }N
n=1 be a family of solutions to (3.2), and let U τ , U τ , and Ũτ be the

interpolants defined by (3.3) and (3.5). Then, the discrete energy inequality∫ tτ

sτ

ψ

(

(U τ (r),U τ (r))

τ

)
dr +

∫ tτ

sτ

ψ∗ (|∂Er |(Ũτ (r))
)

dr +Etτ (U τ (tτ ))

≤ Esτ (U τ (sτ )) +
∫ tτ

sτ

∂tEr (Ũτ (r)) dr

(4.32)

holds for every pair of nodes sτ < tτ ∈ Pτ . Moreover, there exists a positive
constant C such that the following estimates hold for every τ > 0:∫ T

0
ψ

(

(U τ (r), U τ (r))

τ

)
dr ≤ C,

∫ T

0
ψ∗ (|∂Er |(Ũτ (r))

)
dr ≤ C, (4.33)

F(U τ (t)) ≤ C, F(Ũτ (t)) ≤ C ∀t ∈ (0, T ), (4.34)

sup
t∈(0,T )


(U τ (t),Ũτ (t))=o(1), sup
t∈(0,T )


(U τ (t),U τ (t))=o(1) as τ ↓ 0. (4.35)

Proof. Let t j−1, t j be two consecutive nodes of the partition Pτ (cf. (3.1)), and let
t ∈ (t j−1, t j ] : referring to the definition (4.3) of the Moreau-Yosida approximation

Et,r , let us apply inequality (4.24) with the choices t = t j−1, u = U j−1
τ , r0 =

t − t j−1, ur0 = Ũτ (t), ur = Ũτ (r) for r ∈ (t j−1, t). Thus, after changing variable
in the two integrals we obtain

(t−t j−1)ψ

(

(U j−1

τ ,Ũτ (t))

t − t j−1

)
+

∫ t

t j−1

ψ∗(|∂Er |(Ũτ (r))
)

dr +Et (Ũτ (t))

≤ Et j−1(U
j−1
τ ) +

∫ t

t j−1

∂tEr (Ũτ (r)) dr ∀ t ∈ (t j−1, t j ].
(4.36)

Writing (4.36) for t = t j , we obtain

∫ t j

t j−1

ψ

(

(U τ (r), U τ (r))

τ

)
dr +

∫ t j

t j−1

ψ∗ (|∂Er |(Ũτ (r))
)

dr + Et j (U
j
τ )

≤ Et j−1(U
j−1
τ ) +

∫ t j

t j−1

∂tEr (Ũτ (r)) dr.

(4.37)

Hence, (4.32) follows by adding up the contributions (4.37) on the subintervals of
the partition. It follows from the superlinear growth of ψ that there exists a positive
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constant C such that∫ t j

t j−1

ψ

(

(U τ (r), U τ (r))

τ

)
dr ≥ 
(U j−1

τ , U j
τ ) − Cτ

≥ 
(xo, U j
τ ) − 
(xo, U j−1

τ ) − Cτ,

(4.38)

the last passage following from the triangle inequality. Combining (4.37) and
(4.38), recalling that ψ∗ is positive (cf. Remark 4.3), summing over the index j ,
and using (4.7), we obtain

1

A
F(U j

τ ) ≤ 
(xo, U j
τ ) + Et j (U

j
τ )

≤ CT + 
(xo, u0) + E0(u0) +
∫ t j

0
∂tEr (Ũτ (r)) dr

≤ CT + 
(xo, u0) + E0(u0) + A
∫ t j

0
F(Ũτ (r)) dr

≤ CT + 
(xo, u0) + E0(u0) + AC
∫ t j

0
F(U τ (r)) dr,

(4.39)

the third inequality following from (4.8) and the fourth one from (4.11). Therefore,
we deduce that

F(U j
τ ) ≤ c0 + C

j∑
k=1

τF(U k
τ ) ∀ j = 1, . . . , N ,

where the constant c0 only depends on the initial and the problem data. Then, the
discrete Gronwall Lemma 4.6 yields the first estimate in (4.34), and the second one
readily follows thanks to (4.11). Recalling (4.8), we also infer that∫ t j

0

∣∣∂tEr (Ũτ (r))
∣∣ dr ≤ C for all τ > 0. (4.40)

Therefore, summing up over the index j and arguing by comparison in (4.37) we
conclude the estimates of (4.33).

Finally, in order to check the first limit in (4.35) (in fact, the second one in
(4.35) can be proved in the same way), we start by noting that, from (4.36), the
positivity of ψ∗ and the previous estimates

(t − t j−1)ψ

(

(U j−1

τ , Ũτ (t))

t − t j−1

)
≤ C ∀t ∈ (t j−1, t j ], j = 1, . . . N .

Combining this with the superlinear growth of ψ we obtain that for any M ≥ 0
there exists S ≥ 0 fulfilling


(U τ (t), Ũτ (t))≤ C

M
+(t−t j−1)

S

M
≤ C

M
+τ

S

M
∀ t ∈(t j−1, t j ], ∀ j =1, . . . , N .
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Thus, we easily deduce that for any ε>0 there exist τ0 >0 such that for 0<τ <τ0


(U τ (t), Ũτ (t)) ≤ ε ∀t ∈ (0, T ),

whence the desired conclusion.

4.3. Passage to the limit and proof of existence

The proof of the ensuing Proposition 4.9 is an adaptation of the argument developed
for [5, Corollary 3.3.4], and is based on the following version of the Ascoli-Arzelà
compactness theorem, proved in [5, Proposition 3.3.1], which for convenience we
recall here, in a slightly simplified form.

Proposition 4.8. Under assumptions (2.1)–(2.2) on the space X, let K be a σ -
sequentially compact subset of X with the following property: for all {un}, {vn}, u,
v ∈ K,

(un, vn)
σ
⇀ (u, v) ⇒ lim inf

n↑∞ 
(un, vn) ≥ 
(u, v). (4.41)

Let {un} be a sequence of curves un : [0, T ] → X fulfilling

un(t) ∈ K ∀n ∈ N , ∀t ∈ [0, T ], (4.42)

lim sup
n↑∞


(un(s), un(t)) ≤ ω(s, t) ∀s, t ∈ [0, T ], s < t, (4.43)

where ω : [0, T ] × [0, T ] → [0, +∞) is a function such that

lim
s↑r, t↑r s<t

ω(s, t) = 0 ∀r ∈ [0, T ].
Then, there exist an increasing subsequence k 
→ nk and a σ -continuous curve
u : [0, T ] → X such that

unk (t)
σ
⇀ u(t) ∀t ∈ [0, T ],

and the limit curve u satisfies

lim
r↑s


(u(r), u(s)) = lim
t↓s


(u(s), u(t)) = 0 ∀ s ∈ (0, T ). (4.44)

Proposition 4.9 (Compactness of the approximate solutions). Under the as-
sumptions of Theorem 3.5, given any vanishing sequence τn ↓ 0 of time steps,
there exist a subsequence (still labeled τn), a limit curve u ∈ AC(0, T ; X0), and a
function L ∈ L1(0, T ) such that the following convergences hold as n ↑ ∞

U τn (t)
σ
⇀ u(t), U τn

(t)
σ
⇀ u(t), Ũτn (t)

σ
⇀ u(t) ∀t ∈ [0, T ], (4.45)

lim inf
n↑∞ Et (Ũτn (t))≥Et (u(t)), lim inf

n↑∞ Etτn (t)(U τn (t))≥Et (u(t)) ∀t ∈[0, T ], (4.46)


(U τn
, U τn )

τn
⇀ L in L1(0, T ), L(t)≥|u′|(t) for a.e. t ∈(0, T ), (4.47)

lim inf
n↑∞ |∂Et |(Ũτn (t)) ≥ |∂−Et |(u(t)) ∀t ∈ [0, T ]. (4.48)
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Proof. It is easy to see that estimate (4.33) and the superlinear growth of ψ entail
that the family{


(U τ (r), U τ (r))

τ

}
τ

is bounded and uniformly integrable in L1(0, T ).

Therefore, the Dunford-Pettis criterion ensures that it is weakly relatively compact
in L1(0, T ), whence the first of (4.47).

Exploiting (4.34) and assumption (2.38) on the sublevels of F , we can apply
Proposition 4.8 to the sequence {U τn }, of course with K as a suitable sublevel of
F (note that (4.41) is then a consequence of (2.34)). Moreover, in order to check
(4.43), let us note that, by the triangle inequality,


(U τn (s), U τn (t)) ≤
∫ tτn (t)

tτn (s)


(U τn
(r), U τn (r))

τn
dr ∀ 0 ≤ s ≤ t ≤ T .

Therefore, passing to the limit as n ↑ ∞ and recalling (2.34), (3.4) and (4.47), we
infer


(u(s), u(t))≤ lim sup
n↑∞


(U τn (s), U τn (t))≤
∫ t

s
L(r) dr ∀ 0≤s ≤ t ≤T, (4.49)

whence (4.43).
Thus, thanks to Proposition 4.8 we find a limit curve u ∈ C0([0, T ]; X) and a

subsequence along which

U τn (t)
σ
⇀ u(t) ∀t ∈ [0, T ].

Convergences (4.45) for U τn
and Ũτn then follow from (4.35) and (2.39); further,

u ∈ AC(0, T ; X0) by (4.49). The second inequality in (4.47) also follows from
(4.49) and Proposition 2.2.

As far as (4.46) is concerned, the first lim inf inequality ensues from (4.45),
estimate (4.34) and the lower semicontinuity assumption (2.34); in the same way,
from (2.35) we deduce that

lim sup
n↑∞

∂tEt (Ũτn (t)) ≤ ∂tEt (u(t)) ∀ t ∈ [0, T ]. (4.50)

Finally, in order to prove the second of (4.46), we combine the estimate∣∣∣Etτn (t)(U τn (t)) − Et (U τn (t))
∣∣∣ ≤

∫ tτn (t)

t
∂tEr (U τn (t)) dr

≤ A
∫ tτn (t)

t
F(U τn (t)) dr

≤ C(tτn (t) − t) ∀ t ∈ [0, T ]
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with the lower semicontinuity inequality (again due to (2.34))

lim inf
n↑∞ Et (U τn (t)) ≥ Et (u(t)) ∀ t ∈ [0, T ].

In the end, (4.48) follows from (4.45) and the definition (2.18) of |∂−E |.

We may now complete the proof of Theorem 3.5.

Proof of Theorem 3.5. By (4.45), u(0) = u0. Let us fix t ∈ (0, T ] and consider
inequality (4.32) for the nodes tτn (t) and s = 0:∫ tτn (t)

0
ψ

(

(U τn

(r), U τn (r))

τn

)
dr +

∫ tτn (t)

0
ψ∗ (|∂Er |(Ũτn (r))

)
dr

+ Etτn (t)(U τn (t))

≤ E0(u0) +
∫ tτn (t)

0
∂tEr (Ũτn (r)) dr.

(4.51)

We have

lim inf
n↑∞

(∫ tτn (t)

0
ψ

(

(U τn

(r), U τn (r))

τn

)
dr

)
≥

∫ t

0
ψ(L(r)) dr

≥
∫ t

0
ψ(|u′|(r)) dr,

(4.52)

the first inequality due to the first of (4.47) and the convexity of ψ , while the second
inequality follows from the second of (4.47) and the monotonicity of ψ. Now, for
later convenience let us set A(t) := lim infn↑∞ |∂Et |(Ũτn (t)) for a.e. t ∈ (0, T ). By
Fatou’s lemma and the monotonicity of ψ∗ we have

lim inf
n↑∞

(∫ tτn (t)

0
ψ∗(|∂Er |(Ũτn (r))

)
dr

)
≥

∫ tτn (t)

0
lim inf

n↑∞ ψ∗(|∂Er |(Ũτn (r))
)

dr

≥
∫ t

0
ψ∗ (A(r)) dr

≥
∫ t

0
ψ∗ (|∂−Er |(u(r))

)
dr.

(4.53)

Furthermore, (4.52), (4.53), and the a priori estimates (4.33) also entail∫ T

0
|u′|(r)|∂−Er |(u(r)) dr ≤

∫ T

0
ψ(|u′|(r)) dr

+
∫ T

0
ψ∗ (|∂−Er |(u(r))

)
dr ≤ C.

