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On propagation of boundary continuity
of holomorphic functions of several variables

SALLA FRANZÉN AND BURGLIND JÖRICKE

Abstract. We prove that continuity properties of bounded analytic functions
in bounded smoothly bounded pseudoconvex domains in two-dimensional affine
space are determined by their behaviour near the Shilov boundary. Namely, if the
function has continuous extension to an open subset of the boundary containing
the Shilov boundary it extends continuously to the whole boundary. If it is e.g.
Hölder continuous on such a boundary set, it is Hölder continuous on the closure
of the domain. The statements may fail if the boundary is not smooth.
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1. Introduction

It is a classical observation that properties of analytic functions can be often directly
read off from respective properties of their boundary values. The close relation be-
tween functions and boundary values has played a big role in complex analysis
and its applications, for instance in operator theory modeled on function spaces,
scattering theory and others. One side of this relation, the idea to study objects
by considering canonical extensions, has been successfully applied in many other
situations, as harmonic extension of functions, extension of elements of Kleinian
groups to hyperbolic space or a respective recent construction in conformal geom-
etry. One of the aspects of the relation of properties of analytic functions and their
boundary values is comparison of the respective continuity properties.

Investigation of problems of this kind was initiated by a classical theorem of
Hardy and Littlewood about contour and solid Hölder continuity. Recall that a
function f on a subset E of Rn is Hölder continuous of order α ∈ (0, 1] if there is
a constant C such that

sup
z,z′∈E

|z−z′|<δ

| f (z) − f (z′)| ≤ Cδα for all δ > 0. (1.1)

The smallest constant C for which (1.1) holds is called the Hölder seminorm of f .
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For a domain G in Cn (n ≥ 1) we denote as usual by A(G) the algebra of
analytic functions in G which extend continuously to the closure G. The following
result of Hardy and Littlewood concerns the case when G equals D, the unit disc in
the complex plane [7].

Theorem HL. If f ∈ A(D) and its restriction to the unit circle is Hölder contin-
uous of order α, α ∈ (0, 1), then f is Hölder continuous of the same order in the
closed disc D.

It was proved later by Sewell [15] that actually the Hölder seminorms of the
function on D, respectively on ∂D, coincide.

In the sequel more general results on contour and solid continuity were proved.
Results were obtained for very general domains in the complex plane and arbi-
trary quality of continuity instead of Hölder continuity. The quality of continuity
is measured by the modulus of continuity. We call a continuous non-negative, non-
decreasing function µ on the positive half-axis [0, +∞) a modulus of continuity if
µ(0) = 0 and µ is subadditive, i.e.

µ(δ1 + δ2) ≤ µ(δ1) + µ(δ2) for δ1 ≥ 0, δ2 ≥ 0.

Note that for any continuous function g on a compact convex set E ⊂ Rn the
function µg(δ) = sup z,z′∈E

|z−z′|<δ

|g(z) − g(z′)| for δ > 0, µg(0) = 0, is a modulus of

continuity.
For any continuous function f on an arbitrary compact subset E of Rn there

exists a modulus of continuity µ such that

sup
z,z′∈E

|z−z′|<δ

| f (z) − f (z′)| ≤ µ(δ) for all δ > 0. (1.2)

Indeed, it is enough to extend f to a continuous function on a large closed ball and
apply the preceding argument.

For unifying statements it will be often more convenient to use the follow-
ing more general notion instead. Call a continuous non-negative, non-decreasing
function µ on the positive half-axis [0, +∞) a generalized modulus of continuity if

µ(nδ) ≤ nµ(δ) (1.3)

for all natural numbers n and δ > 0. We do not require here that µ(0) = 0. If

sup
z,z′∈E

|z−z′|<δ

| f (z) − f (z′)| ≤ Cµ(δ) for all δ > 0 (1.4)

for a generalized modulus of continuity µ, then we call f µ-continuous on E .
The more general point of view allowed to understand the underlying mecha-

nism. It has a local and a global aspect. The local aspect is of potential theoretic
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nature and based on the existence of local barrier functions. Local results hold for
domains which are at a given point fat enough in a potential theoretic sense. The
global aspect is based on the maximum principle for analytic functions.

The problem becomes more subtle for analytic functions of several variables.
Moreover, natural questions arise which do not exist in dimension one. Already
the afore mentioned global aspect is more subtle for analytic functions in multi-
dimensional domains. Indeed, for a bounded domain G ⊂ Cn , n > 1, any function
in A(G) attains its maximum on the Shilov boundary S(G) of the domain (The
definition of Shilov boundary will be recalled below). Notice that S(G) may be
considerably smaller than the boundary ∂G of the domain. The question arises
whether the continuity properties of functions in A(G) can be read off from those
of their restrictions to a much smaller set than the boundary of the domain.

