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The role of Onofri type inequalities in the symmetry properties
of extremals for Caffarelli-Kohn-Nirenberg inequalities,

in two space dimensions

JEAN DOLBEAULT, MARIA J. ESTEBANR AND GABRIELLA TARANTELLO

Abstract. We first discuss a class of inequalities of Onofri type depending on
a parameter, in the two-dimensional Euclidean space. The inequality holds for
radial functions if the parameter is larger than −1. Without symmetry assumption,
it holds if and only if the parameter is in the interval (−1, 0].

The inequality gives us some insight on the symmetry breaking phenomenon
for the extremal functions of the Caffarelli-Kohn-Nirenberg inequality, in two
space dimensions. In fact, for suitable sets of parameters (asymptotically sharp)
we prove symmetry or symmetry breaking by means of a blow-up method and
a careful analysis of the convergence to a solution of a Liouville equation. In
this way, the Onofri inequality appears as a limit case of the Caffarelli-Kohn-
Nirenberg inequality.

Mathematics Subject Classification (2000): 26D10 (primary); 46E35, 58E35
(secondary).

1. Introduction

The Onofri inequality on the sphere S2, see for instance [1, 14, 15], states that∫
S2

e2 u−2
∫

S2 u dσ dσ ≤ e
‖∇u‖2

L2(S2,dσ) , (1.1)

for all u ∈ E = {u ∈ L1(S2, dσ) : |∇u| ∈ L2(S2, dσ)}, where dσ denotes the mea-
sure induced by Lebesgue’s measure in R3 ⊃ S2, normalized so that

∫
S2 dσ = 1.

Using the stereographic projection from S2 onto R2, we see that (1.1) is equivalent
to the following Onofri type inequality in R2:∫

R2
ev−∫

R2 v dµ dµ ≤ e
1

16 π
‖∇v‖2

L2(R2,dx) ,
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for all v ∈ D = {v ∈ L1(R2, dµ) : |∇v| ∈ L2(R2, dx)} where dµ denotes the
probability measure

dµ = dx

π (1 + |x |2)2
.

In this paper, we first note how the above inequality can be generalized to the family
of probability measures

dµα = α + 1

π

|x |2α dx

(1 + |x |2 (α+1))2
,

for α > −1, and investigate when the inequality∫
R2

ev−∫
R2 v dµα dµα ≤ e

1
16 π (α+1)

‖∇v‖2
L2(R2, dx) , (1.2)

holds in the space

Eα =
{
v ∈ L1(R2, dµα) : |∇v| ∈ L2(R2, dx)

}
.

In Section 2, we prove that (1.2) always holds for functions in Eα which are radially
symmetric about the origin. Meanwhile, without symmetry assumption, inequal-
ity (1.2) holds in Eα if and only if α ∈ (−1, 0].

The Moser-Trudinger inequality was initially proved by N. Trudinger in [18],
and then established in a sharp form by J. Moser in [14] using symmetrization
techniques. In dimension two it involves a term exp(4π |u|2). However, in [14],
J. Moser also establishes (1.1), up to a non sharp constant, and this is why (1.1) is
sometimes called a Moser or Moser-Trudinger inequality in the literature. Onofri’s
proof relies on conformal invariance and provides the sharp constant on S2. In-
equalities of the type (1.1) are known to hold over any compact surface (see [10]),
but on S2, the advantage of Onofri’s inequality is that it holds with the best possible
constants.

We use the above information to investigate possible symmetry breaking phe-
nomena for extremal functions of the Caffarelli-Kohn-Nirenberg inequality (see
[3]), in two space dimensions. Namely,(∫

R2

|u|p

|x |bp
dx

)2/p

≤ Ca,b

∫
R2

|∇u|2
|x |2a

dx ∀ u ∈ Da,b,

with a < b ≤ a + 1, p = 2

b − a
,

Da,b = {|x |−b u ∈ L p(R2, dx) : |x |−a |∇u| ∈ L2(R2, dx)},

(1.3)

and an optimal constant Ca,b. Typically (1.3) is stated with a < 0 (see [3])
so that the space Da,b is obtained as the completion of C∞

c (R2), the space of
smooth functions in R2 with compact support, with respect to the norm ‖u‖2 =
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‖ |x |−b u ‖2
p + ‖ |x |−a ∇u ‖2

2. Actually (1.3) holds also for a > 0 (see Section 2),
but in this case Da,b is obtained as the completion with respect to ‖ · ‖ of the space
{u ∈ C∞

c (R2) : supp(u) ⊂ R2 \{0}}. We know that for b = a +1, the best constant
in (1.3) is given by Ca, b=a+1 = a2 and it is never achieved (see [4, Theorem 1.1,
(ii)]). On the contrary, for a < b < a + 1, the best constant in (1.3) is always
achieved, say at some function ua,b ∈ Da,b that we will call an extremal function.
However ua,b is not explicitly known unless we have the additional information
that ua,b is radially symmetric about the origin. In the class of radially symmetric
functions, the extremals of (1.3) are given (see [4,6]) up to scalar multiplication and
dilation, by

urad
a,b(x) =

(
1 + |x |− 2a (1+a−b)

b−a

)− b−a
1+a−b

. (1.4)

See [4] for more details and for a “modified inversion symmetry” property of ex-
tremal functions, based on a generalized Kelvin transformation. Also we refer
to [12, 13, 16] for further partial symmetry results. On the other hand, extremals
are known to be non-radially symmetric for a certain range of parameters (a, b)

identified first in [4] and subsequently improved in [9]. Those results provide a
rather satisfactory information about the symmetry breaking phenomenon for ua,b
when |a| is sufficiently large. Also they apply to any dimension N ≥ 3, where
inequality (1.3) reads as follows:

(∫
RN

|u|p

|x |bp
dx

)2/p

≤ C N
a,b

∫
RN

|∇u|2
|x |2a

dx, ∀ u ∈ DN
a,b, (1.5)

with p = 2 N
(N−2)+2(b−a)

,DN
a,b ={|x |−bu ∈ L p(RN , dx) : |x |−a|∇u|∈ L2(RN , dx)},

an optimal constant C N
a,b , and a, b ∈ R such that a < (N − 2)/2,a ≤ b ≤ a + 1.

Again we observe that inequality (1.5) makes sense also if a > (N − 2)/2 and
a ≤ b ≤ a + 1, where now the space DN

a,b is given by the completion with respect

to ‖ · ‖ of the set {u ∈ C∞
c (R2) : supp(u) ⊂ R2 \ {0}}.

Inequality (1.5) is sometimes called the Sobolev-Hardy inequality see [6], as
for N > 2 it interpolates between the usual Sobolev inequality (a = 0, b = 0) and
the Hardy inequality (a = 0, b = 1); or the weighted Hardy inequalities (see [4]),
since for b = a + 1 it furnishes a family of Hardy-type inequalities involving
weights.

For N ≥ 3 and 0 ≤ a < (N − 2)/2, the extremal ua,b of (1.5) (which again
exists for every a < b < a + 1) is always radially symmetric (see [6], and for a
survey on previous results, see [4]). On the other hand, when a < 0, this is ensured
only in some special cases described in [12, 13]. Also see [16, Theorem 4.8] for an
earlier but slightly less general result.

In this paper, we focus on the less investigated bidimensional case N = 2,
and besides symmetry breaking phenomena, we explore the possibility of ensuring
radial symmetry for the extremal ua,b, a property which cannot be handled as in
[12, 13, 16], (see in particular [16, Remark 4.9]).
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To this purpose, first we check in Section2.2 that (1.3) (or more generally (1.5))
holds for all a 
= 0 (or a 
= (N − 2)/2 if N ≥ 3) and not only for a < 0 (or
a < (N − 2)/2) as it is usually found in literature. In this way we can analyze
radial symmetry of ua,b in the range a 
= 0 and for all b ∈ (a, a + 1).

Theorem 1.1. Let a 
= 0 and N = 2. If a < b < h(a) = a + |a|√
1+a2

, then (1.3)

admits only non radially symmetric extremals.