(4.54)
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In the same way, we find that

Et (u(t)) +
∫ T

0
|∂tEt (u(t))| dt ≤ C ∀ t ∈ [0, T ]. (4.55)

Now, combining (4.45), (4.46), (4.50), (4.52)–(4.53), and exploiting the Fatou lem-
ma, we manage to pass to the limit in (4.51) and obtain∫ t

0
ψ(|u′|(r)) dr +

∫ t

0
ψ∗ (|∂−Er |(u(r))

)
dr + Et (u(t))

≤ E0(u0) +
∫ t

0
∂tEr (u(r)) dr.

(4.56)

On the other hand, note that, thanks to (4.54) and (4.55), we may apply the chain
rule of Definition 2.5 to the limit curve u ∈ AC(0, T ; X0). Upon integration, we
get

E0(u0) − Et (u(t)) +
∫ t

0
∂tEr (u(r)) dr ≤

∫ t

0
|u′|(r)|∂−Er |(u(r)) dr

≤
∫ t

0
ψ

(|u′|(r)
)

dr +
∫ t

0
ψ∗ (|∂−Er |(u(r))

)
dr.

Thus, (4.56) yields∫ t

0

(
ψ

(|u′|(r)
) + ψ∗ (|∂−Er |(u(r))

) + d

dr
Er (u(r)) − ∂tEr (u(r))

)
dr = 0.

Since the integrand is non negative by inequality (2.29) and t ∈ (0, T ) is arbitrary,
we deduce

ψ
(|u′|(t)) + ψ∗ (|∂−Et |(u(t))

) + d

dt
Et (u(t)) − ∂tEt (u(t)) = 0

for a.e. t ∈ (0, T )

(4.57)

i.e., (3.8), whence (2.33) as well. The above relation yields the energy identity (3.9)
upon integration.

Finally, taking the lim sup as n ↑ ∞ of (4.51) and again using the identity just
proved, we deduce

lim sup
n↑∞

( ∫ tτn (t)

0
ψ

(

(U τn

(r), U τn (r))

τn

)
dr +

∫ tτn (t)

0
ψ∗ (|∂Er |(Ũτn (r))

)
dr

+ Etτn (t)(U τn (t))

)
≤ E0(u0) +

∫ t

0
∂tEr (u(r)) dr

=
∫ t

0
ψ

(|u′|(r)
)

dr +
∫ t

0
ψ∗ (|∂−Er |(u(r))

)
dr + Et (u(t)).



132 RICCARDA ROSSI, ALEXANDER MIELKE AND GIUSEPPE SAVARÉ

So, taking into account (4.46), (4.52), and (4.53) and arguing by comparison, we
deduce convergences (3.10)–(3.11) and the first of (3.12). We also conclude the
second of (3.12) by taking the lim sup as n ↑ ∞ of the following inequality∫ tτn (t)

0
ψ

(

(U τn

(r), U τn (r))

τn

)
dr +

∫ t

0
ψ∗ (|∂Er |(Ũτn (r))

)
dr + Et (Ũτn (t))

≤ E0(u0) +
∫ tτn (t)

0
∂tEr (Ũτn (r)) dr

(which is obtained by summing up (4.32) and (4.36)), and arguing as in the above
lines.

In order to prove (3.13), we note that, combining (4.53) with (3.11) leads to

lim
n↑∞

∫ t

0
ψ∗ (|∂Er |(Ũτn (r))

)
dr =

∫ t

0
lim inf

n↑∞ ψ∗ (|∂Er |(Ũτn (r))
)

dr

=
∫ t

0
ψ∗ (A(r)) dr

=
∫ t

0
ψ∗ (|∂−Er |(u(r))

)
dr ∀t ∈ [0, T ],

(4.58)

whence

lim inf
n↑∞ ψ∗ (|∂Et |(Ũτn (t))

) = ψ∗(A(t)) = ψ∗(|∂−Et |(u(t))) for a.e. t ∈ (0, T ).

Recalling (2.33), we conclude that for a.e. t ∈ (0, T )

|u′|(t) · A(t) ≤ ψ
(|u′|(t)) + ψ∗(A(t))

= |u′|(t) · |∂−Et |(u(t)) ≤ |u′|(t) · A(t)
(4.59)

so that all the above inequalities hold as equalities and, if |u′|(t) �= 0, we conclude
A(t) = |∂−Et |(u(t)), while |u′|(t) = 0 leads to the second of (3.13).

Finally, suppose first that ψ∗ has superlinear growth at infinity: it follows from
the a priori estimate (4.33) that the sequence {|∂Et |(Ũτn )} is uniformly integrable in
L1(0, T ). Hence, the fundamental compactness theorem of Young measures theory
(see [10, Theorem 1] and also [12]) ensures that {|∂Et |(Ũτn )} admits a subsequence
(which we do not relabel) and a limit Young measure ν = {νt }t∈(0,T ) (νt being a
probability measure on R for a.e. t ∈ (0, T )) such that

νt is concentrated on the set L(t)

of the limit points of {|∂Et |(Ũτn )(t)} for a.e. t ∈ (0, T ), (4.60)

|∂Et |(Ũτn ) ⇀ �(t) :=
∫

R

ξ dνt (ξ) in L1((0, T )), (4.61)

lim inf
n↑∞

∫ T

0
ψ∗(|∂Er |(Ũτn )(r)) dr ≥

∫ T

0

(∫
R

ψ∗(ξ) dνr (ξ)

)
dr. (4.62)
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Now, the definition of |∂−E | gives for a.e. t ∈ (0, T )

|∂−Et |(u(t)) ≤ ξ, whence ψ∗(|∂−Et |(u(t))) ≤ ψ∗(ξ) ∀ ξ ∈ L(t). (4.63)

Combining the above inequality, (4.58), (4.60), and (4.62), we deduce that∫ T

0

(∫
R

ψ∗(ξ) dνr (ξ)

)
dr =

∫ T

0
ψ∗(|∂−Er |(u(r))) dr,

whence, again by (4.63),

ψ∗(ξ) = ψ∗(|∂−Et |(u(t))) for a.e. ξ ∈ L(t) for a.e. t ∈ (0, T ). (4.64)

Taking into account the above identity, (2.33) and the first of (4.63) we thus con-
clude the following chain of inequalities

|u′|(t) ξ ≤ ψ(|u′|(t)) + ψ∗(ξ) = ψ(|u′|(t)) + ψ∗(|∂−Et |(u(t)))

=|u′|(t) |∂−Et |(u(t))≤|u′|(t) ξ ∀ ξ ∈L(t) for a.e. t ∈ (0, T ).
(4.65)

Then, recalling the definition (3.14) of the set I, we conclude that

ξ = |∂−Et |(u(t)) ∀ ξ ∈ L(t) for a.e. t ∈ I. (4.66)

Therefore, the limit Young measure ν is such that for a.e. t ∈ I its disintegration
νt coincides with the Dirac mass δ|∂−Et |(u(t)) . Since the sequence {|∂Et |(Ũτn )} is
uniformly integrable, we conclude (3.15).

Without the superlinear growth assumption on ψ∗, using a version of the Biting
Lemma (see e.g. [50, Theorem 13]) we deduce that there is a sequence of Borel sub-
sets On ⊂ (0, T ), decreasing to ∅, such that, denoting by In the indicator function
of the set (0, T ) \ On the sequence ωn := In |∂Et |(Ũτn ) is uniformly integrable in
L1(0, T ). Thus, we apply [10, Theorem 1] to the sequence {ωn}, find an associated
limit Young measure µ = {µt }t∈(0,T ), and conclude relations (4.60)–(4.62) for a
(not relabeled) subsequence {ωn}. Since the sequence On ↓ ∅, we may check that
for a.e. t ∈ (0, T ) the set of the limit points of {ωn(t)} coincides with the set of
the limit points of {|∂Et |(Ũτn )(t)}, hence relations (4.63) hold as well. On the other
hand,

lim inf
n↑∞

∫ T

0
ψ∗(ωn(r)) dr ≤ lim inf

n↑∞

∫ T

0
ψ∗(|∂Er |(Ũτn )(r)) dr

=
∫ T

0
ψ∗(|∂−Er |(u(r))) dr

so that we similarly conclude (4.64) for the Young measure µ. Arguing exactly in
the same way as above, we infer (3.16).

Hence, the proof is done.
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Part II: applications in Banach spaces

5. Preliminaries in Banach spaces

In this part, we focus our attention on the case in which the ambient space X (cf.
(2.1)) is a separable Banach space: to stress this assumption, we shall indicate it
with the letter B. We shall denote by ‖ · ‖ the norm of B, by ‖ · ‖∗ the norm on the
dual space B ′ and by 〈·, ·〉 the duality pairing between B ′ and B.

For simplicity, in the sequel we shall work with non symmetric distances 
 on
B taking values in [0, +∞). Furthermore, to fix ideas we shall suppose that

σ is the strong topology of B.

5.1. Sublinear functionals

Let us recall that a sublinear functional is a convex and positively homogeneous
map η : B → [0, +∞), thus satisfying the following conditions:

η(λv) = λη(v) ∀ λ ≥ 0 ∀ v ∈ B (5.1a)

η(v + w) ≤ η(v) + η(w) ∀ v, w ∈ B. (5.1b)

It is easy to check that η(0) = 0 and it is well known that, among all the positively
homogeneous maps satisfying (5.1a), condition (5.1b) is equivalent to the convexity
of η. We also assume that there exists a positive constant K such that

K −1‖v‖ ≤ η(v) ≤ K‖v‖ ∀v ∈ B. (5.1c)

The choice

(u, v) := η(v − u) ∀ u, v ∈ B (5.2)

induces an asymmetric distance on B which satisfies the properties of Section 2.1
and is metrically equivalent to the distance induced by the norm of B. Therefore,
given a proper functional E : B → (−∞, +∞] and a point u ∈ dom(E), we shall
use the notation

|∂E | (u) = lim sup
v→u

(E(u) − E(v))+


(u, v)
, (5.3)

and accordingly consider the relaxed slope |∂−E | (2.18).

Duality

For any u ∈ B we also introduce the dual functional η∗ := B ′ → [0, +∞) defined
by

η∗(σ ) := sup
v∈B\{0}

〈σ, v〉
η(v)

= sup
{
〈σ, v〉 : η(v) = 1

}
∀σ ∈ B ′ ∀u ∈ B. (5.4)



METRIC APPROACH TO DOUBLY NONLINEAR EVOLUTION EQUATIONS 135

Note that if η is a norm, then the related functional η∗ coincides with the corre-
sponding dual norm of B ′. Further, (5.1c) implies, respectively,

K −1‖y‖∗ ≤ η∗(y) ≤ K‖y‖∗ ∀ y ∈ B ′. (5.5)

Let ψ : [0, +∞) → [0, +∞) be a positive, convex, and lower semicontinuous
function. We define the functional � : B → [0, +∞) by

�(v) := ψ(η(v)) ∀ v ∈ B, (5.6)

and denote by ∂� its subdifferential and by �∗ its Fenchel-Moreau conjugate

�∗(σ ) := sup
v∈B

(〈σ, v〉 − �(v)) .

In the sequel, we shall need the following duality result.

Lemma 5.1. The conjugate of � is given by

�∗(σ ) := ψ∗(η∗(σ )) ∀ σ ∈ B ′. (5.7)

Moreover, we have the following characterization of the subdifferential ∂�: for all
v ∈ B

σ ∈ ∂�(v) ⇐⇒
(
η∗(σ ) ∈ ∂ψ(η(v)) and η∗(σ ) · η(v) = 〈σ, v〉

)
. (5.8)

Proof. It follows from the definition of η∗ that 〈σ, v〉 ≤ η(v) η∗(σ ) for all v ∈ B
and σ ∈ B ′. Hence, by the definition of �∗ we have

�∗(σ ) ≤ sup
v∈B

(
η(v) · η∗(σ ) − ψ(η(v))

)
= sup

r≥0

(
r η∗(σ ) − ψ(r)

)
= ψ∗(η∗(σ )).

On the other hand, for any σ ∈ B ′ we can find a sequence {vn} fulfilling η(vn) = 1,

and η∗(σ ) = limn↑∞〈σ, vn〉. Then, for any r ≥ 0

rη∗(σ ) − ψ(r) = lim
n↑∞ (〈σ, rvn〉 − ψ (r η(vn))) = lim

n↑∞ (〈σ, rvn〉 − ψ (η (rvn)))

≤ sup
v∈B

(
〈σ, v〉 − ψ(η(v))

)
= �∗(σ ),

and (5.7) ensues.
Thanks to (5.7), it is straightforward to check that(

�(v) + �∗(σ ) = 〈σ, v〉
)

⇔
(
ψ(η(v)) + ψ∗(η∗(σ )) = η(v) · η∗(σ ) = 〈σ, v〉

)
.