Moreover, the question arises whether one can weaken the a priori requirement
f ∈ A(G). Will an analytic function in G be automatically in A(G) if it extends
continuously to a smaller subset of the boundary? This question has no analogue in
dimension 1. Here are the precise questions which emerge from a paper of Glicks-
berg [5] although they are not asked there explicitly.

Question 1.1. For which bounded domains G ⊂ Cn any continuous function on
G ∪ S(G) that is bounded and analytic on G extends to a continuous function on
the closure G?

Question 1.2. For which bounded domains G ⊂ Cn the previous question has an
affirmative answer if S(G) is replaced by any relatively open subset V of ∂G with
V ⊃ S(G)?

Glicksberg himself gave sufficient conditions on a domain to ensure a positive
answer to the Question 1.1. Unfortunately, the conditions are difficult to verify and
are only sufficient, which motivates the search for more geometric criteria. For a
statement of his theorem we refer to the original paper [5].

In [9] it is proved that for regular Weil polyhedra in Cn, n > 1, Question 1.1
has a positive answer. Glicksberg’s conditions may not be satisfied for regular Weil
polyhedra. Weil polyhedra are defined in the following way.

Let f j , j = 1, . . . , N be analytic functions in an open subset U of Cn . Sup-
pose the set G

def={z ∈ U : | f j (z)| < 1, j = 1, . . . , N } is connected and relatively
compact in U . Then G is called a Weil polyhedron. Weil polyhedra are pseudocon-
vex domains. The polyhedron is regular if the level sets {| f j | = 1} of any k-tuple
(k ≤ n) of different functions f j intersect in general position. Note that polydiscs
are regular Weil polyhedra. Moreover, all polynomially convex sets can be approx-
imated from the outside by regular Weil polyhedra. The Shilov boundary of regular
Weil polyhedra has a simple description (see [2]). It has real dimension n.

In [9] it is also shown that for G being any regular Weil polyhedron and µ

being any generalized modulus of continuity, µ-continuity on S(G) for a function
as in Question 1.1 implies µ-continuity of the function on the whole closure G of G.

On the other hand Glicksberg showed that for the “Hartogs triangle” G
def=

{(z1, z2) ∈ C2 : |z1| < |z2| < 1} ⊂ C2 even the answer to Question 1.2 is neg-
ative. The Hartogs triangle does not have smooth boundary. It turns out that for
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domains in C2 this is the only obstruction for a positive answer to Question 1.2. We
prove here the following theorem. The formulation was proposed as a conjecture
in [10].

Theorem 1.3. Let G ⊂ C2 be a bounded pseudoconvex domain with C∞ boundary.
Let V ⊂ ∂G be relatively open and contain the Shilov boundary S(G). Then for
any continuous function f on G∪V that is bounded and analytic in G the following
two statements hold.
1. f extends to a continuous function on the closure G.
2. If f is µ-continuous on V for a generalized modulus of continuity µ then f is

µ-continuous on G. The respective µ-seminorms are related by a multiplicative
constant depending only on G and V .

It follows that if in addition f is of class C∞ on G ∪ V then f extends to a C∞
function on the closure G.

We do not know whether in Theorem 1.3 one can replace the neighbourhood V
of the Shilov boundary by the Shilov boundary itself. We do not know either in
which way the latter would be related to the still open problem whether biholomor-
phic mappings between bounded smoothly bounded pseudoconvex domains have
smooth extension to the boundary.

ACKNOWLEDGEMENTS. The present paper was written while the second author
was a guest of the Max-Planck-Institute.

2. Proof of the theorem

We start with recalling some known results and notions. The first two statements
extract the local and the global aspect of the relation of solid and boundary con-
tinuity of analytic functions. They hold in arbitrary dimensions. We refrain from
formulating the more subtle results that are known in dimension one and refer to
the original literature (see e.g. [14]).

We start with the following global statement.
Lemma I. Let G be a bounded domain in Cn and let f ∈ A(G). Then for every
δ > 0 the supremum

sup{| f (z) − f (z′)| : z, z′ ∈ G, |z − z′| < δ}
is attained when one of the points z or z′ is contained in the boundary.

The lemma is well-known (see for instance [14]). For convenience of the reader we
present the short proof.