As in [4, 9], Theorem 1.1 follows by analyzing the linearized operator around
the radial extremal urad

a,b and show that it yields to a saddle (and not a minimum)
type solution.

Since as |a| → +∞, 0 < a + 1 − h(a) → 0, it is reasonable to look for
radially symmetric extremals when |a| is small. But so far, for N = 2, there was no
result identifying a set of parameters (a, b) for which ua,b is shown to be radially
symmetric. Here we provide a contribution in this direction which asserts that the
above curve h(a) is asymptotically optimal as a → 0. More precisely, we show that
if a → 0+, then h′+(0) = 2 (or if a → 0−, then h′−(0) = 0) gives the optimal value
of the ratio b/a that signs the transition between radial symmetry and symmetry
breaking.

Theorem 1.2. Let a 
= 0 and N = 2. For every ε > 0, there exists δ > 0 such that
for |a| ∈ (0, δ), b ∈ (a, a + 1), if one of the following conditions holds:

(i) a > 0 and b/a > 2 + ε,

(ii) a < 0 and b/a < −ε,

then the extremals of (1.3) are radially symmetric, and given, up to scalar multipli-
cation and dilation, by urad

a,b defined in (1.4).

Note that, as a consequence of Theorem 1.1, we can also state , for small |a|,
the following counterpart of Theorem 1.2 in case of symmetry breaking.

Corollary 1.3. Let N = 2. For every ε > 0, there exists δ > 0 such that if
|a| ∈ (0, δ), b ∈ (a, a + 1), if one of the following conditions holds:

(i) a > 0 and b/a < 2 − ε,

(ii) a < 0 and b/a > ε,

then (1.3) cannot admit a radially symmetric extremal.

We will directly prove the weaker statement in Corollary 1.3 as a consequence
of the Onofri type inequality (1.2). We emphasize that such an approach makes no
use of the linearized problem around the radial solution (1.4) and could be helpful in
other contexts. To prove the more complete result stated in Theorem 1.1, we use the
Emden-Fowler transformation in order to formulate (1.3) (or more generally (1.5))
as the Gagliardo-Nirenberg inequality on the cylinder R × S1 (or more generally
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R × SN−1). In this way we can analyze the linearized elliptic problem around
the solution corresponding to (1.4) and see in which case it does not yield to a
local minimizer. We shall obtain a precise description of the linearized problem in
Section 3. This information will lead us directly to the proof of Theorem 1.1. It
will be useful also to handle the more interesting part of our contribution given by
Theorem 1.2, that will be derived from an argument by contradiction using a blow-
up method and a careful analysis of the convergence to a solution of a Liouville
equation

To emphasize the relevance of Theorem 1.2 and the advantage of our approach,
we notice that it provides an alternative and direct proof of Onofri’ s inequality (see
Section 5) without any use of the conformal invariance, but rather by identifying it
as a limiting case of the Caffarelli-Kohn-Nirenberg inequalities.

In concluding we wish to bring the reader’s attention to an Onofri type inequal-
ity in the cylinder R × S1 (see Proposition 5.1 in Section 5). We believe it helps to
illustrate the nature of the symmetry breaking phenomenon.

ACKNOWLEDGEMENTS. This work has been partially supported by European
Programs HPRN-CT # 2002-00277 & 00282, by the projects ACCQUAREL and
IFO of the French National Research Agency (ANR) and by M.U.R.S.T. project:
Variational Methods and Non Linear Differential Equation, Italy. The third author
wishes also to express her gratitude to Ceremade for the warm and kind hospitality
during her visits.

2. The Onofri inequality in connection to the Caffarelli-Kohn-Nirenberg
inequality

Consider the measure µα and the Banach space Eα , α > −1, defined in Section 1.
Here and from now on, we let ‖v‖2 denote ‖v‖L2(R2,dx).

2.1. Onofri inequalities in R2

Proposition 2.1. Let α > −1. For all v ∈ Eα , there holds

∫
R2

ev−∫
R2 v dµα dµα ≤ e

1
16 π (α+1)

(
‖∇v‖2

2+α (α+2) ‖ 1
r ∂θ v ‖2

2

)
. (2.1)

Proof. We use polar coordinates in R2 ≈ C. For x ∈ R2, we let x = r eiθ ,
r ≥ 0, θ ∈ [0, 2π). We also consider cylindrical coordinates in R3, so that for
(y, z) ∈ R2 × R, we let y = ρ eiθ , ρ ≥ 0, θ ∈ [0, 2π) and z ∈ R. In this way, we
can write R3 ⊃ S2 = {(ρ eiθ , z) : ρ2 + z2 = 1 and θ ∈ [0, 2π)}. We recall that the
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inverse 	0 of the usual stereographic projection from S2 onto R2 is defined by

	0
(
r eiθ ) = (ρ eiθ , z) =

(
2 r eiθ

1 + r2
,

r2 − 1

1 + r2

)
.

If u is defined on S2, then v = u ◦ 	0 is defined in R2 and for any continuous real
function f in R, we have

π

∫
S2

f (u) dσ =
∫

R2

f (v)

(1 + |x |2)2
dx and 4π

∫
S2

|∇u|2 dσ =
∫

R2
|∇v|2 dx

whenever f (u) and |∇u|2 belong to L1(S2).
In order to prove the proposition, we are going to use the inverse of a dilated

stereographic projection given for all α > −1 by the function 	α : R2 → S2 such
that

	α

(
r eiθ ) =

(
2 rα+1 eiθ

1 + r2(α+1)
,

r2(α+1) − 1

1 + r2(α+1)

)
.

Note that for any r ≥ 0, θ ∈ [0, 2π), 	α(r eiθ ) = 	0(r1+α eiθ ) and, for any ρ ≥ 0,
θ ∈ [0, 2π) and z ∈ [−1, 1],

	−1
α

(
(ρ eiθ , z)

) =
(

ρ

1 − z

)1/(α+1)

eiθ .

Now, if f is a continuous real function in R, f (u), |∇u|2 ∈ L1(S2) and v =
u ◦ 	α , then an elementary computation (see the Appendix) shows that∫

S2
f (u) dσ =

∫
R2

f (v) dµα,

4π

∫
S2

|∇u|2 dσ = 1

α + 1

∫
R2

(
|∇v|2 + α (α + 2)

∣∣∣∣ 1

r
∂θv

∣∣∣∣2
)

dx .

The result follows from Onofri’s inequality (1.1).

Corollary 2.2. If α ∈ (−1, 0], then (1.2) holds true for any v ∈ Eα .

Proof. It is an immediate consequence of Proposition 2.1 since for α ∈ (−1, 0], we
have α (α + 2) ≤ 0.

This result is optimal. While (1.2) remains valid for all α > −1 among radially
symmetric functions (about the origin), in general it fails to hold in Eα for α > 0. In
view of the proof of Corollary 2.2, this is a consequence of the conformal invariance
and of the positivity of α (α + 2) for α > 0, but this can also be seen from a more
analytical point of view as follows.
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Proposition 2.3. If α > 0, then inequality (1.2) fails to hold in Eα .

Proof. Let us exhibit a counter-example to (1.2), which is valid for all α > 0. For
any ε ∈ (0, 1), let us consider the function vε : R2 → R defined by

2 vε =




log

(
ε

(ε + π |x − x̄ |2)2

)
if |x − x̄ | ≤ 1

log

(
ε

(ε + π)2

)
if |x − x̄ | > 1

where x̄ denotes the point (1, 0). For this function we can calculate the various
terms of (1.2).

First we compute the left hand side, and see that

µα(e2vε ) =
∫

R2
e2vε dµα = Iα,ε + Aα

ε

(ε + π)2

where

Iα,ε = 1

ε

∫
|x−x̄ |<1

1(
1 + π

∣∣∣∣ x − x̄√
ε

∣∣∣∣2
)2

dµα

and Aα = ∫
|x−x̄ |>1 dµα is finite for all α > −1. Now, by the change of variables

x = x̄ + √
ε y and dominated convergence, we find

lim
ε→0

∫
|y|<1

|x̄ + √
ε y|2α(

1 + |x̄ + √
ε y|2(α+1)

)2 (
1 + π |y|2)2

dy = 1

4

∫
R2

dy

(1 + π |y|2)2
.