On the other hand, the standard convex analysis characterization of the subdifferen-
tial in terms of the Legendre-Fenchel-Moreau transform yields

σ ∈ ∂�(v) ⇔ �(v) + �∗(σ ) = 〈σ, v〉,
η∗(σ ) ∈ ∂ψ(η(v)) ⇔ ψ(η(v)) + ψ∗(η∗(σ )) = η(v) · η∗(σ ).

Combining the above relations, we readily deduce (5.8).
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5.2. Subdifferential and slopes for admissible functionals

Definition 5.2 (Fréchet subdifferential). Let E : B → (−∞, +∞] be a proper
functional; the Fréchet subdifferential ∂E(u) ⊂ B ′ of E at a point u ∈ dom(E) is
defined by

ξ ∈ ∂E(u) ⇔ lim inf
w→u

E(w) − E(u) − 〈ξ, w − u〉
‖w − u‖ ≥ 0. (5.9)

It is well known that the subdifferential is single-valued and coincides with the usual
differential DE when it exists, e.g. if E is a functional of class C1. If E is convex,
then ∂E can be equivalently characterized by

ξ ∈ ∂E(u) ⇔ E(w) − E(u) ≥ 〈ξ, w − u〉 ∀ w ∈ B,

i.e. the Fréchet subdifferential coincides with the subdifferential in the sense of
convex analysis. In fact, in the sequel we shall consider a more general convexity
property.

λ-convexity

We recall that a proper functional E : B → (−∞, +∞] is λ-convex for some
λ ∈ R if

E(uθ ) ≤ (1 − θ)E(u0) + θE(u1) − 1

2
λθ(1 − θ)‖u0 − u1‖2

∀ θ ∈ [0, 1] ∀ u0, u1 ∈ B ,

(5.10)

where we have set uθ = (1 − θ)u0 + θu1. The following result extends [5, Propo-
sition 1.4.4, Theorem 2.4.9] to the asymmetric setting and to λ-convex functionals.

Lemma 5.3. Let E : B → (−∞, +∞] be proper, lower semicontinuous, and λ-
convex for some λ ∈ R. Then,

1. for all u ∈ dom(E) the Fréchet subdifferential ∂E(u) is a convex weakly∗-closed
set, it can be characterized by

ξ ∈ ∂E(u) ⇔ E(w) − E(u)≥〈ξ, w − u〉 + λ

2
‖w − u‖2 ∀ w ∈ B , (5.11)

and the graph of the operator ∂E is strongly-weakly∗ closed, namely

un → u, ξn⇀
∗ξ, ξn ∈ ∂E(un) ⇒ ξ ∈ ∂E(u). (5.12)

2. Let η be a positively homogeneous functional fulfilling (5.1a,b,c) and inducing
the asymmetric distance 
 (5.2); let |∂E | be the 
-local slope of E . Then,

|∂E | (u)= sup
v �=u

(E(u)−E(v)

η(v − u)
− 1

2
|λ|K 2η(v − u)

)+
∀ u ∈ dom(E), (5.13)

|∂E | (u) = min
ξ∈∂E(u)

η∗(−ξ) ∀ u ∈ dom(E) , (5.14)

the map u 
→ |∂E | (u) is lower semicontinuous. (5.15)
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Proof. Easy computations lead to (5.11), which in turn yields (5.12). Further, we
note that (5.1c) and (5.10) yield that

E(uθ )≤(1−θ)E(u0)+θE(u1)+|λ|
2

K 2θ(1−θ)η2(u1−u0) ∀ θ ∈[0,1] ∀ u0, u1∈ B.

Moving from the above inequality and repeating the very same computations as in
the proof of [5, Theorem 2.4.9], one checks (5.13). Finally, (5.11) and (5.1c) again
yield that for all u ∈ dom(E)

E(u) − E(u + w) − 1

2
|λ|K 2η2(w) ≤ 〈−ξ, w〉 ∀ w ∈ B ∀ ξ ∈ ∂E(u).

Taking into account (5.13), we deduce that

|∂E | (u) ≤ min
ξ∈∂E(u)

η∗(−ξ) .

To prove the converse inequality, we introduce the quantity

δE(u; w) := lim sup
ε↓0

E(u + εw) − E(u)

ε
for u ∈ dom(E), w ∈ B.

Using the λ-convexity inequality (5.10) and the definition of |∂E | it is not difficult
to check that

the map w 
→ δE(u; w) is convex for all u ∈ dom(E) ,{
E(u + w) − E(u) ≥ δE(u; w) + λ

2 ‖w‖2

δE(u; w) ≥ −|∂E | (u) η(w)
∀ u ∈dom(E), w∈ B .

(5.16)

Now, mimicking the proof of [5, Proposition 1.4.4], we consider the epigraph

K+ = {(w, r) ∈ B × R : r ≥ δE(u; w)}
of the function w 
→ δE(u; w) and the open hypograph

K− = {(w, r) ∈ B × R : r < −|∂E | (u) η(w)}
of w 
→ −|∂E | (u) η(w). Since K+ and K− are disjoint by (5.16), a version of the
Hahn-Banach theorem yields that there exists ξ ∈ B ′ and α ∈ R such that

−|∂E | (u) η(w) ≤ 〈ξ, w〉 + α ≤ δE(u; w) ∀ w ∈ B. (5.17)

A standard argument shows that α = 0. Hence, from the first inequality in (5.17)
and the arbitrariness of w we deduce that η∗(−ξ) ≤ |∂E | (u). The second of (5.17),
combined with (5.16), gives that ξ fulfills (5.11). Thus, ξ ∈ ∂E(u), and (5.14)
ensues. Finally, in order to check (5.15) we fix a sequence un → u with � :=
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lim infn↑∞ |∂E | (un) < +∞. For any ε > 0 there exists a subsequence {un′ } and,
accordingly, a sequence {ξn′ } ⊂ B ′, with ξn′ ∈ ∂E(un′) for all n′, fulfilling

lim
n′↑∞

η∗(−ξn′) = lim
n′↑∞

min
ξ∈∂E(un′ )

η∗(−ξ) = lim
n′↑∞

|∂E | (un′) ≤ � + ε.

Due to (5.1c), {ξn′ } is bounded in B ′, hence, up to a subsequence, we deduce that
ξn′⇀∗ξ , with ξ ∈ ∂E(u) by (5.12). Thus, thanks to (5.14) and the weak∗-lower
semicontinuity of η∗ we deduce

|∂E | (u) ≤ η∗(−ξ) ≤ lim
n′↑∞

|∂E | (un′) ≤ lim inf
n↑∞ |∂E | (un) + ε.

Being ε arbitrary, (5.15) follows.

Admissible functionals

We are now in the position of introducing the broadest class of (energy) functionals
which we are going to tackle in the framework of our metric approach to doubly
nonlinear evolution equations.

Definition 5.4 (Admissible functionals). We say that a proper and lower semicon-
tinuous functional E : B → (−∞, +∞] is admissible if it can be decomposed into
the sum E = E1 + E2, the functionals E1 and E2 satisfying the following conditions

E1 is proper, λ-convex for some λ ∈ R, lower semicontinuous,

and bounded from below,

E2 is proper and

∀{un} ⊂ B, (un → u, sup
n

E1(un) < +∞) ⇒ lim inf
n↑∞ E2(un) ≥ E2(u) ;

(5.18)

∀ M > 0 ∃ 0 < K1 < 1, K2 > 0 s.t.

E2(u) ≥ −K1E1(u) − K2 ∀ u ∈ B with ‖u‖ ≤ M,
(5.19)

∀ u ∈ dom(E) ∃! ξ =: D̃E2(u) ∈ B ′ s.t. ∀{un} ⊂ B with

un → u, sup
n

E1(un) < +∞ (5.20)

lim
n↑∞

E2(un) − E2(u) − 〈ξ, un − u〉
‖un − u‖ = 0,

∀ M >0 ∃ K3 >0 s.t. ‖D̃E2(u)‖∗ ≤ K3 ∀ u ∈ B with max (‖u‖, E1(u))≤ M. (5.21)

∀ {un} ⊂ B, un → u, sup
n

E1(un) < +∞ ⇒ D̃E2(un)⇀
∗D̃E2(u). (5.22)



METRIC APPROACH TO DOUBLY NONLINEAR EVOLUTION EQUATIONS 139

Remark 5.5. Let us point out that with (5.18) and (5.20) we require E2 to be
lower semicontinuous and (Fréchet) differentiable along sequences with bounded
E1-energy and, further, (5.21) states that D̃E2 is estimated by the functional E1 and
(5.22) that D̃E2 is continuous, again along sequences with bounded E1-energy. In
other words, the functional E2 is a dominated perturbation of the (λ)-convex func-
tional E1. In [45] a similar class of dominated concave perturbations of convex
functionals was considered.

The following result collects some properties of the Fréchet subdifferential and of
the slopes of admissible functionals, extending Lemma 5.3.

Proposition 5.6. Let E : B → (−∞, +∞] be an admissible functional (with E =
E1 + E2 in the sense of Definition 5.4), and let η be a positively homogeneous
functional fulfilling (5.1a,b,c) and inducing the asymmetric distance 
 (5.2). Then,

1. for all u ∈ dom(E) the Fréchet subdifferential ∂E(u) is a convex and weakly∗
closed set,

∂E(u) = ∂E1(u) + D̃E2(u) ∀ u ∈ dom(∂E), (5.23)

and ∂E satisfies the strong-weak∗ closedness property along sequences with
bounded energy

un →u, ξn⇀
∗ξ, ξn ∈∂E(un) sup

n
|E(un)|<+∞ ⇒ ξ ∈ ∂E(u) ; (5.24)

2. for all u ∈ dom(E)

∂E(u) �= ∅ ⇔ |∂E | (u) < +∞ and |∂E | (u) = min
ξ∈∂E(u)

η∗(−ξ) ,

|∂−E |(u) = |∂E | (u) ∀ u ∈ dom(∂E).
(5.25)

Proof. First of all, we show that

∂E(u) − D̃E2(u) ⊂ ∂E1(u) ∀ u ∈ dom(∂E).

Indeed, let us fix any ζ ∈ ∂E(u): since E1 is convex, in order to show that ζ −
D̃E2(u) ∈ ∂E1(u) it is sufficient to check that for all sequence {wn} with wn → u
we have

lim inf
n↑∞

E1(wn)−E1(u)−〈ξ−D̃E2(u), wn −u〉
‖wn −u‖

= lim inf
n↑∞

(
E(wn) − E(u)−〈ξ, wn −u〉

‖wn − u‖ − E2(wn)−E2(u)−〈D̃E2(u), wn −u〉
‖wn −u‖

)
≥ 0.

(5.26)
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Now, we may suppose that supn E1(wn) < +∞, hence (5.26) trivially ensues from
the fact that ζ ∈ ∂E(u) and from the definition of D̃E2(u). The proof of the converse
inclusion ∂E1(u) + D̃E2(u) ⊂ ∂E(u) for all u ∈ dom(∂E) follows the same lines.
Thanks to (5.23) and to Lemma 5.3, we immediately have that ∂E(u) is a convex
and weakly∗ closed subset of B ′. Further, (5.24) is a consequence of (5.12) and of
(5.22).

In order to show the first of (5.25) at a point u ∈ dom(E), we may suppose
without loss of generality that D̃E2(u) = 0 and that |∂E | (u) > 0. Then, using (5.19)
one easily checks that there exists some constant C > 0 such that

|∂E | (u) = lim sup
v→u,E1(v)≤C

(E1(u) − E1(v) + E2(u) − E2(v))+

η(v − u)
.

Observing that

lim
v→u,E1(v)≤C

(E2(u) − E2(v))+

η(v − u)
= 0,

we conclude

|∂E | (u) = lim sup
v→u,E1(v)≤C

(E1(u) − E1(v))+

η(v − u)
= min

ξ∈∂E1(u)
η∗(−ξ) = min

ξ∈∂E(u)
η∗(−ξ),

the second identity due to (5.14) for the λ-convex functional E1 and the third one to
(5.23). As for the second of (5.25), one clearly has |∂−E |(u) ≤ |∂E | (u); in order to
prove the converse inequality, we argue in the same way as for proving (5.15).

Remark 5.7. Combining (5.23) with the representation (5.25) of the slope of func-
tionals E and E1, one deduces that

|∂E1| (u) = min
ξ∈∂E(u)−D̃E2(u)

η∗(−ξ) ≤ min
ξ∈∂E(u)

η∗(−ξ) + η∗(D̃E2(u))

≤ |∂E | (u) + K‖D̃E2(u)‖∗ ∀ u ∈ B,

(5.27)

where the first inequality follows from the sublinearity of η∗ and the second one
from (5.5).