Proof of the Lemma. Denote z′ = z +h. Both points z and z +h are contained in G
iff z ∈ G

⋂
(G − h). Fix the complex vector h and apply the maximum principle to

the analytic function z → f (z + h) − f (z) in G
⋂

(G − h). Since the boundary of
the set G

⋂
(G − h) is contained in the union of the boundaries ∂G and ∂(G − h),

the supremum sup{| f (z+h)− f (z)| : z ∈ G
⋂

(G −h)} is attained if either z ∈ ∂G
or z ∈ ∂(G − h). The second inclusion is equivalent to z′ = z + h ∈ ∂G.
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Here is a version of the local statement suitable also in the multi-dimensional set-
ting. In the multi-dimensional setting it can be obtained from one-dimensional
results by slicing. For an outline of the proof see [9].

Theorem I. Let G be a domain in Cn with z ∈ ∂G. Assume that there is an open
frustrum of a cone K with vertex at z lying in Cn\G. Let µ be a generalized
modulus of continuity. Then there exists a constant C > 0 depending only on the
aperture and height of the frustrum of the cone, such that for any function f ∈ A(G)

the relation
sup

z′∈∂G
|z−z′|<δ

| f (z) − f (z′)| ≤ µ(δ) for any δ > 0

implies the relation

sup
z′∈G

|z−z′|<δ

| f (z) − f (z′)| ≤ Cµ(δ) for any δ > 0.

The lemma and the theorem imply the statement on the relation between solid and
boundary continuity for a wide class of multi-dimensional domains, in particular
for those with C2 boundary. Indeed, if a domain has C2 boundary then for each
of its boundary points the conditions of theorem I are satisfied and, moreover, the
aperture and the height of the frustrum of the cones can be chosen to be independent
of the boundary point.

Recall that the notion of the Shilov boundary was introduced in the general
frame of Banach algebras. Here we consider only the case of the algebra A(G)

for an arbitrary domain G ⊂ Cn . In this case the Shilov boundary S(G) is the
intersection of all closed subsets S of G for which

| f (z)| ≤ max
S

| f | for all z ∈ G and for all f ∈ A(G).

A set S with the described property is called a boundary for A(G). Note that ∂G is
a boundary, hence S(G) ⊂ ∂G. Moreover S(G) is a boundary itself, i.e.

| f (z)| ≤ max
S(G)

| f | for all z ∈ G and for all f ∈ A(G).

For more detailed information we refer to the book [4].
Bremermann [2] initiated research on a geometric characterization of the

Shilov boundary. He conjectured that the Shilov boundary S(G) of a pseudoconvex
domain G in Cn with boundary of class C2 is equal to the closure of the set �+(G)

of strictly pseudoconvex boundary points. The first theorem in this direction was
proved by Rossi.

Theorem II. [13] If G is a bounded pseudoconvex domain in Cn with C2 boundary
and G admits a Stein neighbourhood basis, then

S(G) = �+(G).
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For one of the inclusions it is enough to require that the domain has C2 boundary.

Theorem III. [1] Let G be a bounded domain in Cn with C2 boundary. Then
the Shilov boundary is contained in the closure of the set of strictly pseudoconvex
boundary points, i.e.

S(G) ⊂ �+(G).

Note that the domain G is not required to be pseudoconvex.
As for the other inclusion the condition of existence of a Stein neighbourhood

basis of G can be removed, provided the boundary is of class C∞ instead of C2.

Theorem IV. [12] Let G ⊂ Cn be a bounded pseudoconvex domain with C∞
boundary. Then

�+(G) ⊂ S(G).

Using the geometric notion of strict pseudoconvexity of boundary points instead of
the notion of the Shilov boundary one can give a statement that holds for arbitrary
bounded domains in C2 with C3 boundary. Denote by �−(G) the set of strictly
pseudoconcave boundary points. Note that the set ∂G\(�+(G)∪�−(G)) is foliated
into one-dimensional complex manifolds.

The following theorem holds.

Theorem 2.1. Let G ⊂ C2 be a bounded domain in C2 with C3 boundary. Suppose
V+ ⊂ ∂G is relatively open in ∂G and contains �+(G). Let f be any continuous
function on G ∪ V+ which is bounded and analytic on G. Then

1. f extends to a continuous function on G.
2. If f is µ-continuous on G ∪ V+ for a generalized modulus of continuity µ then

it is µ-continuous on G. The µ-seminorms on G ∪ V+ and on G differ by a
multiplicative constant depending on G, V+ and the supremum norm of f on G.