So, for the function vε, the left hand side of (1.2) satisfies

lim
ε→0

µα(e2vε ) = lim
ε→0

Iα,ε = α + 1

4π
.

Next we compute the r.h.s. of (1.2), that is 1
4π (α+1)

‖∇vε‖2
2 + 2 µα(vε) and see that

‖∇vε‖2
2 = 4 π log

(
ε + π

ε

)
− 4 π2

(ε + π)

and
2 µα(vε) = Jα,ε + Aα log

ε

(ε + π)2
,

where

Jα,ε =
∫

|x−x̄ |<1
log

(
ε

(ε + π |x − x̄ |2)2

)
dµα.
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Using Aα = 1 − ∫
|x−x̄ |<1 dµα , we get

2 µα(vε) = log
ε

(ε + π)2
+ Bα,ε, Bα,ε =

∫
|x−x̄ |<1

log

(
ε + π

ε + π |x − x̄ |2
)2

dµα,

lim
ε→0

Bα,ε =
∫

|x−x̄ |<1
log

(
1

|x − x̄ |4
)

dµα.

Hence

1

4π (α + 1)
‖∇vε‖2

2 + 2 µα(vε) = α

1 + α
log ε + O(1) as ε → 0,

and comparing with the estimate above, we violate (1.2) for ε>0 small enough.

2.2. The extended Caffarelli-Kohn-Nirenberg inequality

The range in which inequalities (1.3) and (1.5) are usually considered can be ex-
tended as follows.

Lemma 2.4. If N = 2, then inequality (1.3) holds for any a 
= 0 and b such that
a < b ≤ a + 1. If N ≥ 3, then inequality (1.5) holds for any a 
= (N − 2)/2 and b
such that a ≤ b ≤ a + 1.

Proof. We use Kelvin’s transformation and deal with the case N = 2. If u ∈ Da,b,
then v(x) = u

(
x/|x |2) is such that |x |a |∇v| ∈ L2(R2, dx). Hence, for a > 0,

b ∈ (a, a + 1], define a′ = −a, b′ = b − 2a ∈ (−a, −a + 1] and apply (1.3) to the
pair (a′, b′) with p = 2/(b′ − a′) to obtain

∫
R2

( |v|p

|x |b′ p
dx

)2/p

≤ Ca′,b′
∫

R2

|∇v|2
|x |2a′ dx in Da′,b′ .

Now, we make the change of variables y = x/|x |2 and get

∫
R2

( |u|p

|y|4−b′ p
dy

)2/p

≤ Ca′,b′
∫

R2

|∇u|2
|y|−2a′ dy in Da,b.

Thus we arrive at the desired conclusion with Ca,b = Ca′,b′ , since

4 − b′ p = bp, −2a′ = 2a and p = 2/(b′ − a′) = 2/(b − a).

Similarly in dimension N ≥ 3, argue as above with a = N −2−a′, b p = 2N −b′ p
and p = 2N/(N − 2 − 2(b′ − a′)) = 2N/(N − 2 − 2(b − a)).
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Surprisingly, the case a > 0 if N = 2, or a > (N − 2)/2 if N ≥ 3, has
apparently never been considered. According to our argument, it requires to de-
fine with care the space Da,b. Indeed if a function u ∈ C∞

c (RN ) ∩ Da,b for
a > (N − 2)/2, N ≥ 2, then u must satisfy u(0) = 0. Although optimal func-
tions for inequality (1.5), a > (N − 2)/2, N ≥ 2, have not been studied, it has
been noted in [4, Theorem 1.4] that whenever u > 0 satisfies the corresponding
Euler-Lagrange equations, then, up to a scaling, it satisfies the “modified inversion
symmetry” property, that is, there exists τ > 0 such that

u(x) =
∣∣∣ x

τ

∣∣∣−(N−2−2a)

u

(
τ 2 x

|x |2
)

∀ x ∈ R
N .

The transformation u �→ |x |−(N−2−2a) u(x/|x |2) is sometimes called the general-
ized Kelvin transformation, see e.g. [6]. The modified inversion symmetry formula
can be shown for an optimal function u using the fact that v given in terms of u
as in the proof of Lemma 2.4 is also an optimal function for inequality (1.5), with
parameters a′, b′.

2.3. The Onofri inequality as a limit case of the Caffarelli-Kohn-Nirenberg
inequality in R2

We now relate inequalities (1.2) and (1.3). In this section, we will only consider the
case a < 0. The case a > 0 follows by Lemma 2.4.

For N = 2, α > −1, ε ∈ (0, 1), let us make the following special choice of
parameters:

a = − ε

1 − ε
(α + 1), b = a + ε and p = 2

ε
. (2.2)

Let uε = urad
a,b be given in (1.4), that is

uε(x) =
(

1 + |x |2(α+1)
)− ε

1−ε
.

We consider the functions

fε =
[

uε

|x |a+ε

]2/ε

, gε =
[ |∇uε|

|x |a
]2

,

and the integrals

κε =
∫

R2
fε dx and λε =

∫
R2

gε dx .
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Straightforward computations show that

κε =
∫

R2

|x |2α(
1 + |x |2(1+α)

)2

u2
ε

|x |2a
dx = π

α + 1

∫ ∞

0

s
ε

1−ε

(1 + s)
2

1−ε

ds,

λε = 4a2
∫

R2

|x |2(2α+1−a)(
1 + |x |2(1+α)

) 2
1−ε

dx .

Notice that we can use Euler’s Gamma function 
(x) = ∫ ∞
0 sx−1 e−s ds, and on

the basis of the well known identity:

2
∫ ∞

0
s2a−1(1 + s2)−b ds = 
(a) 
(b − a)


(b)
,

deduce for λε the following expression:

λε = 4π |a|



(
2 − ε

1 − ε

)



(
1

1 − ε

)




(
2

1 − ε

) .

Lemma 2.5. Let α0 > −1, v ∈ C∞
c (R2), wε = (1 + ε v) uε. With the above

notations, we have

1

κε

∫
R2

|wε|p

|x |bp
dx =

∫
R2

|1 + ε v| 2
ε

fε dx∫
R2

fε dx

and, as ε → 0, uniformly with respect to α ≥ α0,

∫
R2

|∇wε|2
|x |2a

dx = λε+ε2

[
8(1 + α)2

(1 − ε)2

∫
R2

u2/ε
ε v

|x |2(a−α)
dx+

∫
R2
|∇v|2 u2

ε

|x |2a
dx+O(a2ε)

]
.

Proof. By definition of gε, we can write∫
R2

|∇wε|2
|x |2a

dx = λε + 2 ε

∫
R2

∇uε · ∇(uε v)
dx

|x |2a︸ ︷︷ ︸
(I)

+ ε2
∫

R2
|∇(uε v)|2 dx

|x |2a︸ ︷︷ ︸
(II)

.

A simple algebraic computation shows that

−∇ ·
( ∇uε

|x |2a

)
= 4 a2

ε
u

2
ε
−1

ε |x |2(α−a). (2.3)
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Using (2.3) and an integration by parts, we obtain

(I) = 4 a2

ε

∫
R2

|x |2(α−a) u2/ε
ε v dx .

As for (II), we expand |∇(uε v)|2 and write

(II) =
∫

R2

[
v2 |∇uε|2 + uε ∇(v2) · ∇uε + u2

ε |∇v|2
] dx

|x |2a

where the first two terms can be evaluated as above using (2.3) and an integration
by parts. Hence,∫

R2

(
v2 |∇uε|2 + uε∇(v2) · ∇uε

) dx

|x |2a
= 4 a2

ε

∫
R2

|x |2(α−a) u2/ε
ε v2 dx .

To complete the proof we just remark that the function |x |2(α−a)u2/ε
ε is uniformly

bounded for α ≥ α0 > −1.