For later convenience, we also state a version of the mean-value theorem for the
functional E2 which can be proved exactly in the same way as [2, Chapter 1, Theo-
rem 1.8], to which we refer the reader.

Lemma 5.8. Let E : B → (−∞, +∞] be an admissible functional. Then, for all
u, v ∈ dom(E) such that the segment [u, v] ⊂ dom(E) one has

|E2(u) − E2(v)| ≤ sup
z∈[u,v]

‖D̃E2(z)‖∗ ‖u − v‖. (5.28)

We conclude the section with a technical result, which will turn out to be useful in
the sequel.
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Lemma 5.9 (Selection of optimal directions). Let us suppose that

B is reflexive, (5.29)

let E be an admissible functional and let ξ ∈ ∂E(u) with 0 < η∗(−ξ) = |∂E | (u) <

+∞. Then, there exist a sequence of directions {vn}, v ∈ B and a positive vanish-
ing sequence hn ∈ (0, +∞) such that

η(vn) = η(v) = 1, 〈−ξ, v〉 = η∗(−ξ), vn ⇀ v, (5.30)

and the sequence un := u + hnvn satisfies

lim
n↑+∞

E(u) − E(un)

η(un − u)
= lim

n↑+∞
E(u) − E(u + hnvn)

hn
= |∂E | (u) = η∗(−ξ). (5.31)

Proof. By the definition of slope and by (5.25), we can find a sequence un �= u
strongly converging to u such that

lim
n↑+∞

E(u) − E(un)

η(un − u)
= |∂E | (u) = η∗(−ξ) > 0.

We thus set
hn := η(un − u), vn := un − u

hn
,

and, owing to the reflexivity of B, we can extract a subsequence (still labeled vn)
weakly converging to v ∈ B with η(v) ≤ 1. By the subdifferentiability assumption,
we have

E(un) − E(u) ≥ 〈ξ, un − u〉 + o(hn) as n ↑ +∞;
dividing by hn and inverting the direction of the inequality, we can pass to the limit
as n ↑ +∞, obtaining

η∗(−ξ) ≤ 〈−ξ, v〉 ≤ η∗(−ξ) · η(v),

thus proving η(v) = 1 and the second identity of (5.30).

5.3. Chain rule for admissible families of time-dependent functionals

In this section, we shall establish a general chain-rule formula for a family of
time-dependent functionals Et (·), t ∈ [0, T ]. The natural assumptions combine
the admissibility conditions given in Definition 5.4, the conditions on the time-
dependence discussed in Section 2.3, and some of the topological assumptions of
Section 2.5. We recall them in a unique definition.
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Definition 5.10 (Admissible family of time-dependent functionals). We say that
a family of (proper, lower semicontinuous) functionals Et : B → (−∞, +∞],
t ∈ [0, T ], is admissible if each functional Et is admissible according to Definition
5.4, with the decomposition Et = E1

t + E2
t for all t ∈ [0, T ], and

1. dom(Et ) ≡ D does not depend on time,
2. the functionals E1

t are uniformly bounded from below with respect to t and λ-
uniformly convex, namely

∃ λ ∈ R : ∀ t ∈ [0, T ] ∀ u0, u1 ∈ B ∀ θ ∈ [0, 1]
E1

t ((1 − θ)u0 + θu0) ≤ (1 − θ)E1
t (u0) + θE1

t (u1) − 1

2
λθ(1 − θ)‖u0 − u1‖2,

(5.32)
3. conditions (5.19) and (5.21) hold with constants K1, K2, and K3 independent

of t ,
4. for every sequences vn, v ∈ D, tn, t ∈ [0, T ]

vn →v, tn → t, sup
n

Etn (v)<+∞ ⇒ ∃ lim
n→∞

Etn (vn)−Et (vn)

tn −t
=:∂tEt (v),

(5.33)
which satisfies

|∂tEt (v)| ≤ K4(Et (v) + ‖v‖ + 1) ∀ t ∈ [0, T ], v ∈ D (5.34)

for a suitable constant K4 ≥ 0.

In the following formula we choose a positively homogeneous and convex func-
tional η satisfying (5.1a,b,c) and, given an absolutely continuous curve v, we de-
note by |v′|(t) its metric derivative with respect to the asymmetric distance 
 (5.2)
induced by η.

Proposition 5.11 (Chain rule). Let E : [0, T ] × B → (−∞, +∞] be an admissi-
ble family of functionals according to Definition 5.10, let η be a positively homoge-
neous functional fulfilling (5.1a,b,c) and inducing the asymmetric distance 
 (5.2),
and let v ∈ AC(0, T ; B) be an absolutely continuous curve satisfying

sup
t∈[0,T ]

Et (v(t)) < +∞,

∫ T

0
|v′|(t) · |∂Et | (v(t)) dt < +∞. (5.35)

Then, the map t 
→ Et (v(t)) is absolutely continuous and

d

dt
Et (v(t)) ≥ ∂tEt (v(t)) − |∂Et |(v(t)) · |v′|(t) for a.e. t ∈ (0, T ). (5.36)

Moreover, if v is (weakly) differentiable a.e., we have

d

dt
Et (v(t)) = ∂tEt (v(t))+〈ξ, v′(t)〉 ∀ξ ∈ ∂Et (v(t)) for a.e. t ∈ (0, T ). (5.37)
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Proof. Up to a suitable reparametrization (see [5, Lemma 1.1.4]), it is possible to
assume that the curve is 1-Lipschitz (with respect to the norm of B) and

|v′|(t) ≤ K for a.e. t ∈ (0, T ) . (5.38)

Since v is uniformly bounded and the energies Et (v(t)) are uniformly bounded,
using (5.19) we get

sup
t∈[0,T ]

E1
t (v(t)) < +∞, (5.39)

as well as

F(v(s)) + |∂tFt (v(s))| ≤ S < +∞ ∀ s, t ∈ [0, T ], (5.40)

where F is defined as in (2.21). In order to show the absolute continuity of the
energy map t 
→ Et (v(t)), we need to estimate

Et (v(t)) − Es(v(s)) = (Et (v(t)) − Et (v(s))) + (Et (v(s)) − Es(v(s)))

for 0 ≤ s < t ≤ T .
(5.41)

Thanks to (5.40), we have

Et (v(s)) − Es(v(s)) ≤ S|t − s|. (5.42)

In order to estimate the first summand on the right-hand side of (5.41), we notice
that, thanks to (5.39), the convexity of E1

t , and (5.21),

sup
z∈[v(s),v(t)]

E1
t (z) < +∞, whence sup

z∈[v(s),v(t)]
‖D̃E2

t (z)‖∗ ≤ S1 < +∞, (5.43)

for a positive constant S1. Hence, Lemma 5.8 and the 1-Lipschitz continuity of v

yield

E2
t (v(t)) − E2

t (v(s)) ≤ sup
z∈[v(s),v(t)]

‖D̃E2
t (z)‖∗‖v(t) − v(s)‖ ≤ S1|t − s|

for 0 ≤ s < t ≤ T .
(5.44)

On the other hand, thanks to (5.13)

E1
t (v(t)) − E1

t (v(s)) ≤ |∂E1
t |(v(t))η(v(s) − v(t)) + 1

2
λ−K 2η2(v(s) − v(t))

≤
(

K |∂Et |(v(t)) + K 2S1 + 1

2
λ−K 4

)
|t − s|,

(5.45)
the latter inequality due to (5.27), (5.38) and again (5.43). Combining (5.41), (5.42),
(5.44), and (5.45), and inverting the role of s and t we easily get the following
estimate

|Et (v(t)) − Es(v(s))| ≤ (
K |∂Et |(v(t)) + K |∂Es |(v(s)) + C

)|t − s| (5.46)
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for some suitable constant C . Arguing as in [5, Theorem 1.2.5], we get the absolute
continuity of the energy.

Let us now fix a point s ∈ (0, T ) such that |v′|(s) and d
dt Es(v(s)) exist, and

|∂Es |(v(s)) < +∞. Equality (5.41) and the definition of slope yield when t → s

Et (v(t)) − Es(v(s)) ≥ −|∂Es |(v(s))η(v(t) − v(s)) + ∂tEs(vs)(t − s) + o(|t − s|)
so that, dividing the inequality by t − s > 0, we get (5.36). When v is also weakly
differentiable at s, we can use the definition of Fréchet subdifferential to obtain

Et (v(t)) − Es(v(s)) ≥ 〈ξ, v(t) − v(s)〉 + ∂tEs(vs)(t − s) + o(|t − s|)
∀ ξ ∈ ∂Es(v(s)).

Dividing by t − s and passing to the limit first as t ↓ s and then as t ↑ s, we
conclude.

6. Finsler metrics

In this section, we want to extend some of the previous results to the case in which

 is an nondegenerate asymmetric Finsler distance induced by a family of convex
and positively homogeneous (sublinear) functionals ηu , depending on u ∈ B (and
again we take as σ the norm topology of B).

We consider the case in which

B is a separable and reflexive Banach space, (6.1)

endowed with a family of functionals

ηu : B → [0, +∞), u ∈ B,

satisfying conditions (5.1a,b,c) with K independent of u.
(6.2)

We are assuming that the dependence of η with respect to u is continuous in the
sense of Mosco (see, e.g., [9, Section 3.3, page 295]), i.e., whenever a sequence
un is strongly convergent to u in B as n ↑ ∞, the corresponding sequence of
functionals ηun Mosco-converges to ηu . This means two conditions:

un → u, vn ⇀ v in B ⇒ lim inf
n→∞ ηun (vn) ≥ ηu(v), (6.3)

and

un → u, v ∈ B ⇒ ∃ vn → v : lim
n→∞ ηun (vn) = ηu(v). (6.4)

Let us recall a well-known consequence of this assumption:
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Theorem 6.1 (Duality for Mosco-convergence). If un → u in B and ξn⇀
∗ξ in

B ′, then
lim inf
n→∞ ηun∗(ξn) ≥ ηu∗(ξ). (6.5)

Proof. We fix v ∈ B with ηu(v) = 1 and we take a sequence vn satisfying (6.4).
We have

lim inf
n↑+∞ ηun∗(ξn) ≥ lim inf

n↑+∞
〈ξn, vn〉
ηun (vn)

= 〈ξ, v〉.

Since v can be arbitrarily chosen with ηu(v) = 1, taking the supremum of the last
duality with respect to v we conclude.

The induced asymmetric Finsler distance

We introduce 
 through the formula


(v,w) := inf

{∫ 1

0
ηu(t)(u

′(t)) dt : u ∈AC(0, 1; B), u(0)=v, u(1)=w

}
∀v, w ∈ B.

(6.6)

Note that (6.6) makes sense (the map t 
→ ηu(t)(u′(t)) is integrable for all u ∈
AC(0, 1; B)) and defines a (possibly non-symmetric) distance (in the sense of (2.2))
on B, associated with the family {ηu}u∈B . Since (5.1c) holds uniformly with respect
to u ∈ B, we have

K −1‖v − w‖ ≤ 
(v, w) ≤ K‖v − w‖ ∀v, w ∈ B. (6.7)

Therefore, the class of absolutely continuous curves with respect to 
 coincides
with the usual one (i.e. with respect to the norm of B). Again, we shall use the
notation (5.3) for slopes with respect to 
.

The main problem is to characterize the metric velocity associated with 
;
here is the main result:

Theorem 6.2 (Metric velocity). Assume (6.1)–(6.4), and let 
 be the asymmetric
distance (6.6); let u ∈ AC(a, b; B) and let |u′| be its (a.e. defined) metric velocity,
induced by 
. We have

|u′|(t) = ηu(t)(u
′(t)) for a.e. t ∈ (a, b). (6.8)

More precisely, the identity in (6.8) holds at each point t̄ fulfilling the following
three conditions:

i) u is differentiable at t̄ ,

ii) t̄ is a Lebesgue point for the map t 
→ ηu(t)(u′(t)),

iii) ∃ lim
h↓0


(u(t̄), u(t̄ + h))

h
=: |u′|(t̄).
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We split the proof in various steps.

Lemma 6.3. Under the same assumptions as in Theorem 6.2, let t̄ be satisfying
conditions i)· · · iii). We have

|u′|(t̄) ≤ ηu(t̄)(u
′(t̄)). (6.9)

Proof. For h > 0 let us consider the curve r ∈ [0, 1] 
→ γ (r) := u(t̄ + rh)

connecting u(t̄) and u(t̄ + h). By definition of 
 and a trivial change of variables,
we obtain


(u(t̄), u(t̄ + h)) ≤
∫ t̄+h

t̄
ηu(r)(u

′(r)) dr.