In general, for non-pseudoconvex domains G the Shilov boundary may be strictly
smaller than �+(G). We do not know whether in Theorem 2.1 the set �+(G) may
be replaced by the Shilov boundary itself.

The following lemmas relate Theorem 2.1 to Theorem 1.3.

Lemma 2.2. Let G be as in Theorem 2.1 and p ∈ �−(G) \ �+(G). Then there
is a neighbourhood Up of p in C2 which depends only on G and p such that each
bounded analytic function in G extends to an analytic function in Up. The extension
does not increase the supremum norm of the function.

Lemma 2.3. There exists a neighbourhood V of �(G)
def=�+(G) ∪ �−(G) in ∂G

such that each function f as in Theorem 2.1 has continuous extension to G ∪ V .
Moreover, f is µ-continuous on V with µ-seminorm differing from that on V+ by a
multiplicative constant depending on G, V and the supremum norm of f on G.

Proof. Indeed, choose for each Up as in Lemma 2.2 two open subsets V ′
p and V ′′

p of

∂G, p ∈ V ′
p � V ′′

p � Up ∩ ∂G. Let
◦
V + be an open subset of ∂G, �+(G) ⊂ ◦

V + �
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V+. Cover the compact set �−(G)\ ◦
V + by a finite number of V ′

p j
, j = 1 . . . , N .

Denote by V the union V = ◦
V + ∪ ⋃N

j=1 V ′
p j

. On each V ′′
p j

the extension of f is
Lipschitz continuous with Lipschitz seminorm depending on the supremum norm
of f and the distance of V ′′

p j
to the complement of Up. Since any generalized

modulus of continuity exceeds const · δ, δ ≥ 0, for some positive constant const,

f is µ-continuous on each V ′′
p j

. It is also µ-continuous on V+ and
◦
V + � V+.

Notice, that for small δ > 0 two points z and z′ in V ⊂ ∂G of distance less than
δ from each other belong both to one of the sets V ′′

p j
or to V+. It follows that f is

µ-continuous on V with µ-seminorm depending on G, V+ and the supremum norm
of f on G.

Proof of Lemma 2.2. By the conditions of the lemma, p is a minimal point of ∂G
in the sense that ∂G contains no analytic curve that passes through p. For a small
ball Bp around p the neighbourhood Wp = ∂G ∩ Bp of p on ∂G is pseudoconcave
from the side of G. Denote the pseudoconvex set Bp\G by �p. Let W ′

p � Wp
be a smaller neighbourhood of p on ∂G. By a theorem of Trepreau [16] (see also
the more general result of Tumanov [17]) analytic functions on a neighbourhood of
W ′

p have analytic extension to a one-sided neighbourhood Op of p (i.e. to one of
the connected components of bp\∂G for a small ball bp around p). The one-sided
neighbourhood Op depends only on W ′

p and the extension preserves the supremum
norm of the function. The set Op is contained in �p. Indeed, take a vector v so that
for all sufficiently small positive numbers ε the translates W ′

p + εv are contained
in �p. Analytic functions in �p extend to Op + εv for all small ε > 0, hence
Op +εv ⊂ �p for all such ε. It follows that Op ⊂ �p, and therefore G ∪∂G ∪Op
covers the ball bp. Applying Trepreau’s theorem to a small translate W ′

p − εv into
G, we obtain the lemma.

Proof of Theorems 1.3 and 2.1. To unify notation, put �(G) = �+(G) ∪ �−(G)

in both theorems (in case of Theorem 1.3 �−(G) is empty). We may assume that
there is a neighbourhood V of �(G) in ∂G such that f is bounded and analytic
in G, continuous in G ∪ V and µ-continuous on V for some generalized modulus
of continuity µ. (For Theorem 2.1 the present generalized modulus of continuity
differs from the one in the statement of Theorem 2.1 by a multiplicative constant

that depends on G, V and the supremum norm of f ). Choose a neighbourhood
◦
V

(in ∂G) of �(G),
◦
V � V .

The following lemma is a local statement. It implies immediately continuous

extension of the function f to the set ∂G\ ◦
V . Successive application of the lemma

allows to increase the quality of continuity of the function on this set (see Corol-
lary 2.5).
Lemma 2.4. Let G,

◦
V and V be as above. For each point p ∈ ∂G\ ◦

V there are a
small ball bp around p, a positive number τp ≤ 1 and a constant C p > 1 such that
the following holds.
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Suppose f and µ are as above and ν ≥ µ is another generalized modulus of
continuity. Suppose

sup
z,z′∈G

|z−z′|<δ

| f (z) − f (z′)| ≤ ν(δ) for all δ > 0. (2.1)

Then
sup

z,z′∈bp∩G
|z−z′|<δ

| f (z) − f (z′)| ≤ C p ν(δ)1−τp µ(δ)τp for all δ > 0. (2.2)

The constants τp and C p depend only on p, G,
◦
V and V but not on ν and µ.

