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Entire solutions to a class of fully nonlinear elliptic equations

OVIDIU SAVIN

Abstract. We study nonlinear elliptic equations of the form F (Dzu) = f(u)
where the main assumption on F and f is that there exists a one dimensional
solution which solves the equation in all the directions & € R”. We show that
entire monotone solutions u are one dimensional if their O level set is assumed to
be Lipschitz, flat or bounded from one side by a hyperplane.

Mathematics Subject Classification (2000): 35J70 (primary); 35B65 (secondary).

1. Introduction

We consider the fully nonlinear reaction-diffusion equation in R”
F(D*u) = f(u), (1.1)
where F is uniformly elliptic with ellipticity constants A, A, F(0) = 0, and
fecCl(-1,11), f&EhH=0, f(=1)>0, f'(1)>0. (1.2)

The main assumption on F and f is that there exists a smooth increasing function
g0 : R — [—1, 1] (one dimensional solution) such that

lim go(r) = +1,
t—+o00

and go solves the equation in all directions &, that is

F (D2(go(x - £))) = f (s0x - §))

for every unit vector § € R”.
In this paper we consider monotone viscosity solutions of (1.1) which “con-
nect” the constant solutions —1 and 1 at +o00,

Uy, >0, lim u(x, x,) = £1, (1.3)

" Xp—>F00
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and investigate when global solutions are one-dimensional i.e.,
ulx) =gox-£§+c¢), cekR

This question is motivated by a conjecture of De Giorgi about bounded, monotone
solutions of
Au=u'—u  inR" (1.4)

The conjecture states that all global solutions are one-dimensional at least in dimen-
sion n < 8. The restriction on the dimension comes from the theory of minimal
surfaces and the fact that the rescalings of the level sets ex{u = s} converge to a
minimal surface ([5,11]). Since in dimension n < 8 the only global minimal graphs
are the hyperplanes this implies that the level sets of u satisfy a flatness property at
large scales.

De Giorgi’s conjecture has been widely investigated. It was first proved forn =
2 by Ghoussoub and Gui [10], and for n = 3 by Ambrosio and Cabre [1]. Finally,
in [12] we proved the conjecture for n < 8 under the natural limit hypothesis (1.3).
An extension of this result to the p-Laplace equation was obtained together with
Valdinoci and Sciunzi in [14]. Recently, De Silva and the author [9] proved the
conjecture for the fully nonlinear equation (1.1) in dimension n = 2.

In this paper we use the methods developed in [12] to study global solutions of
the more general equation (1.1) under various assumptions on the 0 level set of u
like, for example, being bounded from one side, flat or Lipschitz. One difficulty is
that, unlike equation (1.4), there is no variational formulation of the problem. An-
other difficulty consists in the fact that it is not clear whether or not the blow-downs
of {u = s} satisfy any equation. We will show in fact that in general the level sets
satisfy at large scales a curvature equation depending on F, f (see Theorem 2.4).

One of the main results we obtain is a Liouville theorem for the s level sets of
u,s € (—1,1). To fix ideas we consider the level set {u = 0}.

Theorem 1.1. If {u = 0} is above (in the e, direction) a plane {x - &€ = 0}, then u
is one-dimensional.

A consequence of Theorem 1.1 is a proof of the Gibbons conjecture for equa-
tion (1.1). The conjecture states that global solutions are one-dimensional if the
limits in (1.3) are uniform in x’. In the particular case when F = A this result was
obtained by Berestycki, Hamel and Monneau in [3].

The other result we obtain concerns solutions which have one Lipschitz level
set.

Theorem 1.2. Assume that F € C* and {u = 0} is a Lipschitz graph in the e,
direction. Then u is one dimensional.

In the case F = A, Theorem 1.2 was first proved using probabilistic methods
by Barlow, Bass and Gui in [2]. Different proofs were given later by the author
in [12] using viscosity solutions methods and by Caffarelli and Cordoba in [6] using
variational methods.
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We mention that the theorems above are not stated in the most general setting.
For example, one can see from the proofs that the hypothesis u,, > 0 can be
replaced with u being M-monotone in the e,, direction for some constant M > 0,
i.e. u(x + Mey,) > u(x). The smoothness of F in Theorem 1.2 is not optimal since
we show that the theorem holds when F equals one of the extremal Pucci operators
./\/lki A Which are not even C'. Also, we can take F to depend on the gradient as
well.