Dividing by h > 0 we get (6.9), being t̄ a Lebesgue point of the map r 
→
ηu(r)(u′(r)).

The next lemma provides the crucial technical result for the proof of Theo-
rem 6.2, which will also be useful later on.

Lemma 6.4. Let u, un ∈ B and hn > 0 such that as n ↑ +∞

un → u,
un − u

hn
⇀ v �= 0,

ηu(un − u)

hn
→ ηu(v). (6.10)

Then,

lim inf
n↑+∞


(u, un)

hn
≥ ηu(v), lim inf

n↑+∞

(u, un)

ηu(un − u)
≥ 1. (6.11)

Proof. By the definition (6.6) of 
 and a standard reparametrization argument, we
find Lipschitz continuous curves γn : [0, 1] → B connecting u to un and a vanish-
ing positive sequence εn ∈ (0, 1/2) such that


(u, un) ≥ (1 − εn)

∫ 1

0
ηγn(t)(γ

′
n(t)) dt, ‖γ ′

n(t)‖ ≤ 4K
(u, un)

for a.e. t ∈ (0, T ).

(6.12)

Dividing by hn , we can assume that h−1
n 
(u, un) ≤ A < +∞ for some constant

A > 0; by introducing the curve

γ̂n(t) := u + γn(t) − u

hn
, with γ̂ ′

n(t) = h−1
n γ ′

n(t),

we get


(u, un)

hn
≥ (1 − εn)

∫ 1

0
ηγn(t)(γ̂

′
n(t)) dt, ‖γ̂ ′

n(t)‖ ≤ 4K

(u, un)

hn
≤ 4K A

for a.e. t ∈ (0, T ),
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so that

lim inf
n↑+∞


(u, un)

hn
≥ lim inf

n↑+∞

∫ 1

0
ηγn(t)(γ̂

′
n(t)) dt. (6.13)

After the extraction of a suitable subsequence (not relabeled), we can assume that
the last lim inf is in fact a limit and, since γ̂ ′

n is uniformly bounded, that γ̂ ′
n ⇀ z

weakly in L2(0, 1; B), which is still a reflexive and separable Banach space. Since
γn(t) → u uniformly as n → ∞, general lower semicontinuity results for nor-
mal integrands applied to the strongly-weakly lower semicontinuous functional
(u, v) 
→ ηu(v) (see [11, Theorem 3.2], as well as [45, Theorem 3.2] and [35, The-
orem B.1]) yield

lim inf
n↑+∞

∫ 1

0
ηγn(t)(γ̂

′
n(t)) dt ≥

∫ 1

0
ηu(z(t)) dt ≥ηu(Z), Z :=

∫ 1

0
z(t) dt, (6.14)

where the last passage follows by the convexity of ηu and Jensen inequality.
On the other hand, we have∫ 1

0
γ̂ ′

n(t) dt = γ̂n(1) − γ̂n(0) = un − u

hn
, (6.15)

and therefore for every y ∈ B ′

〈y, Z〉 =
∫ 1

0
〈y, z(t)〉 dt

= lim
n→∞

∫ 1

0
〈y, γ̂ ′

n(t)〉 dt = lim
n→∞〈y, h−1

n (un − u)〉 = 〈y, v〉,
(6.16)

which yields Z = v and, by (6.13),

lim inf
n↑+∞


(u, un)

hn
≥ ηu(v). (6.17)

We conclude that

lim inf
n↑+∞


(u, un)

ηu(un − u)
= lim inf

n↑+∞

(u, un)

hn
· hn

ηu(un − u)
≥ ηu(v)

1

ηu(v)
= 1.

Proof of Theorem 6.2. We can conclude now the proof of Theorem 6.2 by proving
the opposite inequality

|u′|(t̄) ≥ ηu(t̄)(u
′(t̄)) (6.18)

at each point t̄ satisfying conditions i)−iii).
It is obviously not restrictive to assume u′(t̄) �= 0: we can thus apply the previ-

ous Lemma, choosing a positive vanishing sequence hn ↓ 0 and u := u(t̄), un :=
u(t̄ + hn), v = u′(t̄).
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We apply now Lemma 6.4 to prove a useful property of the 
-slope of an
admissible functional.

Theorem 6.5. Let E be an admissible functional in the sense of Definition 5.4, let
|∂E | be the slope associated with the asymmetric distance (6.6), and let ∂E be its
Fréchet subdifferential. Then, for every u ∈ dom(E)

|∂E | (u) < +∞ ⇔ ∂E(u) �= ∅,

|∂E | (u) ≤ K‖ξ‖ ∀ ξ ∈ ∂E(u),
(6.19)

and, in this case,
|∂E | (u) ≥ min

ξ∈∂E(u)
ηu∗(−ξ). (6.20)

Proof. Since the asymmetric distance 
 satisfies the uniform bound (6.7), it is
immediate to check that the 
-slope of a functional E is finite if and only if the
slope of E with respect to the norm of B is finite: (5.25) thus yields (6.19), the
second estimate following from (6.2).

In order to check (6.20), we fix u ∈ dom(∂E), we choose an element ξ0 ∈
∂E(u) which attains the minimum in (6.20) (it is not restrictive to assume ξ0 �= 0)
and we apply Lemma 5.9: we then find a sequence un ∈ dom(E) such that

hn :=ηu(un −u) → 0,
un −u

hn
⇀ v, ηu(v) = 1,

lim
n↑+∞

E(u)−E(un)

hn
= ηu∗(−ξ0) > 0.

On the other hand, Lemma 6.4 yields

|∂E | (u) ≥ lim sup
n→∞

E(u) − E(un)


(u, un)
= lim

n↑+∞
E(u) − E(un)

hn
· lim sup

n↑+∞
hn


(u, un)

≥ ηu∗(−ξ0) · ηu(v) = ηu∗(−ξ0).

Taking into account Theorem 6.1 and Proposition 5.6, we easily get

Corollary 6.6. Let E be an admissible functional and let |∂−E | be the relaxed slope
associated with the asymmetric distance (6.6), i.e.

|∂−E |(u) := inf
{

lim inf
n↑∞ |∂E | (un) : un → u, sup

n
E(un) < +∞

}
. (6.21)

Then, for every u ∈ dom(E)

|∂−E |(u) < +∞ ⇔ ∂E(u) �= ∅, (6.22)

and, in this case,
|∂−E |(u) ≥ min

ξ∈∂E(u)
ηu∗(−ξ). (6.23)
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Theorem 6.7 (Relaxed slope and chain rule for admissible functionals). Let us
consider an admissible family of functionals (according to Definition 5.10) Et :
B → (−∞, +∞], t ∈ [0, T ], and let 
 be the asymmetric Finsler distance in-
duced by (6.6) under the assumptions of Section 6. Then, the relaxed slope |∂−Et |
satisfies the chain rule condition of Definition 2.5: for any curve v ∈ AC(0, T ; B)

with ∫ T

0
|v′|(t) · |∂−Et |(v(t)) dt < +∞, sup

t∈(0,T )

Et (v(t)) < +∞, (6.24)

the map t 
→ Et (v(t)) is absolutely continuous, and

d

dt
Et (v(t)) ≥ ∂tE(t, v(t)) − |v′|(t) · |∂−Et |(v(t)) for a.e. t ∈ (0, T ). (6.25)

Proof. Since the asymmetric distance 
 is metrically equivalent to the distance
induced by the norm, also on account of Proposition 5.6 inequality (6.24) yields
(5.35) and we may apply Proposition 5.11. Being B reflexive, v is differentiable
a.e., and therefore (5.37) yields for a.e. t ∈ (0, T ) and every ξ ∈ ∂Et (v(t))

d

dt
Et (v(t)) = ∂tEt (v(t)) + 〈ξ, v′(t)〉

≥ ∂tEt (v(t)) − ηv(t)(v
′(t)) · min

ξ∈∂Et (v(t))
ηv(t)∗(−ξ) (6.26)

≥ ∂tEt (v(t)) − |v′|(t) · |∂−Et |(v(t)),

the last inequality being a consequence of (6.8) and (6.23).

7. Metric evolutions in L1(�)

Notation

In this section and in the next one, we shall denote by � a bounded domain of Rd ,
d ≥ 1, by ‖ · ‖r the norm of the space Lr (�), 1 ≤ r ≤ ∞, and by 〈·, ·〉 the duality
pairing between H−1(�) and H1

0 (�).

Setup

Throughout this section, we shall drop the reflexivity assumption (6.1) and we shall
focus on the prototypical case in which

the ambient Banach space B is L1(�), and η is the norm functional ‖ · ‖1. (7.1)

As we already mentioned in the Introduction, L1(�) does not enjoy the Radon–
Nikodým property. A simple example of an absolutely continuous curve u : [0,T ]→
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L1(�) which is not a.e. differentiable can be constructed, in the case � = (0, 1), in
the following way: we take an absolutely continuous map s : [0, T ] → [0, 1] and a
function a ∈ L1(0, 1), and we let

u(x, t) :=
{

0 if x ∈ [0, s(t)],
a(x) if x ∈ (s(t), 1] ∀ (x, t) ∈ [0, 1] × [0, T ] .

However, we may compute the metric derivative

|u′|1(t) := lim
h→0

‖u(t + h) − u(t)‖1

h
for a.e. t ∈ (0, T ), (7.2)

of the above curve, obtaining |u′|1(t) = |a(s(t))s′(t)| for a.e. t ∈ (0, T ).

Throughout this section, we shall analyze the metric Problem 2.6 for a given
lower semicontinuous functional E : [0, T ]×L1(�) → (−∞, +∞] in the gradient
flow case, namely with the quadratic dissipation functional (1.16).

We shall start with some simple examples of (time-independent) energy func-
tionals E , in which it is possible to calculate explicitly a solution of the (Cauchy
problem for the) associated differential inclusion (DNE) (driven by the energy E
and the dissipation � (1.19)). Indeed, we shall show that the constructed solution
also complies with the metric formulation of Problem 2.6.

Next, in Section 7.2 we shall focus on the sole metric evolution of a more
general class of energy functionals (cf. (7.19)). Exploiting the preliminary results
obtained in Sections 5.2–5.3, we shall deduce from Theorem 3.5 the existence of a
solution to the associated metric formulation, see Theorem 7.5 later on.

7.1. Examples

Example 7.1. We consider � =(0,1) and the quadratic energy functional E (1.17).
We recall that the associated differential inclusion is (1.20), which we supplement
with the initial datum

u0(x) := 1 − x ∀ x ∈ [0, 1] . (7.3)

We look for a solution of the Cauchy problem (1.20, 7.3) having the form

u(x, t) :=
{

u0(ζ(t)) if x ∈ [0, ζ(t)],
u0(x) if x ∈ (ζ(t), 1] ∀ (x, t) ∈ [0, 1] × [0, T ] , (7.4)

where we require of the “free boundary” ζ : [0, T ] → [0, 1] that

ζ ∈ C1(0, T ) and is strictly increasing, with ζ(0) = 0. (7.5)

In fact, we have u ∈ W 1,1(0, T ; L1(0, 1)), with

ut (x, t) :=
{

−ζ ′(t) if x ∈ (0, ζ(t)),
0 if x ∈ (ζ(t), 1)

for a.e. (x, t) ∈ (0, 1) × (0, T ) ,
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so that ‖ut (·, t)‖1 = ζ(t)ζ ′(t) for a.e. t ∈ (0, T ). Now, (1.20) is trivially fulfilled
for x ∈ (ζ(t), 1), t ∈ (0, T ), hence it reduces to

−ζ(t)ζ ′(t) + 1 − ζ(t) = 0 t ∈ (0, T ).