Note that any function as in the beginning of the proof satisfies (2.1) with
ν(δ) ≡ c supG | f | for any constant c ≥ 2. Redefining µ(δ) to be constant for
δ > diam(G) the constant c may be chosen so that ν ≥ µ.

We postpone the proof of the lemma. The lemma has the following corollary.

Corollary 2.5. Suppose f is as above and satisfies (2.1) for a function ν as in the
lemma. Then f has continuous extension to ∂G. Moreover, there exist a positive
constant τ ≤ 1 and a constant C > 1 (depending only on G and V ) such that for
all positive δ

sup
z,z′∈G,|z−z′|<δ

| f (z) − f (z′)| ≤ Cν(δ)1−τµ(δ)τ . (2.3)

Proof of the Corollary. Inequality (2.2) implies that for each p ∈ ∂G\ ◦
V the func-

tion f extends continuously to bp ∩ G, being uniformly continuous on the dense

open subset bp ∩ G. Since f extends continuously to V ⊃ ◦
V , continuous extension

to the whole boundary ∂G follows.

Put Vp
def=bp ∩ ∂G and choose an open subset

◦
V p of ∂G, p ∈ ◦

V p � Vp. Cover

the compact set ∂G\ ◦
V by finitely many of the

◦
V p. Let τ be the smallest of the

respective constants τp. Notice, that for small δ > 0 two points z and z′ in ∂G
belong both to one of the sets Vp or to V if |z − z′| < δ. Since µ(δ) ≤ ν(δ) for
δ ≥ 0, and τ ≤ τp, the inequality

sup
z,z′∈∂G
|z−z′|<δ

| f (z) − f (z′)| ≤ max C p · ν(δ)1−τ µ(δ)τ (2.4)

holds for small δ>0. Increasing the constant, we get (2.4) for arbitrary δ>0. The-
orem I and Lemma I imply (2.3) after further increasing the multiplicative constant.
The corollary is proved.

We will now finish the proof of the theorems by successively applying the
corollary.
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End of proof of the theorems. Let f be as in the beginning of the proof of the the-
orems. Put µ0(δ) ≡ A for δ ≥ 0, where A = c supG | f | for a suitable constant c
exceeding 2 so that µ0 ≥ µ. Let C and τ be the constants of the corollary. Apply-
ing the corollary with ν = µ0 we obtain that f extends to a continuous function in
G and

sup
z,z′∈G

|z−z′|<δ

| f (z) − f (z′)| ≤ C A1−τµ(δ)τ for all δ > 0.

Put µ1(δ) = C A1−τµ(δ)τ = Cµ0(δ)
1−τµ(δ)τ for δ ≥ 0. Then µ1 is non-negative,

non-decreasing, satisfies condition (1.3) and is not smaller than µ. We may apply
the corollary with ν = µ1. Repeated application of the corollary gives for any
natural number j the following estimate

sup
z,z′∈G

|z−z′|<δ

| f (z) − f (z′)| ≤ µ j (δ) for all δ > 0, (2.5)

where
µ j (δ) = C

∑ j−1
l=0 (1−τ)l

A(1−τ) j
µ(δ)τ

∑ j−1
l=0 (1−τ)l

, δ > 0. (2.6)

Indeed, suppose (2.5) is true for j − 1 with the non-negative, non-decreasing func-
tion µ j−1 defined by (2.6). Suppose that µ j−1 ≥ µ and µ j−1 satisfies (1.3). Then
the corollary gives

sup
z,z′∈G

|z−z′|<δ

| f (z) − f (z′)| ≤ C
(
µ j−1(δ)

)1−τ
µ(δ)τ for all δ > 0.

Denote the function on the right hand side by µ j . It is again non-negative, non-
decreasing, not smaller than µ and satisfies (1.3), since both functions µ j−1 and
µ have this property. Moreover, (2.6) holds for µ j . Indeed, since (2.6) is true for
j − 1,

µ j (δ) = C
(

C
∑ j−2

l=0 (1−τ)l
A(1−τ) j−1

µ(δ)τ
∑ j−2

l=0 (1−τ)l
)1−τ

µ(δ)τ

= C
∑ j−1

l=0 (1−τ)l
A(1−τ) j

µ(δ)τ
∑ j−1

l=0 (1−τ)l
for δ ≥ 0, (2.7)

what we needed to prove.
Note that

lim
j→∞ µ j (δ) = C

1
1−(1−τ) µ(δ)

τ 1
1−(1−τ) = C

1
τ µ(δ) for δ ≥ 0.