The paper is organized as follows. In Section 2 we introduce some notation
and state three theorems from which we will derive the theorems above. The first
theorem, Theorem 2.1, is a Harnack inequality for the level sets, the second is an
improvement of flatness (Theorem 2.2) and the third theorem gives the equation for
the blow-downs of the level sets (Theorem 2.4). In Sections 3 through 6 we prove
Theorem 2.1 by introducing a family of sliding surfaces and estimating in measure
the set of contact points with the graph of u . The arguments of Sections 3 to 5
follow closely [12] (or [14]), however for completeness we give the details of the
proofs since our setting is slightly different and the arguments are quite technical.
In Section 7 we prove Theorem 2.4, and finally in Section 8 we prove Theorems 2.2
and 1.2.

2. Notation and statement of the theorems

We start by introducing some notation. Let (ey, ..., e,, e,+1) be the Euclidean
orthonormal basis in R"*!, and denote

1
X = (x, Xpt1) = (X', Xn, Xn1) = (X1, X2, ++ +, Xn—1, Xpy Xpp1) € R™T
XeR*M Y eR™ xeR, |xppil <.

We use the following notation:

B(x, r) is the ball of center x and radius r in R";

B(X, r) is the ball of center X and radius r in R**!;

v is a vector in R"*!, & a vector in R”;

Z(v1, 1) € (0, ) is the angle between the vectors v and v;;
m,X =X — (X -v)v is the projection along v;

P, is the hyperplane perpendicular to v going through the origin;
i =T, Pi = P,.

If a matrix M = diag[A1, ..., A,] in some system of coordinates then, by abuse
of notation we write F'(M) = F(A1, ..., A,) whenever there is no possibility of
confusion. We denote by /\/l;r A M; A the extremal Pucci operators defined on
the space of symmetric matrices

MG (M) = MM =AML, M (M) = AIMT || =AM .
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Constants depending on n, F, f are called universal and we denote them by C, c,
C;, ¢;. We write C;, ¢; for constants that we use throughout the paper and by C, ¢
various constants used in proofs that may change from line to line.

We are now ready to state the theorems from which Theorems 1.1 and 1.2 will
be derived. Theorem 1.1 is a consequence of the following Harnack inequality for
the O level set of u.

Theorem 2.1 (Harnack inequality). Let u be a solution of (1.1), (1.3) with
{u=0yN{x'| <1} C {x-& > 0},
for some unit vector

ol =1, Z(o,en) =B <m/2.

Assume
0,0) e{fu=0}, 0=0

for some fixed 6y. If 0/1 < &(60) then
{u=0}N{]x"| <1/2} C {x - & < K6},

where the constant K depends only on A, A, n, f, go, B and the constant €(6y) > 0
depends on the previous constants and 6.

If we assume more regularity on the operator F then we can use Theorem 2.1
and show an improvement of flatness for the level sets of u.

Theorem 2.2 (Improvement of flatness). Let u be a solution of (1.1), (1.3). As-
sume that F € C' and

0e{u=0}N{Ix"| <1} C{lx-&l <0},
ol =1, Z(o,en) =B <7/2, 6 =6p.
If0/1 < e(6y) then, for some unit vector &;
{u =0} N {Ix'| < ml} C {Ix - &1] < m6},

where the constants 0 < n; < 12 < 1 depend only on A, A, n and the constant
&(6p) depends on F, f, B and 6.

Theorems 2.1 and 2.2 correspond to similar theorems for graphs satisfying
an elliptic equation (see [13]). For simplicity we prove these theorems for 8 =
/8. The general case is exactly the same but in this way we avoid the explicit
dependence on 8 of the various constants. From the proof it is obvious that the
constants degenerate as 8 approaches /2.