For a given α > −1, we now investigate the limit as ε → 0. We prove
that inequality (1.2) is a limiting case of inequality (1.3), whenever (1.3) admits a
radially symmetric extremal for any ε small enough. In such a case, we can write
(1.3) as follows:

1

κε

∫
R2

|w|p

|x |bp
dx ≤

(
1

λε

∫
R2

|∇w|2
|x |2a

dx

)1/ε

. (2.4)

Thus, if we take w = wε = (1 + ε v) uε, then we have:

1

κε

∫
R2

|wε|p

|x |bp
dx ≤

(
1+ ε2

λε

[
8(1 + α)2

(1 − ε)2

∫
R2

u2/ε
ε v

|x |2(a−α)
dx+

∫
R2

|∇v|2 u2
ε

|x |2a
dx

])1/ε

+ O(a2ε2).

In particular, observe that

|x |−bp fε dx∫
R2 fε dx

∼ α + 1

π
|x |2α u2/ε

ε dx ∼ dµα(x) as ε → 0+.

Proposition 2.6. Let us fix α > −1 and suppose that there exists a sequence
(εn)n∈N converging to 0 such that the radial extremal function uεn is also extremal
for (1.3) with (a, b, p) = (an, bn, pn) specified a follows,

pn = 2

εn
, an = − εn

1 − εn
(α + 1), bn = an + εn.

Then, inequality (1.2) holds true in Eα .
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Proof. As n → ∞, we have

λεn = 4π |an| + o(εn), κεn = π

α + 1
+ o(1).

Using Lebesgue’s theorem of dominated convergence repeatedly and Lemma 2.5,
for any v ∈ C∞

c (R2) and wεn = (1 + εn v) uεn , we have

1

κεn

∫
R2

|wεn |pn

|x |bn pn
dx =

∫
R2

|1 + εn v| 2
εn

fεn dx∫
R2

fεn dx
→

∫
R2

e2v dµα,

1

λεn

∫
R2

|∇wεn |2
|x |2an

dx = 1 + εn

(∫
R2

2v dµα + 1

4 (1 + α) π
‖∇v‖2

2

)
+ O(ε2

n)

as n → +∞. The proposition follows by applying inequality (1.3) with (a, b, p) =
(an, bn, pn). By density we can finally choose v in the larger space Eα .

Remark 2.7. Incidentally let us note that if we temporarily admit the result in The-
orem 1.2, then we find a sequence of optimal functions as required by Proposi-
tion 2.6. In particular, for α = 0, this gives an alternative proof of the Onofri
inequality in R2 as a consequence of Caffarelli-Kohn-Nirenberg inequality (1.3).
Using the inverse 	0 of the stereographic projection, this also proves Onofri’s in-
equality (1.1) on S2.

Let us now consider another asymptotic regime in which α → ∞. Proposi-
tions 2.6 and 2.8 will be useful for the proof of Corollary 1.3 (symmetry breaking).

Proposition 2.8. If (εn)n∈N and (αn)n∈N are two sequences of positive real num-
bers such that as n → +∞,

lim
n→+∞ εn = 0, lim

n→+∞ αn = +∞ and an = − εn

1 − εn
(1 + αn) →

n→+∞ 0−,

then for n large enough, the radially symmetric extremal uεn cannot be a global
extremal for inequality (1.3).

Proof. We argue by contradiction and assume that (2.4) holds with respect to the
given choice of parameters. By definition of λεn , κεn , and Lebesgue’s theorem of
dominated convergence, we know that

lim
n→+∞

λεn

|an| = 4π and lim
n→+∞(αn + 1) κεn = π.
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If v ∈ C∞
c (R2), then by a direct computation, we find:

(αn + 1)

∫
R2

|uεn (1 + εn v)|pn

|x |bn pn
dx

= (αn + 1)

∫ 2π

0

∫ +∞

0
r2 αn+εn

1−εn
+1

(
1 + εn v(r cos θ, r sin θ)

)2/εn(
1 + r2(αn+1)

) 2
1−εn

dr dθ

=
∫ 2π

0

∫ +∞

0

t
1+εn
1−εn

(1 + t2)
2

1−εn

(
1 + εn v( t

1
1+αn cos θ, t

1
1+αn sin θ)

)2/εn dt dθ.

We pass to the limit as n → +∞ and obtain:

lim
n→+∞

1

κεn

∫
R2

|uεn (1 + εn v)|pn

|x |bn pn
dx = 1

π

∫ 2π

0
e2 v(cos θ, sin θ) dθ

∫ +∞

0

t dt

(1 + t2)2

= 1

2π

∫ 2π

0
e2 v(cos θ, sin θ) dθ.

Analogously,

(αn + 1)

∫
R2

u2/εn
εn

|x |2(an−αn)
v dx

= (αn + 1)

∫
R2

|x |2 αn+εn
1−εn

v(x)

(1 + |x |2(1+αn))
2

1−εn

dx

=
∫ 2π

0

∫ +∞

0

t
1+εn
1−εn

(1 + t2)
2

1−εn

v( t
1

αn+1 cos θ, t
1

αn+1 sin θ) dt dθ.

By Lemma 2.5, we see that

1

λεn

∫
R2

| ∇[uεn (1 + εn v)] |2
|x |2an

dx = 1 + ε2
n

λεn

8 (αn + 1)2

(1 − εn)2

∫
R2

u2/εn
εn

|x |2(an−αn)
v dx

+ O

(
εn

1 + αn

)
+ O

(
εn a2

n

λεn

)
,

and so

lim
n→+∞

(
1

λεn

∫
R2

| ∇[uεn (1 + εn v)] |2
|x |2an

dx

)1/εn

= e
2
π

∫ 2π
0 v(cos θ, sin θ) dθ

∫ +∞
0

t dt
(1+t2)2

= e
1
π

∫ 2π
0 v(cos θ, sin θ) dθ .
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Hence the validity of (2.4) would imply that for all v ∈ C∞
c (R2), there holds:

1

2π

∫ 2π

0
e2 v(cos θ, sin θ) dθ ≤ e

1
π

∫ 2π
0 v(cos θ, sin θ) dθ .

But this is clearly impossible, since such an inequality is violated for instance by
the function v(x) = v(x1, x2) = x2

1 η(x), with η a standard cut-off function such
that η(x) = 1 if |x | ≤ 1, η(x) = 0 if |x | ≥ 2.

3. Symmetry breaking

This section is devoted to the proof of Theorem 1.1. We start by establishing Corol-
lary 1.3, which is weaker but follows as an easy consequence of the results of Sec-
tion 2.

3.1. Proof of Corollary 1.3

By Lemma 2.4 and Kelvin’s transformation, we can reduce the proof to the case
a < 0. Let us argue by contradiction and assume that there exists ε0 ∈ (0, 1),
an → 0− and bn such that ε0 < bn

an
< 1 and uan,bn is radially symmetric. Set

εn = bn − an > 0 and define αn such that αn + 1 = −an (1 − εn)/εn . Notice that
εn → 0+ while αn +1 = an −an/(bn −an) = an −(bn/an −1)−1 > an +(1−ε0)

−1.
Hence, lim infn→+∞ αn ≥ α0 = ε0/(1 − ε0) > 0. But this is impossible since it
contradicts Proposition 2.8 in case lim infn→+∞ αn = +∞, or Propositions 2.3 and
2.6 if lim supn→+∞ αn < +∞. �

3.2. Proof of Theorem 1.1

It is well known (see [4]) that by means of the following Emden-Fowler transfor-
mations:

t = log |x |, θ = x

|x | ∈ SN−1, w(t, θ) = |x | N−2−2a
2 v(x), (3.1)

inequality (1.5) for u is equivalent to the Sobolev inequality for w on R × SN−1.
Namely,

‖w‖2
L p(R×SN−1)

≤ C N
a,b

[
‖∇w‖2

L2(R×SN−1)
+ 1

4
(N − 2 − 2a)2‖w‖2

L2(R×SN−1)

]
,

for w ∈ H1(R × SN−1), with p = 2 N/[(N − 2) + 2 (b − a)] and the same
optimal constant C N

a,b as in (1.5). This inequality is consistent with the statement of
Lemma 2.4, as it makes sense for any a 
= (N − 2)/2, independently of the sign of
N − 2 − 2a.
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For N = 2, the inequality holds for functions w = w(t, θ) defined over the
two-dimensional cylinder C = R × S1 ≈ R × (R/2πZ), i.e., such that w(t, ·) is
2π -periodic for a.e. t ∈ R. The inequality then takes the form

‖w‖2
L p(C) ≤ Ca,a+2/p

(
‖∇w‖2

L2(C)
+ a2 ‖w‖2

L2(C)

)
∀ w ∈ H1(C) (3.2)

for all a 
= 0 and p > 2. Here Ca,b is the optimal constant in (1.3) which enters
in (3.2) with b = a + 2/p.