Since (2.5) is true for each j , we obtain the theorem with constant C
1
τ . Here C and

τ are the constants in the corollary. The theorems are proved.

It remains to prove the lemma.
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Proof of Lemma 2.4. Let W be a connected component of ∂G\�(G).W is a Levi-
flat hypersurface and hence it is foliated by1-dimensional complex manifolds which

are embedded or injectively immersed into W . Recall that
◦
V is an open subset of

∂G, �(G) ⊂ ◦
V ⊂ ◦

V ⊂ V .

Take a point p ∈ W\ ◦
V . Let Lp be the Levi-leaf of W through p.

There is a curve γp in Lp, γp : [0, 1] → Lp, which joins p with a point in

W ∩ ◦
V . Otherwise Lp would be contained in the compact subset W\ ◦

V of W and
the same would apply to its closure L̄p (closure with respect to Euclidean topol-
ogy in C2). As a consequence, L̄p would be a compact set which is the union of
injectively immersed complex one-dimensional analytic manifolds (see also [11]),
which is impossible [6]. Removing parts of γp between self-intersection points and
approximating, we may assume that γp is real analytic on a slightly larger inter-
val, in particular it extends to an analytic diffeomorphism from a neighbourhood of
Iε = [−ε, 1] in C to a neighbourhood of γp(Iε) on Lp. We may keep the condition
γp(0) = p. γp(Iε) can be considered as the symmetry axis of a rectangle in the
complex leaf Lp. Our goal is now to foliate a neighbourhood of γp(Iε) in G by
holomorphic rectangles close to the mentioned one. More precisely, we will de-
fine a diffeomorphic map H (=Hp)1 of class C1 from a neighbourhood of a closed
rectangular box

Q(= Qε,σ )={(z1, z2) :Re z1 ∈ Iε, Im z1 ∈[−ε, ε], Re z2 ∈[−σ, σ ], Im z2 ∈[0, σ ]}

onto a subset of G satisfying the following properties:

(1) Denote by Rz2 , z2 ∈ [−σ, σ ] × i[0, σ ], the rectangle obtained from Q by
fixing z2. The mapping H is holomorphic on each Rz2 .

(2) The “lower” face of H(Q), H(Q ∩ {Im z2 = 0}), is contained in W ⊂ ∂G.
Each conformal rectangle H(Rx2), x2 ∈ [−σ, σ ], is contained in one of the
leaves of W . In particular, H(R0) contains γ (Iε).

This is obtained in the following way. Let X and Y be real C2 vector fields defined
at points of Lp close to γ (Iε). Let FY,y , FX,x be their flows. We may choose
the vector fields so that H(x + iy, 0)

def=FY,y ◦ FX,x (p) coincides with the analytic
extension of γp for x, y in a neighbourhood of Iε × [−ε, ε]. Extend X, Y to C2

real vector fields in a neighbourhood of γ (Iε) on ∂G which are complex tangent to
∂G at each point. Let v : [−σ, σ ] → W be a C2 curve which is transverse to the
Levi leaves, with v(0) = p. Put H̃(x + iy, t) = FY,y ◦ FX,x ◦ v(t). For fixed t
the mapping H̃ maps Rt into the Levi-leaf through v(t). The mapping may not be
holomorphic in z = x + iy, but it is C1 close to the holomorphic map z → H(z, 0).

1 All further constructions depend on the point p, but we will skip the index p.
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There is a C1 family of reparametrizations ϕt (each ϕt being a map from a
neighbourhood of Iε to a neighbourhood of Iε) such that ϕ◦ = id and

H(z, t) = H̃(ϕt (z), t)

is holomorphic for each t . Indeed, denote by H̃ j the coordinate functions of H̃. ϕt
must satisfy the equations

∂̄(H̃ j (ϕt , t)) = ∂H̃ j (ϕt , t)∂̄ϕt + ∂̄H̃ j (ϕt , t)∂ϕt = 0, j = 1, 2. (2.8)

Each of the two equations (2.8) gives a well defined non-linear ∂̄-operation for ϕt

on the set where the respective ∂H̃ j does not vanish. Since for fixed t , H̃(z, t) =
(H̃1(z, t), H̃2(z, t)) maps into a Levi-leaf, there is an analytic function Ft with
non-vanishing gradient such that