As a consequence of Theorem 2.2 we obtain
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Corollary 2.3. If the sets ex{u = 0} converge to a hyperplane {x - &y = 0} in B
for a sequence of e — 0 and £(&y, en) < 1/2, then {u = 0} is a hyperplane.

Indeed, let us assume that for a sequence of large numbers 6, Iy with 6/l —
0 we have
{u=0yN{lx"| <k} C{lx-&l <6}

Fix 6p > 0, and choose k large such that 6;/l; < ¢ < &(6p). We can apply
Theorem 2.2 repeatedly to finally obtain

{u =0y {lx'| <f) CHlx- &l <6

with 6y > 6, > 116 and 9,2[,/(_1 < lek_l <&, hence I} > 7 1n6p.

Letting ¢ — 0 we obtain that {# = 0} is included in an infinite strip of width
6p. The corollary follows since 6y is arbitrary.

The next theorem says that {u = 0} “satisfies” a curvature equation at large
scales.

Theorem 2.4 (Limiting equation). Ler u be a solution of (1.1), (1.3) with F €
C! and suppose that for a sequence g — 0, g {u = 0} converges uniformly on
compact sets to a surface X. Then, there exists a function G depending on F and
8o such that -

G(Uz, 112) =0

in the viscosity sense where vs (x), IIs(x) represent the upward normal and the
second fundamental form of ¥ at a point x € 2. The function G (&, -) is defined on
the space of n x n symmetric matrices M with M& = 0, is homogenous of degree
one, and uniformly elliptic.

Remarks. N

1) The function G is linear in the second argument and it depends on the derivatives
of F on the n dimensional cone £ ® £, £ € R". If F is invariant under rotations
then G(§, M) = trM.

2) As we will see from the proofs, our results apply under slightly weaker regularity
assumptions on F. For example if F is C! (or C!'! for Theorem 1.2) outside the
origin and f takes the value O only a finite number of times then the theorems above
still hold. In this case G is also linear., Another example for which the theorem
applies is F' = MI,A and in this case G is nonlinear, G(&, -) = ;A.

We conclude the section with an important notation.
Let g : I — R, I interval in R containing 0, be such that g’ > 0. Then we
associate with g a function A (s) defined by the following property

g'(t) = v/2h(g(®)).

A straightforward computation gives g”(¢) = h’(g(¢)). Set,

s
H(s):/o mdt 2.1

We have (H(g(t)) =1, hence g = H -1 up to a horizontal translation.
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Denote by hg, Hp the corresponding functions for the one-dimensional solution
80, defined in Section 1. Without loss of generality we assume go(0) = 0. The main
assumption on F and f can be stated as follows: in any system of coordinates

F(diag[hy(s),0,...0)) = f(s), forl|s| <1.
From (1.2) and the properties of F' we see that

ho(s) ~ f(s),
ho(s) ~ (1 — |s|)> for |s| near 1.

Let g be a function as above and assume it is defined for |[¢| < R/2. We consider
the rotation surface generated by g,

URg(x) == g(Ix] = R)

and investigate when v is a subsolution or supersolution of (1.1). In the appropriate
system of coordinates,

D*v = diaglg”, g'/Ixl, ..., &'/Ix|]
and

F(D*v)=F(g".g/Ix|.....8/1xN=F(h'(8).v/2h(g)/Ixl.... /21 (g) /x)
/ 2()’1—1)/\ / / / /
<F(h((g),0,...,0)+——"—+2h+max{r(h' —hy), A(h'—h{)} 2.2)

R
= f(v) + w\/ﬁ + max{A(h' — hf)), Ak’ — h})).

Thus, if
h(s) + w\/%(s) < hé(s), (2.3)

then vg ¢ is a strict supersolution on the {vg , = s} level set. This fact will be used
throughout the paper.

3. Construction of the sliding surfaces S(Y, R)

In this section we introduce a family of rotation surfaces in R”*! which we denote
by S(Y, R). We say that the point Y is the center of S and R the radius. These
surfaces are perturbations of the one dimensional solution. Roughly speaking they
are obtained by first rotating go(#) around the axis # = —R, and then modifying it
outside the s level sets with |s| < 1/2, so that the resulting surface is a supersolution
in the set {|x, 41| > 1/2}.
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As explained in the introduction there is an analogy between the level sets of u
and solutions to a limiting equation in R”. Heuristically, the surfaces S in our
setting correspond to spheres in the limiting equation setting.