For any a 
= 0 and p > 2, inequality (3.2) is attained at an extremal function
wa,p ∈ H1(C) which satisfies


−(wt t + wθθ ) + a2 w = w p−1 in R × [−π, π ],
w > 0, w(t, ·) is 2π -periodic ∀ t ∈ R,

(3.3)

and such that (
Ca,a+2/p

)−1 = ‖wa,p‖p−2
L p(C) = inf

w∈H1(C)\{0}
F(w),

where the functional

F(w) =
‖∇w‖2

L2(C)
+ a2 ‖w‖2

L2(C)

‖w‖2
L p(C)

is well defined in H1(C) \ {0}. Moreover, according to [4], we can further assume
that 



wa,p(t, θ) = wa,p(−t, θ) ∀ t ∈ R, θ ∈ [−π, π),

∂wa,p

∂t
(t, θ) < 0 ∀ t > 0, ∀ θ ∈ [−π, π),

max
R×[−π,π)

wa,p = wa,p(0, 0).

(3.4)

This symmetry result is easy to establish for a minimizer, but the monotonicity re-
quires more elaborate tools like the sliding method and we refer to [4] for more de-
tails. For a solution of (3.3) which does not depend on θ , the conditions in (3.4) al-
low to determine its value at 0 simply by multiplying the ODE by wt and integrating
from 0 to ∞. In fact, in this way, one deduces the relation: a2 w2(0)/2 = w p(0)/p,
which uniquely determines w(0) > 0. In turn this yields to the following unique
θ -independent solution for (3.3) and (3.4):

w∗
a,p(t) =

(
a2 p

2

)1/(p−2) [
cosh

(
p − 2

2
a t

)]−2/(p−2)

,
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as a consequence of the classification result in [4]. Such a solution is an extremal
for (3.2) in the set of functions which are independent of the θ -variable, and

‖w∗
a,p‖ p−2

L p(R)
= inf

f ∈H1(R)\{0}
F∗( f ) with F∗( f ) =

‖ f ′‖2
L2(R)

+ a2 ‖ f ‖2
L2(R)

‖ f ‖2
L p(R)

.

For simplicity, we will also write F( f ) = (π)1−2/p F∗( f ) for all functions f
which are independent of θ . As a useful consequence of the above considerations,
we have the following result.

Lemma 3.1. Let p > 2. For any a 
= 0,(
Ca,a+2/p

)− p
p−2 = ‖wa,p‖p

L p(C) ≤ ‖w∗
a,p‖p

L p(C) = 4 π (2 a)
p

p−2 (a p)
2

p−2 cp

where cp is an increasing function of p such that

cp → 0 as p → 2+,

cp → 1
2 as p → +∞.

(3.5)

As a consequence, if a = a(p) is such that limp→∞ a(p) p = 2 (α + 1), then

lim
p→∞ p

∫
C

|w∗
a(p),p|p dx = 8 (α + 1). (3.6)

Proof. Observe that

‖wa,p‖p
L p(C) =

(
Ca,a+2/p

)− p
p−2 =(

F(wa,p)
) p

p−2 ≤
(
F(w∗

a,p)
) p

p−2 = ‖w∗
a,p‖p

L p(C).

On the other hand,

‖w∗
a,p‖p

L p(C) = 2π

(
a2 p

2

) p
p−2 ∫ ∞

−∞

[
cosh

(
a (p − 2)

2
t

)]− 2p
p−2

dt

= 4π

(
a2 p

2

) p
p−2 ∫ ∞

0

2
2p

p−2 e−a p t(
1 + e−a (p−2) t

) 2p
p−2

dt

= 4π

(
a2 p

2

) p
p−2 2

2p
p−2

a p

∫ 1

0

ds(
1 + s(p−2)/p

) 2p
p−2

.

Hence by setting:

cp =
∫ 1

0

ds(
1 + s(p−2)/p

) 2p
p−2

,

we easily check (3.5) and the fact that cp is monotonically increasing in p. The lim-
iting behavior of cp stated in (3.5) is a direct consequence of Lebesgue’s dominated
convergence theorem.

We can now reformulate Theorems 1.1 and 1.2 in the cylinder C, as follows.
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Theorem 3.2. Let a 
= 0 and p > 2.

(i) If |a| p > 2
√

1 + a2, then F(wa,p) < F(w∗
a,p).

(ii) For every ε > 0, there exists δ > 0 such that, if 0 < |a| < δ and |a| p < 2−ε,
then F(wa,p) = F(w∗

a,p).

Part (ii) of Theorem 3.2 will be proved in the next section. Concerning part (i), we
define the quadratic form

Q(ψ) = ‖∇ψ‖2
L2(C)

+ a2 ‖ψ‖2
L2(C)

− (p − 1)

∫
C

|w∗
a,p|p−2 |ψ |2 dx

on H1(C). In fact, property (i) is a consequence of the following result, inspired
by [4, 9] (at least for the case a < 0):

Proposition 3.3. Let a 
= 0 and p > 2. Then

inf
ψ∈H1(C)∫ π

−π ψ(t,θ) dθ=0, t∈R a.e.

Q(ψ)

‖ψ‖2
L2(C)

= a2 + 1 −
(a p

2

)2

is achieved by

ψ(t, θ) = (
cosh((α + 1) t)

)−p/(p−2) cos θ, with α = (p − 2) a/2 − 1.

In particular, if |a| p > 2
√

1 + a2, then w∗
a,p is a critical point for F of saddle-type.

Proof. Since w∗
a,p is a local minimum for F when restricted to the set of functions

independent of θ , to search for negative directions of the Hessian of F around w∗
a,p,

we have to analyze the quadratic form Q(ψ) in the space of functions ψ ∈ H 1(C)

such that
∫ π

−π
ψ(t, θ) dθ = 0 for a.e. t ∈ R. To this purpose, we use the Fourier

expansion of ψ ,

ψ(t, θ) =
∑
k 
=0

fk(t)
eikθ

√
2π

, f−k(t) = fk(t),

Q(ψ) = 2
+∞∑
k=1

(
‖ f ′

k‖2
L2(R)

+(a2+k2)‖ fk‖2
L2(R)

−(p−1)

∫
R

|w∗
a,p|p−2| fk |2 dt

)
.

Hence we obtain a negative direction for Q if and only if

µ1
a,p = inf

f ∈H1(R)\{0}

‖ f ′‖2
L2(R)

+(a2 + 1)‖ f ‖2
L2(R)

− (p − 1)
∫

R
|w∗

a,p|p−2 | f |2 dt

‖ f ‖2
L2(R)

< 0.
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Setting 1 + α = (p − 2) a/2 and β = a2 p (p − 1)/2 = 2 (1 + α)2 p (p − 1)/(p −
2)2 > 0, the question is reduced to the eigenvalue problem

− f ′′ − β f(
cosh((α + 1) t)

)2
= λ f.

in H1(R). The eigenfunction f1(t) = (
cosh((α + 1) t)

)−p/(p−2) corresponds
to the first eigenvalue λ1 = −(a p/2)2. See [9, 11] for a discussion of the above
eigenvalue problem. Hence µ1

a,p = 1 + a2 − (a p/2)2, and the proof is
completed.

4. A symmetry result

The section is devoted to the proof of part (ii) of Theorem 3.2. Without loss of
generality, by Lemma 2.4, we can restrict our analysis to the case a > 0.