Ft (H̃1(z, t), H̃2(z, t)) = 0 (2.9)

for z in a neighbourhood of Iε. Taking ∂- and ∂̄-derivatives of (2.9) and taking
into account that H̃(·, t) is C1 close to an analytic diffeomorphism we obtain that if
∂ j Ft 
= 0 then ∂H̃i 
= 0 for the other index i and at the set where both derivatives

∂1 Ft and ∂2 Ft do not vanish, ∂̄H1
∂H1

= ∂̄H2
∂H2

. This gives a well-defined ∂̄-equation for
ϕt in a neighbourhood of Iε which has a solution close to the identity. Moreover, the
solution ϕt depends C1 on t because H̃ is of class C2. The mapping H is constructed
on the lower face Q ∩ {Im z2 = 0}.

To define H on the whole Q we denote for z ∈ ∂G by n(z) the unit inner
normal to ∂G. This is a C2 vector field on ∂G. Approximate n on the compact
set γ ([−ε, 1]) by an analytic vector field N in a neighbourhood (in C2) of this set
( [8]). Put

H(z, t + is) = FN ,s(H(z, t)),

s ∈ [0, σ ] for a small positive number σ .
Since N is holomorphic in a neighbourhood of γ (Iε) and H(z, t) is holomor-

phic in z, the function H(z, t + is) is holomorphic in z. The construction of H on
Q is completed.

Decreasing ε > 0 and σ > 0 if necessary we may assume that the “right”

“lower” 2-face of Qε,σ , Qε,σ ∩ {Re z1 = 1, Im z2 = 0}, is mapped into
◦
V \�(G).

Denote the “right” face Qε,σ ∩ {Re z1 = 1} by Qr
ε,σ .

The following lemma states that at points of H(Qr
ε,σ ) the function has the de-

sired continuity properties. The proof uses the local Theorem I and a pluriharmonic
measure estimate.

Lemma 2.6. The estimate

sup
p′,p′′∈H(Qr

ε,σ )

|p′−p′′|<δ

| f (p′) − f (p′′)| ≤ C ′ν(δ)1−τ ′
µ(δ)τ

′ def=µ̃(δ)

holds for a constant τ ′ ∈ (0, 1) and a constant C ′.
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Proof. Let p′, p′′ ∈ G be two points in a sufficiently small neighbourhood of
H(Qr

ε,σ ), |p′ − p′′| < δ for a small δ > 0. Suppose first that one of the points, say

p′, has distance to ∂G not exceeding δ. Then, since H(Qr
ε,σ ∩ {Im z2 = 0}) ⊂ ◦

V ,

there is a point p∗ ∈ ◦
V such that |p′ − p∗| ≤ δ. By the local Theorem I,

| f (p′) − f (p∗)| ≤ const µ(δ).

The same inequality with δ replaced by 2δ holds for p′′. Triangle inequality and
properties of µ yield

| f (p′) − f (p′′)| ≤ C ′′µ(δ) (2.10)

for this case.
Let now p′, p′′ ∈ G be contained in a neighbourhood N of H(Qr

ε,σ ), |p′ −
p′′| < δ and both have distance bigger than δ to the boundary ∂G. The function

q → f (q) − f (p′ − p′′ + q) (2.11)

is analytic in the intersection N ∩ {dist (q, ∂G) > δ}, satisfies (2.10) on its bound-
ary part contained in {dist (q, ∂G) = δ} and has supremum norm not exceeding
ν(δ). Pluriharmonic measure of the latter boundary part with respect to N ∩
{dist (q, ∂G) > δ} computed at points of H(Qr

ε,σ ) ∩ {dist (q, ∂G) > δ} has an
estimate from below by a positive constant τ ′. (This can be seen by slicing with
complex lines). Hence, on H(Qr

ε,σ ) ∩ {q ∈ G : dist (q, ∂G) > δ} the absolute
value of the function (2.11) does not exceed

(
C ′′µ(δ)

)τ ′
ν(δ)1−τ ′

.

The value of the function (2.11) at the point q = p′ ∈ H(Qr
ε,σ )∩{dist (q, ∂G) > δ}

equals f (p′) − f (p′′). This proves the required inequality in the second case.
Lemma 2.6 is proved.