Namely, the function u given by (7.4) solves the Cauchy problem (1.20, 7.3) if and
only if ζ fulfills

ζ ′(t) = 1

ζ(t)
− 1 ∀t ∈ (0, T ), ζ(0) = 0. (7.6)

On the other hand, we may interpret the function u as a curve u : (0, T ) →
L1(0, 1): in this setting, its metric derivative is computed via (7.2). Taking into
account that

|u(x, t + h) − u(x, t)|

=


ζ(t + h) − ζ(t) for x ∈ [0, ζ(t)] ,
ζ(t + h) − x for x ∈ (ζ(t), ζ(t + h)] ,
0 for x ∈ (ζ(t + h), 1]

∀ (x, t) ∈ [0, 1] × [0, T ] ,

formula (7.2) yields

|u′|1(t) = ζ(t)ζ ′(t) for a.e. t ∈ (0, T ) (7.7)

(indeed, in this case |u′|1(t) coincides with the L1-norm of the function ut (·, t) for
a.e. t ∈ (0, T )). Now, we calculate the energy E (1.17) along the curve u and find

E(u(t)) = (1 − ζ(t))2

6
(2ζ(t) − 1) ∀ t ∈ [0, T ], (7.8)

while, also thanks to the representation formula (5.13) in Lemma 5.3,

|∂−E |(u(t)) = |∂E | (u(t))

= 1

2
sup

w∈L1(0,1) ,w �=0

(∫
�
(u2(x, t) − (u(x, t) + w(x))2 dx

)+

‖w‖1

= ‖u(·, t)‖∞ = 1 − ζ(t) ∀ t ∈ [0, T ] .

(7.9)

In view of (7.7)–(7.9), with elementary calculations it is possible to see that, if (7.6)
holds, the curve u fulfills the metric formulation (2.31)–(2.32), the latter in fact with
an equality sign.

Example 7.2. We let �=(−1,1) and choose as energy functional E : L1(−1, 1)→
[0, +∞] the Dirichlet integral

E(u) :=


1

2

∫ 1

0
|u′(x)|2 dx if u ∈ H1

0 (−1, 1),

+∞ otherwise
∀ u ∈ L1(−1, 1) . (7.10)
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In fact, the above functional is a particular case of functional (7.19) below. The
corresponding evolution equation is

‖ut (t)‖1Sign(ut (x, t))−uxx (x, t) 	 0 for a.e. (x, t) ∈ (−1, 1)× (0, T ) , (7.11)

(where we denote by ux , uxx the partial derivatives of u with respect to the variable
x), which we supplement with the initial datum

u0(x) := 1 − |x | ∀ x ∈ [−1, 1]. (7.12)

We now look for a solution of the Cauchy problem (7.11)–(7.12) of the form

u(x, t) :=
α(t) + c(t)

x2

2
if |x | ≤ ζ(t),

u0(x) if ζ(t)< |x |≤1
∀ (x, t) ∈ [−1, 1] × [0, T ] ,

(7.13)
under the requirements that ζ : [0, T ] → [0, 1] complies with (7.5), the functions
α, c ∈ C1(0, T ), c takes strictly negative values and is strictly increasing, and for
all t ∈ (0, T )

the maps x 
→ u(x,t), x 
→ut (x,t), x 
→ux (x, t) are continuous on [−1,1]. (7.14)

Since for a.e. (x, t) ∈ (−1, 1) × (0, T )

ut (x, t) :=
α′(t) + c′(t) x2

2
if |x | < ζ(t),

0 if ζ(t) < |x | < 1
,

ux (x, t) :=
{

c(t)x if |x | < ζ(t),
−Sign(x) if ζ(t) < |x | < 1

,

(7.14) leads to the conditions

α(t) + c(t)
ζ 2(t)

2
= 1 − ζ(t), c(t) = − 1

ζ(t)
∀ t ∈ (0, T ). (7.15)

Hence, we compute

‖ut (·, t)‖1 = c′(t)
2

∫ ζ(t)

−ζ(t)
(ζ 2(t) − x2) dx = 2c′(t)

3
ζ 3(t) for a.e. t ∈(0, T ). (7.16)

Being

uxx (x, t) :=
{

c(t) if |x | < ζ(t),
0 if ζ(t) < |x | < 1

for a.e. (x, t) ∈ (−1, 1) × (0, T ) ,
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and taking into account the second of (7.15), we conclude that u solves (7.11) if
and only if c solves the Cauchy problem

c(t) = 3

2
c4(t) ∀ t ∈ (0, T ), with lim

t↘0
c(t) = −∞ , (7.17)

so that

c(t) = −9

2
t−1/3, ζ(t) = 2

9
t1/3, α(t) = 1 − 1

9
t1/3 ∀ t ∈ (0, T ).

From the metric viewpoint, the existence of a solution to the (Cauchy problem for)
the metric formulation follows from Theorem 7.5 later on. Nonetheless, we may
directly check that the function u defined by (7.13) (seen as a curve on (0, T ) with
values in L1(−1, 1)) complies with (2.31)–(2.32). Indeed, using (7.15) one easily
checks that the metric derivative of u again coincides with the L1(−1, 1)-norm of
ut (·, t) for a.e. t ∈ (0, T ), and it is thus given by (7.16). On the other hand, thanks
to the forthcoming Lemma 7.3 we have that

|∂−E |(u(t)) = |∂E | (u(t)) = ‖uxx (·, t)‖∞ for a.e. t ∈ (0, T ) . (7.18)

Then, we calculate the energy (7.10) along the curve u and, using (7.15) and (7.17)
as well, we easily conclude that (2.32) holds, again as an equality.

7.2. An existence result

We consider the following energy functional E : [0, T ] × L1(�) → (−∞, +∞],
defined for all (t, u) ∈ [0, T ] × L1(�) by

Et (u) :=


∫

�

(
1

2
|∇u(x)|2+W (u(x))

)
dx−〈�(t),u〉 if u ∈ H1

0 (�)

and W (u) ∈ L1(�),
+∞ otherwise.

(7.19)

Here, we suppose that
� ∈ C1([0, T ]; H−1(�)). (7.20)

and that the function W fulfills

W ∈ C2(R) and ∃ CW > 0 s.t. ∀ r ∈ R W ′′(r) ≥ −CW ; (7.21)

for instance, one may think of the double-well potential

W (u) := 1

4
(u2 − 1)2 ∀ u ∈ R. (7.22)

Note that functional E (7.19) is in fact a particular case of the class of function-
als (8.22) which shall be tackled in Section 8.2 later on. The following result is
crucial for understanding to which equation the metric formulation of Problem 2.6
(with the quadratic dissipation (1.16) and the energy (7.19)) leads.
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Lemma 7.3.

1. The functionals Et are λ-uniformly convex on L1(�) for some λ < 0.
2. For every (t, u) ∈ dom(E)

|∂Et |(u), |∂−Et |(u)<+∞ if and only if − 
u+W ′(u)−�(t)∈ L∞(�).

In this case, |∂Et |(u) = |∂−Et |(u) = ‖ − 
u + W ′(u) − �(t)‖∞.
(7.23)

Proof of Claim 1. In order to check the convexity inequality (5.32), we fix u0, u1 ∈
dom(E), θ ∈ [0, 1], and calculate

Et (uθ ) =
∫

�

(
1

2
|∇uθ |2 + W (uθ )

)
− 〈�(t), uθ 〉

≤ 1 − θ

2

∫
�

|∇u0|2 + θ

2

∫
�

|∇u1|2 − θ(1 − θ)

2

∫
�

|∇(u0 − u1)|2

+ (1 − θ)

∫
�

W (u0) + θ

∫
�

W (u0)

+ CW θ(1 − θ)

2

∫
�

|u0 − u1|2 − (1 − θ)〈�(t), u0〉 − θ〈�(t), u1〉
= (1 − θ)Et (u0) + θEt (u1)

+ θ(1 − θ)

2

∫
�

(
−|∇(u0 − u1)|2 + CW |u0 − u1|2

)
,

(7.24)

the first inequality following from the fact that W itself is ( − CW )-convex
(cf. (7.21)). In order to estimate the remainder term on the right-hand side of (7.24),
we apply the Gagliardo-Nirenberg inequality (see [44])

‖v‖2 ≤ CG N ‖v‖2/(d+2)

1 ‖∇v‖d/(d+2)

2 ∀ v ∈ H1
0 (�), (7.25)

where CG N is a positive constant only depending on �. Hence,

CW ‖u0− u1‖2
2−‖∇(u0− u1)‖2

2 ≤CW C2
G N ‖u0− u1‖4/(d+2)

1 ‖∇(u0− u1)‖2d/(d+2)

2

− ‖∇(u0 − u1)‖2
2

≤ Cd

(
CW C2

G N

)(d+2)/2 ‖u0 − u1‖2
1 ,

for a positive constant Cd only depending on d, the latter passage following from
the Young inequality. Combining this estimate with (7.24), we deduce that the

convexity inequality (5.32) holds with λ = −Cd
(
CW C2

G N

)(d+2)/2
.

Proof of Claim 2. Thanks to Claim 1 and to (5.15), it is sufficient to prove that for
every (t, u) ∈ dom(E)

|∂Et |(u) < +∞ ⇔ −
u + W ′(u) − �(t) ∈ L∞(�), and

|∂Et |(u) = ‖ − 
u + W ′(u) − �(t)‖∞
(7.26)
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Indeed, we set

D(u, w) := (Et (u) − Et (u + w))+

‖w‖1
for u, w ∈ H1

0 (�)

and note that for all w ∈ H1
0 (�)

D(u, rw)→H(u, w) :=
( ∫

�

(−∇u · ∇w−W ′(u)w
)+〈�(t), w〉

)+

‖w‖1
as r ↘0.

Then, integrating by parts we find

|∂Et |(u) ≥ lim sup
r↘0

D(u, rw) ≥ 〈
u − W ′(u) + �(t), w〉
‖w‖1

,

so that, being w arbitrary,

|∂Et |(u) ≥ sup
w∈H1

0 (�)

〈
u − W ′(u) + �(t), w〉
‖w‖1

= ‖
u − W ′(u) + �(t)‖∞ , (7.27)

the latter identity by the density of H1
0 (�) in L1(�). On the other hand, we set

G(x, y) := W (x + y) − W (x) − W ′(x)y for x, y ∈ R

and note that, by (7.21),

−G(x, y) ≤ CW

2
y2 ∀ x, y ∈ R. (7.28)

Now, trivial computations yield that

|∂Et |(u) = lim sup
‖w‖1→0

D(u, w)

≤ lim sup
‖w‖1→0

H(u, w) + lim sup
‖w‖1→0

(
− 1

2

∫
�

|∇w|2 − ∫
�
G(u, w)

)+

‖w‖1
.

(7.29)

We have

lim sup
‖w‖1→0

(
− 1

2

∫
�

|∇w|2 − ∫
�
G(u, w)

)+

‖w‖1

≤ 1

2
lim sup
‖w‖1→0

(−‖∇w‖2
2 + CW ‖w‖2

2

)+

‖w‖1

≤ 1

2
lim sup
‖w‖1→0

(
−‖∇w‖2

2 + CW CG N ‖w‖4/(d+2)

1 ‖∇w‖2d/(d+2)

2

)+

‖w‖1

≤ C̃ lim sup
‖w‖1→0

‖w‖2
1

‖w‖1
= 0 ,
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the first passage following from (7.28), the second one from the Gagliardo-
Nirenberg inequality (7.25) and the last one by trivial calculations. Combining
(7.29) and the above inequality, and again integrating by parts, we readily deduce
the reverse inequality of (7.27), so that (7.26) follows.

Remark 7.4. In fact, the same argument as in the proof of Lemma 7.3 allows to
prove that the Fréchet subdifferential of E has the following structure

u ∈ dom(∂Et ) ⇔ −
u + W ′(u) − �(t) ∈ L∞(�)

and in this case ∂Et (u) = {−
u + W ′(u) − �(t)}. (7.30)

We are now in the position of proving the following existence result.

Theorem 7.5. Assume (7.20), (7.21), and that

W is bounded from below on R. (7.31)

Then, for every u0 ∈ H1
0 (�) with W (u0) ∈ L1(�) there exists a solution u ∈

AC(0, T ; L1(�)) of Problem 2.6 fulfilling u(0) = u0, and we have the energy
identity

1

2

∫ t

s
|u′|21(r) dr + 1

2

∫ t

s
‖ − 
u(r) + W ′(u(r)) − �(r)‖2∞ dr + Et (u(t))

= Es(u(s)) +
∫ t

s
〈�′(r), u(r)〉 dr ∀ 0 ≤ s ≤ t ≤ T .

(7.32)

Proof. It follows from Lemma 7.3 and from (7.20) that the functional E (7.19)
yields an admissible family of functionals in the sense of Definition 5.10. Hence,
thanks to Proposition 5.11 E complies with the chain rule (5.36). Using (7.31) and
arguing as in the proof of Lemma 8.10 later on, it is possible to check that the other
assumptions on E (2.19a)–(2.19b), and (2.34)-(2.38) of Theorem 3.5 are satisfied.
Then, the statement is a direct consequence of Theorem 3.5.