4.1. Pohozaev’s identity

Lemma 4.1. If w ∈ H1(C) satisfies (3.3), then for all t ∈ R, w = w(t, θ) satisfies
the identity∫ π

−π

(
∂w

∂θ

)2

dθ =
∫ π

−π

(
∂w

∂t

)2

dθ − a2
∫ π

−π

w2 dθ + 2

p

∫ π

−π

w p dθ.

Proof. Multiply the equation in (3.3) by ∂w
∂t and integrate over [−π, π ] to obtain:

∫ π

−π

(
−∂2w

∂t2

∂w

∂t
− ∂2w

∂θ2

∂w

∂t
+ a2 ∂w

∂t
w

)
dθ =

∫ π

−π

w p−1 ∂w

∂t
dθ,

that is ∫ π

−π

{
− ∂

∂θ

(
∂w

∂θ

∂w

∂t

)
+ 1

2

d

dt

[(
∂w

∂θ

)2

−
(

∂w

∂t

)2

+ a2 w2

]}
dθ

= 1

p

∫ π

−π

d (w p)

dt
dθ.

Since
∫ π

−π
∂
∂θ

(
∂w
∂θ

∂w
∂t

)
dθ = 0, we get

d

dt

∫ π

−π

[(
∂w

∂t

)2

−
(

∂w

∂θ

)2

− a2 w2 + 2

p
w p

]
dθ = 0

for all t ∈ R. Hence as a function of t , the above integral must be a constant. Since
it is also integrable over R, then it must vanish identically.
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4.2. Proof of Theorem 3.2

The method is based on the strong convergence properties of a suitable rescaling of
the extremal function wa,p for (3.2) towards a solution of a Liouville equation. We
argue by contradiction and suppose that there exists ε0 ∈ (0, 1) and, for all n ∈ N,
an > 0, pn > 2, such that:

lim
n→+∞ an = 0, an pn < 2 − ε0 and F(wan, pn ) < F(w∗

an, pn
). (4.1)

For simplicity, set
wn = wan, pn and w∗

n = w∗
an, pn

,

and recall that we can assume

wn(t, θ) = wn(−t, θ),
∂wn

∂t
(t, θ) < 0 ∀ t > 0 and wn(0, 0) = max

C
wn.

Notice in particular that ∂wn
∂t (0, θ) = 0 for any θ ∈ [−π, π ]. If we apply Lemma 4.1

to w = wn and t = 0, we obtain

p2
n a2

n

2

∫ π

−π

w2
n(0, θ) dθ ≤ pn

∫ π

−π

w
pn
n (0, θ) dθ ≤ pn ‖wn‖pn−2

L∞(C)

∫ π

−π

w2
n(0, θ) dθ,

and deduce that

pn ‖wn‖pn−2
L∞(C) ≥ 1

2
p2

n a2
n .

Lemma 4.2. With the above notations,

lim inf
n→+∞ pn ‖wn‖pn−2

L∞(C) ≥ 1.

Proof. We can write wn(t, θ) = ϕn(t) + ψn(t, θ) with

ϕn(t) = 1

2π

∫ π

−π

wn(t, θ) dθ,

∫ π

−π

ψn(t, θ) dθ = 0 a.e. t ∈ R and ψn 
= 0.

Multiplying (3.3) by ψn and using the fact that
∫ π

−π
ψn(t, θ) dθ = 0 for any t ∈ R,

we find ∥∥∥∥∂ψn

∂t

∥∥∥∥2

L2(C)

+
∥∥∥∥∂ψn

∂θ

∥∥∥∥2

L2(C)

+ a2
n ‖ψn‖2

L2

=
∫
C

w
pn−1
n ψn dt dθ

=
∫
C

w
pn−1
n ψn dt dθ −

∫
C

ϕ
pn−1
n ψn dt dθ

= (pn − 1)

∫ 1

0

{∫
C

∣∣s ϕn + (1 − s) wn
∣∣pn−2 |ψn|2 dt dθ

}
ds

≤ (pn − 1) ‖wn‖pn−2
L∞(C)

∫
C

|ψn|2 dt dθ.
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By Poincaré’s inequality, we know that ‖ψn‖2
L2(C)

≤ ∥∥ ∂ψn
∂θ

∥∥2
L2(C)

, and this proves
the claim.

Next we introduce the new parameters:

εn = 2

pn
and αn = −1 + (1 − εn)

an

εn
= −1 + 1

2
(1 − εn) an pn.

Lemma 4.3. Up to a subsequence we have:
lim

n→+∞ αn = α ∈ [−1, 0),

and limn→+∞ pn = +∞, or equivalently,

lim
n→+∞ εn = 0.

Proof. From the condition: an pn < 2 − ε0, we deduce that αn + 1 ≤ (1 − εn) (1 −
ε0/2). Thus, along a subsequence, we can assume that αn converges to some α ∈
[−1, 0) and limn→+∞ pn ∈ [2, ∞].

To rule out the possibility that limn→+∞ pn = p̄ ∈ [2, ∞), notice that if this
would be the case, then by Lemma 3.1,

lim
n→+∞ ‖wn‖L pn (C) = 0.

By applying local elliptic estimates in a neighborhood of the origin (0, 0) then we
would deduce that limn→+∞ ‖wn‖L∞(C) = limn→+∞ wn(0, 0) = 0, in contradic-
tion with Lemma 4.2.

Corollary 4.4. With the above notations,

lim inf
n→+∞ wn(0, 0) ≥ 1.

Proof. If by contradiction we assume that lim infn→+∞ wn(0, 0) < 1, then
lim infn→+∞ pn ‖wn‖pn−2

L∞(C) = 0, and again this is impossible by Lemma 4.2.

Lemma 4.5. With the above notations,

lim sup
n→+∞

pn ‖wn‖pn−2
L∞(C) < +∞.

Proof. Argue by contradiction, and assume that, along a subsequence, δn =(
pn ‖wn‖pn−2

L∞(C)

)−1/2 converges to 0 as n → +∞. We consider the function

Wn(t, θ) = pn

(
wn(δn t, δn θ)

wn(0, 0)
− 1

)
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defined in Cn = R × [−π/δn, π/δn], which satisfies


−�Wn =
(

1 + Wn

pn

)pn−1

− a2
n pn δ2

n

(
1 + Wn

pn

)
in Cn,

Wn ≤ 0 = Wn(0, 0).

(4.2)

Furthermore, by Lemma 3.1, we find∫
Cn

(
1 + Wn

pn

)pn

dx = pn

wn(0, 0)2

∫
C

w
pn
n dx ≤ 1

wn(0, 0)2
pn

∫
C

|w∗
n |pn dx .

Recalling that lim infn→+∞ wn(0, 0) ≥ 1 and limn→+∞ an pn = 2 (1+α) by (3.6),
we can pass to the limit above and by virtue of (3.5)-(3.6), conclude:

lim
n→+∞ ‖1 + Wn/pn‖pn

L pn (Cn) ≤ 8π (1 + α).

Since the right hand side in (4.2) is uniformly bounded in L∞
loc(R

2), we can use
Harnack’s inequality (see for instance [2, 17] in similar cases) to deduce that Wn is
uniformly bounded in L∞

loc. Hence, by elliptic regularity theory, Wn is uniformly

bounded in C2,α
loc . So we can find a subsequence along which Wn converges point-

wise (uniformly in every compact set in R2) to a function W which satisfies

−�W = eW in R
2. (4.3)

Furthermore, by Fatou’s Lemma,∫
R2

eW dx ≤ lim
n→+∞

∫
Cn

(
1 + Wn

pn

)pn

dx ≤ 8π (1 + α) < 8π,

as α ∈ [−1, 0). But this is impossible, since according to [5], every solution W of
(4.3) with eW ∈ L1(R2), must satisfy

∫
R2 eW dx = 8π (also see [7, 8]).

Corollary 4.6. For a subsequence of ‖wn‖L∞(C) = wn(0, 0) (denoted the same
way) we have:

lim
n→+∞ wn(0, 0) = 1,

lim
n→+∞

[
wn(0, 0)

]pn = 0,

lim
n→+∞ pn

[
wn(0, 0)

]pn−2 = µ ∈ [1, +∞).