End of proof of Lemma 2.4. Let ε′ ∈ (0, ε) and consider the rectangular box
Qε′,σ obtained from Qε,δ by shrinking in the z1-direction. We will prove that esti-
mate (2.2) of the lemma holds on the set H(Q0

ε′,σ ), where Q0
ε′,σ is the intersection

of the interior of Qε′,σ with {|Re z1| < ε′} in C2,

Q0
ε′,σ

def={(z1, z2) : z1 ∈ (−ε′, ε′) + i(ε′, ε′), z2 ∈ (−σ, σ ) + i(0, σ )}.
The set H(Q0

ε′,σ ) is contained in G and contains the intersection of G with a ball
around p. (Recall, that H(0, 0) = p.)

The diffeomorphism H and its inverse H−1 preserve distance up to a multi-
plicative constant, i.e.

|H−1(p′) − H−1(p′′)| ≤ c′|p′ − p′′|, p′, p′′ ∈ H(Qε,σ ),

|H(z′) − H(z′′)| ≤ c′′|z′ − z′′|, z′, z′′ ∈ Qε,σ .
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Let p′, p′′ ∈ H(Q0
ε′,σ ), |p′ − p′′| < δ with δ > 0. Write H−1(p′) = (z′

1, z′
2) ∈

Qε′,σ , H−1(p′′) = (z′′
1, z′′

2) ∈ Qε′,σ and consider the function

z → ( f ◦ H)(z, z′
2) − ( f ◦ H)(z + (z′′

1 − z′
1), z′′

2). (2.12)

If δ > 0 is small, this function is in A(R) for the rectangle R = [−ε, 1] + i[−ε, ε].
(Note that Im z′

2 > 0, Im z′′
2 > 0). The value of the function (2.12) at z′

1 equals

( f ◦ H)(z′
1, z′

2) − ( f ◦ H)(z′′
1, z′′

2) = f (p′) − f (p′′).

The supremum norm of the function (2.12) does not exceed ν(c′c′′δ). On the right
side {1} × i[−ε, ε] of the rectangle R its absolute value does not exceed µ̃(c′c′′δ).
Therefore on the relatively compact part {(−ε′, ε′) + i(−ε′, ε′)} of R, in particular
at the point z′

1, its absolute value does not exceed

C pν(δ)1−τpµ(δ)τp

for suitable constants τp ∈ (0, 1] and C p > 0. Here we used property (1.3) of µ

and ν, the fact that ν ≥ µ, the definition of µ̃ in Lemma 2.6 and harmonic measure
estimate on R.

Lemma 2.4, and hence theorems 1.3 and 2.1, are proved.

We do not know whether in theorems 1.3 and 2.1 one needs to require that the
function f is bounded in G.

Under some additional hypothesis this condition can be removed. The follow-
ing lemma describes sufficient conditions in the case of pseudoconvex domains.

Lemma 2.7. Let G ⊂ C2 be a bounded pseudoconvex domain with C2 boundary.
Suppose each set of an exhausting sequence of compact subsets of ∂G\�+(G) has
a Stein neighbourhood basis. Then any analytic function in G that extends contin-
uously to a neighbourhood of �+(G) in ∂G is bounded in G.

Proof. Let V be a neighbourhood of �+(G) in ∂G and f a continuous function on

G ∪ V that is holomorphic in G. Let
◦
V be open in ∂G and �+(G) ⊂ ◦

V � V .
There is a compact subset K ⊂ G ∪ V which contains a one-sided neighbourhood

of each point of
◦
V (i.e. the intersection of G with a small ball around the point).

The function f is bounded on K .

The set ∂G\ ◦
V is a compact subset of ∂G\�+(G). It is contained in a compact

set κ ⊂ ∂G\�+(G) which has a Stein neighbourhood basis. Since any pseudocon-
vex domain can be exhausted by smoothly bounded strictly pseudoconvex domains,
there exists a neighbourhood basis Un of κ consisting of smoothly bounded strictly
pseudoconvex domains. Consider G\Un and smoothen its boundary part which is

contained in a small neighbourhood of ∂Un ∩ ∂G ⊂ ◦
V . We may assume that the

changed boundary part is contained in K and the thus obtained domain Gn has
C2 boundary.
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The function f is continuous on Gn ⊂ G ∪ V . The part of the boundary ∂Gn
which is outside K is strictly pseudoconcave hence does not meet �+(Gn). By
Theorem III

max
Gn

| f | ≤ max
K

| f |.

This is true for all n and the Gn exhaust G. The lemma is proved.

Necessary and sufficient conditions for the existence of a Stein neighbourhood
basis of a Levi-flat hypersurface are not known. See [3] for an account.
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91 (1959), 246–276.
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