Remark 7.6. In fact, condition (7.31) on W could be weakened, but here we prefer
to keep the presentation as simple as possible, leaving to Section 8.2 the discussion
of a more general example. In the particular case of the double well potential (7.22),
we can infer some further regularity of the curve u from (7.32). For instance, if
� ∈ L2(0, T ; L p(�)) for some 1 ≤ p < ∞, we deduce that −
u + u3 − u ∈
L2(0, T ; L p(�)), hence by elliptic regularity u ∈ L2(0, T ; W 2,p

0 (�)).

8. Quasivariational doubly nonlinear evolution equations
in reflexive Banach spaces

In this section, we deduce from our main Theorem 3.5 an existence result (Theo-
rem 8.3 below) for a family of abstract quasivariational doubly nonlinear equations
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in the Banach space setup of Section 6. In particular, hereafter we shall assume that

B is a reflexive and separable Banach space. (8.1)

As an application, in Section 8.2 we prove the existence of solutions to initial-
boundary value problems for a class of doubly nonlinear parabolic evolution equa-
tions.

8.1. A general existence result

Throughout this section, besides (8.1) we assume that

ηu : B → [0, +∞) is a family of convex and positively homogeneous

functionals, complying with (6.2), (6.3), (6.4),

and inducing the Finsler asymmetric distance 
 (6.6)

(N)

Et : B → (−∞, +∞] is an admissible family of functionals according

to Definition 5.10, with sublevels locally compact with respect

to the strong topology of B (cf. (2.38))

and the time derivative ∂tEt fulfils (2.37) with respect to 
;

(E)

ψ : [0, +∞) → [0, +∞] is a convex, lower semicontinuous function

fulfilling (2.30), inducing the family of functionals

�u(v) := ψ
(
ηu(v)

) ∈ [0, +∞], ∀ u, v ∈ B,

(�)

Statement of the problem

We focus on the Cauchy problem

∂�u(t)(u
′(t)) + ∂Et (u(t)) 	 0 for a.e. t ∈ (0, T ), u(0) = u0, (8.2)

where u0 ∈ D is some initial datum and u ∈ AC(0, T ; B).

This problem admits the following metric formulation, where |u′| and |∂−Et |(u)

respectively denote the metric velocity and the (relaxed) metric slope induced by
the asymmetric distance 
:

Problem 8.1. Find a curve u ∈ AC(0, T ; B) such that

u(0) = u0, the map t 
→ Et (u(t)) is absolutely continuous on (0, T ), and
d

dt
Et (u(t)) − ∂tEt (u(t)) ≤ −ψ(|u′|(t)) − ψ∗(|∂−Et |(u(t))) for a.e. t ∈ (0, T ).

(8.3)

In the sequel, we shall first of all investigate to which extent a solution u to Problem
8.1 turns out to be a solution of the Cauchy problem (8.2). Secondly, we shall
deduce from the “metric” existence Theorem 3.5 an existence result for (8.2).
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Links between the metric and the Banach space formulation

We have the following result, which extends [5, Proposition 1.4.1] to the doubly
nonlinear setting.

Proposition 8.2. Let u0 ∈ D and u ∈ AC(0, T ; B) fulfill (8.3). Then, u solves the
Cauchy problem (8.2). In particular, there holds

∂�u(t)(u
′(t)) ⊃ Argmin

{
ηu(t)∗(−ξ) : ξ ∈ ∂Et (u(t))

}
for a.e. t ∈ (0, T ). (8.4)

Conversely, if u solves (8.2) and if the map t 
→ Et (u(t)) is absolutely continuous
on (0, T ), then u also fulfills (8.3).

Proof. Suppose that u ∈ AC(0, T ; B) fulfills (8.3): then, there exists a negligible
set N ⊂ (0, T ) such that for all t ∈ (0, T ) \ N the derivatives d

dt Et (u(t)) and
|u′|(t)=ηu(t)(u′(t)) (see Theorem 6.2) exist, with |∂−Et |(u(t))≥ min

ξ∈∂Et (u(t))
ηu(t)∗(−ξ)

by Corollary 6.6. Hence, (8.3) yields

d

dt
Et (u(t)) − ∂tEt (u(t)) ≤ −ψ(ηu(t)(u

′(t))) − ψ∗(ηu(t)∗(−ξ))

∀ξ ∈ Argmin
{
ηu(t)∗(−ξ) : ξ ∈ ∂Et (u(t))

}
∀ t ∈ (0, T ) \ N .

Combining this inequality with (6.26), we deduce that for a.e. t ∈ (0, T )

ηu(t)(u
′(t)) · ηu(t)∗(−ξ) = ψ(ηu(t)(u

′(t)) + ψ∗(ηu(t)∗(−ξ)), whence

ηu(t)∗(−ξ) ∈ ∂ψ(ηu(t)(u
′(t))) ∀ξ ∈ Argmin

{
ηu(t)∗(−ξ) : ξ ∈ ∂Et (u(t))

}
.

Thanks to Lemma 5.1, we conclude (8.4).
The second part of the statement follows by the same argument.

An existence result

The following Theorem 8.3 extends [5, Theorem 2.3.7], of which we closely follow
the proof.

Theorem 8.3. Under assumptions (8.1), (N), (E), and (�), for every u0 ∈ D there
exists a curve u ∈ AC(0, T ; B), with u(0) = u0, satisfying the differential inclusion
(8.4). Moreover, u fulfils the energy identity∫ t

s
�u(r)

(
u′(r)

)
dr +

∫ t

s
ψ∗ (|∂−Er |(u(r))

)
dr + Et (u(t))

= Es(u(s)) +
∫ t

s
∂tEr (u(r)) dr ∀ 0 ≤ s ≤ t ≤ T .

(8.5)
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Proof. It is straightforward to check that the functionals E and ψ comply with all
the assumptions of Theorem 3.5 (in particular, the chain rule of Definition 2.5 holds
thanks to Theorem 6.7). Then, there exists a solution u ∈ AC(0, T ; B) to (8.3),
fulfilling the energy identity (3.9). By Proposition 8.2, u solves (8.4), while, in
view of (6.8), the energy identity (3.9) yields (8.5).

8.2. Applications to doubly nonlinear parabolic evolutions

Setup of the problem

In the sequel, we shall examine the following evolution equation (cf. with (1.15))

ρsign(ut )(u) |ut |p−2ut − div(β(∇u)) + W ′(u) = h in � × (0, T ), (8.6)

Here, 1 < p < ∞, � ⊂ Rd , d ≥ 1, is a bounded domain with sufficiently
smooth boundary and exterior unit normal n. Further, we are given two functions
ρ+, ρ− : R → (0, +∞), and we adopt the following notation

ρsign(v)(u) =
{

ρ+(u) if v ≥ 0,
ρ−(u) if v < 0

∀ u, v ∈ R. (8.7)

Moreover, β : Rd → Rd is the gradient of some smooth function j on Rd , W :
R → R a differentiable function and h : � × (0, T ) → R some source term. In
particular, when β(ζ ) = |ζ |q−2ζ for some q > 1, the elliptic operator in (8.6) is
indeed the q-Laplacian and we recover (1.15).

We consider the following initial-boundary value problem for (8.6).

Problem 8.4. Given u0 ∈ L p(�), find a function u ∈ W 1,p(0, T ; L p(�)) satisfy-
ing (8.6) a.e. on � × (0, T ), the homogeneous Dirichlet boundary condition

u = 0 a.e. in ∂� × (0, T ), (8.8)

and the initial condition

u(x, 0) = u0(x) for a.e. x ∈ �. (8.9)

Further notation

Before stating our existence result for Problem 8.4, let us fix some notation. For a
fixed q ∈ (1, +∞) we set

q� :=


dq

d − q
if q ∈ (1, d),

+∞ if q ≥ d .

Henceforth, we shall consider on the space W 1,q
0 (�) the norm ‖u‖1,q := ‖∇u‖q for

all u ∈ W 1,q
0 (�) (equivalent to the usual Sobolev norm by the Poincaré inequality);
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we shall denote by ‖ · ‖−1,q ′ the norm of the dual space W −1,q ′
(�) (q ′ being the

conjugate exponent of q), and by 〈·, ·〉 the duality pairing between W −1,q ′
(�) and

W 1,q
0 (�). It is well known (see, e.g., [1]) that

W 1,q
0 (�)⊂ Lq�

(�) and


W 1,q

0 (�)⊂⊂ Lq�−ε(�) ∀ ε > 0 if d > q,

W 1,q
0 (�)⊂⊂ Lr (�) ∀ 1≤r <∞ if d = q,

W 1,q
0 (�)⊂⊂ L∞(�) if d < q.

(8.10)

Finally, we shall denote by C0
w([0, T ]; W 1,q

0 (�)) the space of weakly continuous

functions with values in W 1,q
0 (�).

An existence result

Let us enlist our main assumptions on the data of Problem 8.4:

the functions ρ+, ρ− : R → (0, +∞) are continuous, and

∃ R0, R1 > 0 : R0 ≤ ρ−(x), ρ+(x) ≤ R1 ∀x ∈ R; (8.11)

there exists a function j ∈ C1(Rd) such that β = ∇ j : Rd → Rd and

∃ 1 < q < ∞ with p < q�, ∃ M1, M2, M3 > 0 :{
j (ζ ) ≥ M1|ζ |q − M2,

|β(ζ )| ≤ M3(1 + |ζ |q−1)
∀ ζ ∈R

d; (8.12)

further, we have

W = Wc + g, where

Wc is a convex and differentiable function, and

g ∈ C1(R) satisfies the growth conditions:

∃ α > 0 with αp′ < q�, ∃ M4 > 0 : |g′(u)| ≤ M4(|u|α + 1) ∀ u ∈ R.

(8.13)

Finally, we require that

h ∈ C1([0, T ]; W −1,q ′
(�)), u0 ∈ W 1,q

0 (�), and Wc(u0) ∈ L1(�). (8.14)

Theorem 8.5. Assume (8.11)–(8.14). Then, Problem 8.4 admits a solution

u ∈ W 1,p(0, T ; L p(�)) ∩ L∞(0, T ; W 1,q
0 (�)) ⊂ C0

w([0, T ]; W 1,q
0 (�)),

with g′(u) ∈ L∞(0, T ; L p′
(�)).

(8.15)

Furthermore, if h ∈ L p′
(0, T ; L p′

(�)) as well, then u has the further regularity

− div(β(∇u)) + W ′
c(u) ∈ L p′

(0, T ; L p′
(�)). (8.16)
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Remark 8.6. Let us point out that, if q ≥ d, condition (8.13) allows the non convex
part of the potential g to have any polynomial growth at infinity. Furthermore, note
that, in the case d = 3 and p = q = 2, the double well potential W (u) :=
(u2 − 1)2/4 fits in this framework. In fact, in that case the non convex function g is
allowed to have a polynomial growth of order 4 − ε for all ε > 0.

Remark 8.7. Slight modifications in the assumptions, which we are not going to
detail, would also allow us to prove an existence result for Problem 8.4 with homo-
geneous Neumann boundary conditions on u.

We shall prove Theorem 8.5 by going over to the formulation of Problem 8.4 as
a doubly nonlinear evolution inclusion of the type (8.2) in the (reflexive) Banach
space

B = L p(�), 1 < p < ∞,

endowed with a suitable Finsler metric.

The Banach space formulation

In order to introduce the formulation of Problem 8.4 as a doubly nonlinear equation
in L p(�), we consider the function R : R2 → [0, +∞) given by

R(w, z) :=
{

ρ+(w) z p if z ≥ 0,
ρ−(w) |z|p if z < 0

= ρsign(z)(w) |z|p ∀(w, z) ∈ R
2.

(8.17)
We associate with R the following family of positive functionals on L p(�):

ηu(v) :=
(∫

�

R(u(x), v(x)) dx

)1/p

∀u, v ∈ L p(�). (8.18)

Further, let us consider the function ψ(x) := x p

p , x ≥ 0, inducing (see (�))
the functionals

�u(v) := 1

p
(ηu(v))p = 1

p

∫
�

R(u(x), v(x)) dx ∀u, v ∈ L p(�). (8.19)

Finally, let us define E1 : [0, T ] × L p(�) → (−∞, +∞] by

E1
t (u) :=


∫

�

( j (∇u(x))+Wc(u(x))) dx−〈h(t), u〉 if u ∈W 1,q
0 (�)

and Wc(u)∈ L1(�),
+∞ otherwise

(8.20)

for all (t, u) ∈ [0, T ] × L p(�), and E2 : [0, T ] × L p(�) → (−∞, +∞] by

E2
t (u) :=


∫

�

g(u(x)) dx if g(u) ∈ L1(�),

+∞ otherwise
∀ (t, u)∈[0, T ]×L p(�), (8.21)
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and let us set

Et (u) := E1
t (u) + E2

t (u) ∀ (t, u) ∈ [0, T ] × L p(�). (8.22)

We have the following

Proposition 8.8. Assume (8.11)–(8.14). Then, every solution u ∈AC(0, T ; L p(�))

of the Cauchy problem (8.2) associated with the functionals {�u}u∈L p(�) and Et :
L p(�) → (−∞, +∞], t ∈ [0, T ], respectively given by (8.19) and (8.22), is a
solution of Problem 8.4.