Proof. The existence of a limit µ ≥ 1 is just a consequence of Lemmata 4.2
and 4.5. Furthermore by Lemma 4.3, pn = 2/εn → +∞ as n → +∞, which
proves that [wn(0, 0)]pn converges to 0. Finally, according to Corollary 4.4,
lim infn→+∞ wn(0, 0) ≥ 1 and if this limit were not 1, we would get a contra-
diction to the existence of µ.
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Define the function

Vn(t, θ) = pn

(
wn(t, θ)

wn(0, 0)
− 1

)
∀ (t, θ) ∈ C.

It satisfies:

−�Vn = pn
(
wn(0, 0)

)pn−2
(

1 + Vn

pn

)pn−1

− a2
n pn

(
1 + Vn

pn

)
in C,

Vn ≤ 0 = Vn(0, 0), Vn(t, ·) is 2π -periodic.

We also observe that

pn
(
wn(0, 0)

)pn

∫
C

(
1 + Vn

pn

)pn

dx = pn

∫
C

|wn|pn dx ≤ pn

∫
C

|w∗
n |pn dx

and by (3.6), limn→∞ pn
∫
C |w∗

n |pn dx = 8 π (α + 1). In particular, by Corol-
lary 4.6, we obtain

lim
n→+∞ pn

(
wn(0, 0)

)pn−2
∫
C

(
1 + Vn

pn

)pn

dx ≤ 8π (1 + α).

Lemma 4.7. Up to a subsequence, Vn converges to a function V pointwise and
C2-uniformly in any compact set in R × [−π, π ]. Furthermore V satisfies:



−�V = µ eV in C,

max
C

V ≤ 0 = V (0, 0), V (t, ·) is 2π -periodic ∀ t ∈ R,

µ

∫
C

eV dx ≤ 8π (1 + α),

(4.4)

V (t, θ) = V (−t, θ),
∂V

∂t
(t, θ) < 0 ∀ t > 0, ∀ θ ∈ [−π, π ],

and∫ π

−π

(
∂V

∂θ

)2

dθ =
∫ π

−π

(
∂V

∂t

)2

dθ − 8π(1+α)2+2µ

∫ π

−π

eV dθ ∀ t ∈ R. (4.5)

Proof. Since −�Vn is uniformly bounded in L∞
loc(R

2), by Harnack’s inequality,
we see that Vn is uniformly bounded in L∞

loc. Hence, by elliptic regularity theory,

Vn is uniformly bounded in C2,α
loc . Therefore, up to a subsequence, Vn converges

pointwise, and uniformly on every compact set in C, to a function V which satisfies
(4.4) with 0 ≤ 1 + α < 1, and also inherits the symmetric properties of Vn . To
obtain (4.5) observe first that the result of Lemma 4.1 can be rewritten as follows,∫ π

−π

(
∂Vn

∂θ

)2

dθ =
∫ π

−π

(
∂Vn

∂t

)2

dθ− a2
n p2

n

w2
n(0, 0)

∫ π

−π

|wn|2 dθ + 2 pn

w2
n(0, 0)

∫ π

−π

|wn|pn dθ,
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for any t ∈ R, and that wn converges uniformly to 1 in any compact set in R ×
[−π, π ]. Hence by means of Lemma 4.3 and Corollary 4.6, we can pass to the limit
in the above identity and deduce (4.5).

Lemma 4.8. The following estimates hold:

lim
n→+∞ pn

(
‖wn‖pn

L pn (C) − ‖w∗
n‖pn

L pn (C)

)
= 0,∫

C
eV dx = lim

n→+∞

∫
C

(
1 + Vn

pn

)pn

dx = 4π

α + 1
.

Moreover,
µ = 2 (α + 1)2,

and V takes the form

V (t) = −2 log
[

cosh((α + 1) t)
]
. (4.6)

Proof. In order to identify the given solution of (4.4), we consider the function ϕ

expressed in polar coordinates as follows:

ϕ(r, θ) = V (− log r, θ) − 2 log r + log µ ∀ r > 0, ∀ θ ∈ [−π, π ].

By straightforward calculations we see that ϕ satisfies:

− �ϕ = − 1

r2 (Vtt + Vθθ ) (− log r, θ) = eϕ in R
2\{0},∫

R2
eϕ dx ≤ 8π (1 + α),

and

ϕ
(

r−1, θ
)

= ϕ(r, θ) + 4 log r ∀ r > 0, ∀ θ ∈ [−π, π ]. (4.7)

A classification result of Chou and Wan (see [7, Theorem 3, 1] and [8]) concerning
solutions of Liouville equations in the punctured disk allows us to conclude that (in
complex notations):

ϕ(z) = log

[
8 | f ′(z)|2(

1 + | f (z)|2)2

]
,

with f locally univalent in C \{0}, possibly multivalued and,

(i) either f (z) = zγ g(z),
(ii) or f (z) = φ(

√
z) and φ(z) φ(−z) = 1,
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where g and φ are holomorphic in C \{0}. Since the case (ii) implies that φ must
admit an essential singularity either at the origin or at infinity, this can be excluded
in account of the integrability condition of eϕ .

On the other hand, in case (i), if we take into account the fact that f ′ 
= 0 for
any z 
= 0, and the integrability of eϕ , we can allow only the choice:

f (z) = a
(
zβ+1 − b),

with β ∈ R, a, b ∈ C and b 
= 0 only if β + 1 ∈ N (as otherwise ϕ would be
multivalued). For the corresponding solution ϕ we find:

ϕ(z) = log

[
8 λ (β + 1)2 |z|2β

(1 + λ |zβ+1 − b|2)2

]
, with λ = |a|2.

The symmetry property (4.7) implies that

ϕ

(
z

|z|2
)

= ϕ(z) + 4 log |z|,

and so, necessarily b = 0 and λ = 1. Hence,

ϕ(z) = ϕ(r) = log

[
8 (β + 1)2 r2β(
1 + r2(β+1)

)2

]
.

By direct calculation, we get∫
R2

eϕ dx = 8π (1 + β) ≤ 8π (1 + α).

In other words, −1 < β ≤ α < 0. As a consequence, we find that V = V (t) is
given by

V (t) = ϕ(e−t ) − 2t − log µ = log

[
2 (β + 1)2

µ
(

cosh((β + 1) t)
)2

]
,

with −1 < β ≤ α < 0. The condition V (0) = 0 implies µ = 2 (β + 1)2.
On the other hand, from (4.5) we also have:(

∂V

∂t

)2

= 4 (1 + α)2 − 4 (β + 1)2(
cosh((β + 1) t)

)2
,

that gives:

4 (β + 1)2

(
sinh((β + 1) t)

)2(
cosh((β + 1) t)

)2
= 4 (1 + α)2 − 4 (β + 1)2(

cosh((β + 1) t)
)2

,
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and we get β = α. Therefore (4.6) is established and necessarily

lim
n→∞ pn

(
wn(0, 0)

)pn

∫
C

(
1 + Vn

pn

)pn

dx = 2(α + 1)2
∫
C

eV dx = 8 π (α + 1).

Thus, by recalling (3.6), we complete the proof.

Define

rn = sup
C

∣∣∣∣
(

wn

wn(0, 0)

)pn−2

− eV
∣∣∣∣.

Lemma 4.9. With the above notations, limn→+∞ rn = 0.

Proof. Fix ε > 0 and choose Rε > 0 sufficiently large so that

eV (Rε) = 1(
cosh((α + 1) Rε)

)2
<

ε

4
.

Furthermore, (wn(t, θ)/wn(0, 0))pn−2 = (1 + Vn/pn)
pn−2 converges to eV uni-

formly in any compact set in R × [−π, π ], and so we can find nε ∈ N such that for
all n ≥ nε,

sup
|t |≤Rε, |θ |≤π

∣∣∣∣∣
(

wn(t, θ)

wn(0, 0)

)pn−2

− eV

∣∣∣∣∣ <
ε

4
.