The main property that S satisfies is the following: Suppose that for fixed R,
some surfaces S(Y, R) are tangent by above to the graph of u. Then the contact
points project along e, into a set with measure comparable with the measure of the
projections of the centers Y along e, (see Proposition 3.1).

We proceed with the explicit construction of S.

For |y,+1] < 1/4, we define S(Y, R) as

S, R) == {Xn41 = 8y, R(HO(Ynt1) + |x — y| — R}, (3.1)

where the function gg, g, respectively hg, r, Hg, g associated with it, are con-
structed below for |sg| < 1/4 and large R. For simplicity of notation we denote

them by g, h, H.
Denote .
C = 1+44C(n, &, A) max /ho, (3.2)
where C (n, A, A) appears in (2.3), and let ¢ be such that
1 1 Co
(s — 50), (3.3)

V26 V2hots) R
where Cy is large enough so that the following holds
@(s) < ho(s) —2CR™Y, ifs € [-3/4, —1/2]
@(s) > ho(s) +2CR™', ifs € [1/2,3/4].

Let sg near —1 be such that ho(sg) = R™!, hence 1 + sg ~ R*%. We define
hgo,r @ [sr, 11 = Roas

ho(s) — ho(sg) — CR™'(s — sg) ifs € [SR, —%]

h(s) = § ¢(s) ifs € (—=1/2,1/2) (3.4
_ 1
ho(s) + R~V +CR'(1—) ifs € |:§,1:|.
For R large, h(s) > c(1+s)(s —sg) on [sg, 0], thus & is positive on (sg, 1]. Define
S
1
Hyy r(s) = Ho(so) +/ ———dt (3.5)
K w0 V2R (@)
and for R large enough
S0 1
H(sg) = Ho(so) — d; > —ClogR

SR \/C(l +¢)(& — sr)
1
H(1) < Hols0) + : d < ClogR.
so el —¢)2+ R1




376 OVIDIU SAVIN

Finally we define g, r as

SR ift < H(sg)
1) = 3.6
8s0.R (1) {H‘l(t) if H(sg) <t < H(1). (3-6)
Next we list some properties of the surfaces S(Y, R). 1) We have
h(s) > ho(s) —2CR™' > ¢(s), ifs e [=3/4,—1/2], 37

h(s) < ho(s) +2CR!' < o(s), ifse[1/2,3/4],
and

Co .
H(s) = Ho(s) = (s = s0)%, if |s| < 1/2,

H(s) > Ho(s) — 2C—I‘;(s —so)? if1/2 < |s| < 3/4.

Let ps,,r be the function whose graph is obtained from the graph of go by the
transformation

C
(t,s) > (r - ﬁ(s —so)z,s> for |s| < 3/4.

From the formulas above we obtain that g = p for |s| < 1/2, and g < p at all other
points where p is defined. In other words, if S(Y, R) is the rotation surface

S(Y, R) = {Xur1 = pypor R (HoGngt) + ¥ — ¥ = B)}, (3.8)

then, S(Y, R) coincides with S(Y, R) in the set |x,4+1| < 1/2 and stays below it at
all the other points where S is defined.
Notice that

SY, R) C {lxp41l = 3/4}

and it is defined only in a neighborhood of the sphere |x — y| = R which is the y,, ;|
level set of S(Y, R). 2) We remark that S(Y, R) is constant sg when

[x —y| < R—ClogR,
and grows from s to 1 when

R—ClogR <|x —y| <R+ ClogR.
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3)If s € (sg, —1/2) U (1/2, 1), then

W (s)+ Cn, A, NR™'/2h(s)
= hy(s) — CR™' + C(n, A, AYRT'V/2h(s) < hy(s),

hence, from (2.3), S is a supersolution on its s level set. Moreover from (3.7)

lim H'(s) < lim H'(s), lim H'(s) < oo, 3.9
s—>+1/2- s—>£1/2+ s—>1—

thus S(Y, R) is a strict supersolution for |x,, 41| > 1/2, thatis S(Y, R) cannot touch
by above the graph of a C? subsolution at a point X with |x,| > 1/2.