The proof of Proposition 8.8 ensues from the following results, which shed
light on the properties of the functionals {ηu}u∈L p(�) (8.18) and Et (8.22).

Lemma 8.9. Under assumption (8.11), {ηu}u∈L p(�) is a family of sublinear func-
tionals complying with (6.2), (6.3), (6.4), and for all u ∈ L p(�) we have

ηu∗(ξ) =
(∫

�

R∗(u(x), ξ(x)) dx

)1/p′

∀ ξ ∈ L p′
(�) (8.23)

where R∗ : R2 → (0, +∞) is defined by

R∗(w, z) :=
{

ρ+(w)−p′/p z p′
if z ≥ 0

ρ−(w)−p′/p |z|p′
if z < 0

= ρ
−p′/p
sign(z)(w) |z|p′ ∀(w, z) ∈ R

2.

Further, for all u ∈ L p(�) and v ∈ dom (∂�u) we have

ξ ∈ ∂�u(v) (⊂ L p′
(�)) ⇔ ξ(x) = ρsign(v(x))(u(x))v(x)p−1 for a.e. x ∈ �.

(8.24)

Note that, thanks to (8.11),

R−p′/p
1 |z|p′ ≤ R∗(w, z) ≤ R−p′/p

0 |z|p′ ∀ (w, z) ∈ R
2. (8.25)

Proof of Lemma 8.9. Conditions (5.1a) and (5.1c) (with K independent of u) are
trivial to check.

Concerning (5.1b), let us first note that

R(s, t1+t2)≤(R(s, t1 + t2))
(p−1)/p ·

(
R(s, t1)

1/p + R(s, t2)
1/p

)
∀ s, t1, t2 ∈R.

(8.26)
Indeed, to fix ideas let us suppose that t1 + t2 ≥ 0 (the other case can be treated
exactly in the same way). Then,

R(s, t1 + t2) = ρ+(s) (t1 + t2)
p

= ρ+(s)1/p t1 ·
(
ρ+(s)(p−1)/p · (t1 + t2)

p−1
)

+ ρ+(s)1/p t2
(
ρ+(s)(p−1)/p · (t1 + t2)

p−1
)

.
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If t1, t2 ≥ 0, (8.26) follows. If, e.g., t1 ≥ 0 and t2 ≤ 0, using that ρ+(s)1/p t2 ≤
0 ≤ ρ−(s)1/p|t2| we again deduce (8.26). Therefore, by the Hölder inequality we
have for all u, v1, v2 ∈ L p(�):

ηu(v1 + v2)
p =

∫
�

R(u(x), v1(x) + v2(x)) dx

≤
∫

�

R(u(x), v1(x))1/p · (R(u(x), v1(x) + v2(x)))(p−1)/p dx

+
∫

�

R(u(x), v2(x))1/p · (R(u(x), v1(x) + v2(x)))(p−1)/p dx

≤ ηu(v1) · ηu(v1 + v2)
(p−1)/p + ηu(v2) · ηu(v1 + v2)

(p−1)/p,

whence (5.1b).
We shall now prove that for all {un}, {vn} ⊂ L p(�)(

un → u, vn → v in L p(�)
)

⇒ ηun (vn) → ηu(v) as n ↑ ∞, (8.27)

which clearly implies (6.4). Indeed, there exist two subsequences {unk } and {vnk }
such that unk → u and vnk → v a.e. on �. Then it can be easily checked that

R(unk (x), vnk (x)) → R(u(x), v(x)) for a.e. x ∈ �.

From (8.11) we infer that

R(unk (x), vnk (x)) ≤ R p
1 |vnk (x)|p

≤ 2p−1 R p
1

(|vnk (x) − v(x)|p + |v(x)|p) for a.e. x ∈ �.

Using a generalized version of the Lebesgue theorem (see e.g. [23]), we deduce
that ηunk

(vnk ) → ηu(v) as k ↑ ∞. As the limit does not depend on the extracted
subsequence, (8.27) follows.

Further, let {un} and {vn} fulfill un → u and vn ⇀ v in L p(�). Again apply-
ing the aforementioned lower semicontinuity results [11, Theorem 3.2] or [35, The-
orem B.1] to the functional (u, v) 
→ R(u, v), we deduce that

lim inf
n↑∞

∫
�

R(un(x), vn(x)) dx ≥
∫

�

R(u(x), v(x)) dx,

whence the lower semicontinuity property (6.3).
Finally, (8.23) follows from trivial computations and, in order to check (8.24),

we fix u ∈ L p(�) and v ∈ dom(∂�u), supposing without loss of generality that
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ηu(v) �= 0 (if ηu(v) = 0, necessarily v = 0 and the check of (8.24) simplifies). By
Lemma 5.1 and the definition (8.19) of �u , we have

ξ ∈∂�u(v) ⇔ ηu∗(ξ) = ηu(v)p−1 and ηu∗(ξ) =
∫
�

ξ(x)v(x) dx

ηu(v)

⇔
(∫

�

R(u(x),v(x)) dx

)(p−1)p

=ηu∗(ξ)=
∫
�

ξ(x)v(x) dx(∫
�
R(u(x),v(x)) dx

)1/p

⇔ ξ(x) = ρsign(v(x))(u(x))|v(x)|p−2v(x) for a.e. x ∈ � .

Lemma 8.10. Assume (8.12)–(8.14). Then, the functional E : [0, T ] × L p(�)

defined by (8.22) yields an admissible family of functionals (according to Defini-
tion 5.10), fulfilling condition (E) of Section 8.1. Furthermore, for all t ∈ [0, T ] the
Fréchet subdifferential ∂Et (u) �= ∅ if and only if − div(β(∇(u)))+ W ′(u)− h(t) ∈
L p′

(�) and, in that case,

∂Et (u) := {− div(β(∇(u))) + W ′(u) − h(t)
}
. (8.28)

Proof. Hereafter, we focus on the case in which q < d, as the proof in the other
case is analogous and slightly simpler. Note that

dom(Et ) = D =
{

u ∈ W 1,q
0 (�) : Wc(u) ∈ L1(�)

}
∀ t ∈ [0, T ].

It follows from [26, Theorem 2.5, p. 22] that for all t ∈ [0, T ] the functional E1
t is

convex and lower semicontinuous. Moreover, recalling that

∃l1, l2 > 0 : Wc(u) ≥ −l1u − l2 ∀ u ∈ R,

we find that

E1
t (u) ≥ M1‖∇u‖q

q − l1‖u‖1 − ‖h(t)‖−1,q ′‖u‖1,q − C

≥ M1

2
‖u‖q

1,q − C‖h‖q ′
L∞(0,T ;W−1,q′

(�))
− C ′

(8.29)

for all (t, u) ∈ [0, T ] × W 1,q
0 (�), due to (8.12) and an elementary application

of the Young inequality. Hence, the functionals E1
t are uniformly bounded from

below with respect to t . Arguing as in [46], it can be readily checked that for all
(t, u) ∈ [0, T ] × W 1,q

0 (�)

∂E1
t (u)=

{
{− div(∇β(u))+W ′

c(u)−h(t)} if div(∇β(u))−W ′
c(u)+h(t)∈ L p′

(�),
∅ otherwise.

(8.30)
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On the other hand, one trivially sees that the functional E2 is lower semicontinuous;
further, using the growth condition for g′ in (8.13), the Sobolev embedding (8.10),
as well as the Hölder and the Young inequalities, one has for all ν > 0

|E2
t (u)| ≤ M4

∫
�

|u(x)|α+1 dx + C ≤ M4‖|u|α‖p′‖u‖p + C

≤ C ′‖u‖q�‖u‖p + C ≤ ν‖u‖q
q� + Cν‖u‖q ′

p + C,

so that (5.19) follows by combining the above estimate with (8.29) and choosing ν

in such a way that 2ν/M1 < 1. Moreover, (8.29) yields that the sublevels of Et (·)
are bounded in W 1,q

0 (�) (which is compactly embedded in L p(�)), uniformly with
respect to t ∈ [0, T ], hence (2.38) is fulfilled.

Let us now check that E2
t fulfills the “differentiability” property (5.20) with

D̃E2
t (u) = g′(u) ∀ u ∈ W 1,q

0 (�) ∀ t ∈ [0, T ]. (8.31)

Indeed, arguing as above we see that by (8.13) and (8.29) there exists a positive
constant M5 such that for all u ∈ W 1,q

0 (�)

g′(u)∈ L p′
(�) and ‖g′(u)‖p′ ≤C

(
‖u‖q�

q� + 1
)1/p′

≤ M5

(
E1

t (u)q�/qp′ + 1
)
. (8.32)

In order to check (5.20), let us fix a sequence {un} ⊂ W 1,q
0 (�) fulfilling supn Et (un)

and converging to u in L p(�): it follows from (8.29) and from (8.10) that

un → u in Lq�−ε(�) for all ε > 0. (8.33)

By the mean value theorem, for a.e. x ∈ �

g(un(x)) − g(u(x))=
(∫ 1

0
g′((1 − t)un(x) + tu(x)) dt

)
(un(x) − u(x)). (8.34)

Therefore,

lim
n↑∞

∣∣∫
�

g(un(x)) − g(u(x)) − g′(u(x))(un(x) − u(x)) dx
∣∣

‖un − u‖p

≤ lim
n↑∞

∫
�

∣∣∣∫ 1
0

(
g′((1 − t)un(x) + tu(x)) − g′(u(x))

)
dt

∣∣∣ |un(x) − u(x)| dx

‖un − u‖p

≤ lim
n↑∞

∫ 1

0
‖g′((1 − t)un + tu) − g′(u)‖p′ dt.
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the first inequality following from (8.34) and the second one from the Hölder in-
equality. Using the growth condition (8.13), (8.33) and a version of the Dominated
Convergence theorem (see [23]), we infer that∫ 1

0
‖g′((1 − t)un + tu) − g′(u)‖p′ dt → 0 as n ↑ ∞,

hence (8.31) follows. Then, (5.21) follows from (8.32). Noting that ∂tEt (u) =
−〈h′(t), u〉 for every u ∈ W 1,q

0 (�), we readily conclude from the previous com-
putations that (5.34) holds. Hence, (2.37) follows from the fact that the sublevels
of Et are weakly compact in W 1,q

0 (�) and that h′ ∈ C0([0, T ]; W −1,q ′
(�)). Fi-

nally, (8.28) follows from the representation formula (5.23) of the Fréchet subdif-
ferential of admissible functionals, joint with (8.30) and (8.31).

Proof of Theorem 8.5. It follows from Lemma 8.9 and Lemma 8.10 that for any
u0 ∈ W 1,q

0 (�) every solution u ∈ AC(0, T ; L p(�)) of the Cauchy problem (8.2)
associated with the functionals (8.19) and (8.22) is indeed a solution to Problem 8.4.
Since conditions (N)–(�) of Section 8.1 are fulfilled, Theorem 8.3 thus yields the
existence of a solution u to the latter initial-boundary value problem. As a conse-
quence of the energy identity (8.5), of (8.19), (8.23), (6.23), and (8.28), u fulfils the
energy inequality

1

p′

∫ t

s

∫
�

R∗(u(x, r), div(β(∇u(x, r))) − W ′(u(x, r)) + h(x, r)) dx dr

+ 1

p

∫ t

s

∫
�

R(u(x, r), ut (x, r))dx dr + Et (u(t))

= Es(u(s)) +
∫ t

s
〈h′(r), u(r)〉 dr ∀ 0 ≤ s ≤ t ≤ T .

(8.35)

In particular, thanks to (8.11) we conclude that u ∈ W 1,p(0, T ; L p(�)), while es-
timates (8.29), (8.32) and supt∈[0,T ] Et (u(t)) < +∞ yield (8.15). Finally, recalling

(8.25) we also deduce an estimate for − div(β(∇u))+W ′
c(u)−h in L p′

(0,T ;L p′
(�)),

and (8.16) ensues.
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