Thus, recalling that (wn(t, θ)/wn(0, 0))pn−2 and eV are even in t and monotone
decreasing in t > 0 by Lemma 4.7, for n ≥ nε we find the estimate

rn ≤ sup
|t |≤Rε, |θ |≤π

∣∣∣∣∣
(

wn(t, θ)

wn(0, 0)

)pn−2

− eV

∣∣∣∣∣︸ ︷︷ ︸
<ε/4

+ sup
|t |≥Rε

(
wn(t, θ)

wn(0, 0)

)pn−2

︸ ︷︷ ︸
eV (Rε)+ε/4<ε/2

+ sup
|t |≥Rε

eV

︸ ︷︷ ︸
ε/4

,

which proves the result.

Lemma 4.10. For n large enough, we have wn = w∗
n.

Proof. Let χn = ∂wn/∂θ . Clearly
∫ π

−π
χn(t, θ) dθ = 0, and since wn ∈ H1(C),

then χn ∈ L2(C). Moreover, χn satisfies

−�χn + a2
n χn = (pn − 1)

(
wn(t, θ)

)pn−2
χn

(in the sense of distributions), where

∣∣∣(pn − 1)
(
wn(tn, θ)

)pn−2
χn

∣∣∣ ≤ (pn − 1) (wn(0, 0))pn−2
(

wn(t, θ)

wn(0, 0)

)pn−2

|χn|
≤ (pn − 1) (wn(0, 0))pn−2 |χn| ∈ L2(C).
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In other words, −�χn + a2
n χn ∈ L2(C), and hence χn ∈ H1(C) satisfies:

‖∇χn‖2
L2 + a2

n ‖χn‖2
L2 = (pn − 1)

∫
C

(
wn(t, θ)

wn(0, 0)

)pn−2

χ2
n dx .

By Proposition 3.3, we know that if ψ ∈ H1(C) and
∫ π

−π
ψ(t, θ) dθ = 0 a.e. t ∈ R,

then

‖∇ψ‖2
2 − βn

∫
C

|ψ(t, θ)|2(
cosh((αn + 1) t)

)2
dt dθ ≥

[
1 −

(an pn

2

)2
]

‖ψ‖2
L2(C)

with βn = a2
n pn (pn − 1)/2. Passing to the limit as n → +∞, we get

‖∇ψ‖2
2 − 2 (α + 1)2

∫
C

|ψ(t, θ)|2(
cosh((α + 1) t)

)2
dt dθ ≥

[
1 − (α + 1)2

]
‖ψ‖2

L2(C)
.

Consequently, for ψ = χn , we obtain

0 = ‖∇χn‖2
2 + a2

n ‖χn‖2
L2 − (pn − 1)

∫
C

(
wn(t, θ)

)pn−2
χ2

n dx

= ‖∇χn‖2
L2 − 2 (α + 1)2

∫
C

χ2
n

(cosh((α + 1) t))2
dx + a2

n ‖χn‖2
L2(C)

+ (pn − 1)
(
wn(0, 0)

)pn−2
∫
C

[
1

(cosh((α + 1)t))2
−

(
wn(t, θ)

wn(0, 0)

)pn−2
]

χ2
n dx

+ [
2 (α + 1)2 − (pn − 1) (wn(0, 0))pn−2] ∫

C

χ2
n

(cosh((α + 1) t))2
dx

≥ [
1 + a2

n − (α + 1)2 − (pn − 1)
(
wn(0, 0)

)pn−2
rn

] ‖χn‖2
L2(C)

+ [
2 (α + 1)2 − (pn − 1) (wn(0, 0))pn−2] ∫

C

χ2
n

(cosh((α + 1) t))2
dx

with rn = supC
∣∣(wn(t, θ)/wn(0, 0)

)pn−2− eV
∣∣. Recall that by Lemma 4.8,

lim
n→+∞(pn − 1)(wn(0, 0))pn−2 = µ = 2 (α + 1)2,

and by Lemma 4.9, limn→+∞ rn = 0. Since an → 0 as n → +∞ and (1+α)2 < 1,
we readily get a contradiction for large n, unless χn ≡ 0. This means that wn is
independent of the variable θ , and so wn = w∗

n .
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5. Concluding remarks

It is interesting to note that, via the Emden-Fowler transformation (3.1), for any
α > −1, inequality (1.2) can be stated in the space

Eα =
{
w = w(t, θ) ∈ L1(C, dνα) : |∇w| ∈ L2(C, dx)

}
where C = R × S1 and

dνα := α + 1

2

dt dθ[
cosh

(
(α + 1) t

)]2
.

Proposition 5.1. If α > −1, then∫
C

ew−∫
C w dνα dνα ≤ e

1
16 π (α+1)

(
‖∇w‖2

L2(C)
+α (α+2) ‖ ∂θw ‖2

L2(C)

)
∀ w ∈ Eα.

As in Section 2.1, when α ≤ 0, there holds∫
C

ew−∫
C w dνα dνα ≤ e

1
16 π (α+1)

‖∇w‖2
L2(C) ∀ w ∈ Eα.

However, when α > 0, while the latter inequality is always valid for functions
depending only on the variable t ∈ R, in general it fails to hold in Eα .

The above inequality is a version of Onofri’s inequality in the cylinder C which
is equivalent (under the Emden-Fowler transformation (3.1)) to (2.1). The sym-
metry breaking phenomenon is easily understood in this case, as clearly, the opti-
mal situation is attained among functions which do not depend on θ if and only if
α ∈ (−1, 0].

The proof of Theorem 3.2 does not rely on Onofri’s inequality. Hence, as
observed in Remark 2.7, it can be used to deduce the family of Onofri type in-
equalities (1.2), which contains (via sterographic projection) the standard form of
Onofri’s inequality (1.1) as a special case. Those Onofri inequalities appear as
limits of Caffarelli-Kohn-Nirenberg inequalities in an appropriate regime of the pa-
rameters given by (2.2), as a → 0. In these asymptotics, the case b < h(a) yields
to α > 0, while the case b > h(a) leads to α ∈ (−1, 0).

Appendix. The dilated stereographic projection

We use spherical coordinates (φ, θ) ∈ [−π
2 , π

2 ]×[0, 2π) on S2 ⊂ R3 and radial co-
ordinates (r, θ) ∈ [0, ∞)×[0, 2π) in R2. By definition of the dilated stereographic
projection, we have

cos φ = 2 rα+1

1 + r2(α+1)
and sin φ = r2(α+1) − 1

1 + r2(α+1)
,
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from which we deduce

cos φ
dφ

dr
= 4 (α + 1) r2α+1

(1 + r2(α+1))2
.

The normalized measure of the sphere S2 is given by

dσ = 1

2
cos φ

dθ

2π
dφ

and a simple change of variables shows that, if u(φ, θ) = v(r, θ), then∫
S2

f (u) dσ =
∫

R2
f (v)

cos φ

2

dφ

dr
dr

dθ

2π
=

∫
R2

f (v) dµα

where dµα = α+1
π

r2α

(1+r2(α+1))2 r dr dθ . Using spherical and radial coordinates

respectively on S2 and R2, the expressions of the gradients are given respectively
as follows

|∇u|2 = |∂φu|2 + 1

cos2 φ
|∂θu|2 and |∇v|2 = |∂rv|2 + 1

r2
|∂θv|2.

Knowing that ∂φu = ∂rv
(

dφ
dr

)−1
, we get

∫
S2

|∂φu|2 dσ =
∫

R2
|∂rv|2 cos φ

2

(
dφ

dr

)−1

dr
dθ

2π
= 1

4π (α + 1)

∫
R2

|∂rv|2 r dr dθ.

While using that ∂θu = ∂θv, we get∫
S2

1

cos2 φ
|∂θu|2 dσ =

∫
R2

|∂θv|2 1

2 cos φ

dφ

dr
dr

dθ

2π
= α + 1

4π

∫
R2

|∂θv|2
r2

r dr dθ.

Thus, observing that (α + 1)2 − 1 = α (α + 2), we conclude

∫
S2

|∇u|2 dσ = 1

4π (α + 1)

[∫
R2

|∇v|2 dx + α (α + 2)

∫
R2

|∂θv|2
r2

r dr dθ

]
.
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