4) If |s| < 3/4, then
¢/ (s) — hy(s)] < CR™".

If vg denotes the function with graph S(Y, R) defined in (3.8), one has (see (2.2)),
|F(D?vs) — f(vs)| < Clg' —hol + CR™' < CR™Y, (3.10)

hence vy is an approximate solution of the equation with a R~! error.

5) From the construction we see that if Ry < R», then

Hgy R, (s) < Hyy Ry (5) (3.11)

in the domain where Hy, g, is defined.
The next proposition is the key tool in proving Theorem 2.1.

Proposition 3.1 (Measure estimate for contact points). Let u be a viscosity sub-
solution of (1.1), |u| < 1. Let & be a vector perpendicular to e 41 and A be a
closed set in

Pe N {lxp1] < 1/4}.

Assume that for each Y € A the surface S(Y + t&, R) , R large, stays above the
graph of u whent — —oo and, as t increases, it touches the graph by above for
the first time at a point (contact point). If B denotes the projection of the contact
points along & in Py, then,

HolAl = | B

where Ty > 0 universal, small and |A| represents the n-dimensional Lebesgue
measure.

Proof. First we prove the Proposition in the case when u € C? is a classical subso-
lution. Assume that S(Y, R) touches u by above at the point X = (x, u(x)). From
the discussion above we find |u(x)| < 1/2.

Denote by v the normal to the surface at X, i.e.

1

V=, vt) =
V14 [Vul?

(=Vu, 1).
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For any contact point X the corresponding center Y is given by

V/

Y(X)= <x+ma,xn+1 —I—a)) =F(X,v), 3.12)

where

—-1 —
®=RCy Wr1V'|7" = Hj(xns1))

Eo (3.13)
o= —ﬁaﬂ + Ho(xn41) — Ho(xns1 + @) + R.

The function F is smooth defined on
[X e R < 12} x v e R™M uj = Lep <vpyr < 1—cr}.
The differential DyY is a linear map defined on T, the tangent plane at X, and
DxY =Fx(X,v)+ F,(X,v)Dxv = Fx(X,v) — F,(X,v)I 1,

where /[, represents the second fundamental form of u at X. Writing the formula
above for the surface S(Y, R) at X, we find

0=Fx(X,v) — Fy(X,v)IIg

thus,
DxY = F,(X,v)(IIs — I1,). (3.14)

From (3.12) and (3.13), it is easy to check that
|Fu(X,v)|| < CR. (3.15)
Since S touches u by above at X, we find that
D?*vg(x) — D*u(x) > 0,
where vy is the function whose graph is S. On the other hand, from (3.10),
F(D*v5(x)) < f(tay1) + CR™' = F(D*u(x)) + CR™

which implies
ID*S(x) — D*u(x)|| < CR™!

or
|[Is —II,| < CR™". (3.16)

This together with (3.14), (3.15) gives

IDxY| < C.
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The centers Z for which X € S(Z, R) describe a rotation surface, around X. Note
if S(-, R) is above u, then its center is above this surface. The normal to the surface
at Y (X), which we denote by 7, belongs to the plane spanned by v and ¢, 1, and
2 < Tpy1 < 1 — ¢2. Thus, if £ is perpendicular to e,41, we have

lT-&l < Clv-§|

(notice that the tangent plane to the surface at ¥ (X) is the range of F, (X, v).)

Let B be the set of contact points, A the set of the corresponding centers,
B = m:B and A = mg A. Remark that 7 is injective on A and B by construction.
From above, we know that A belongs to a Lipschitz surface. One has

IAI=/ZIT(Y)'E|dYS/EIT(Y)-SIIDXYIdX

scﬁwa»wM=cwn
B

which is the desired claim.

In the case when u is not C2, we consider the function i obtained as the infi-
mum among all sliding surfaces S that are above u. Then u is semiconcave and it is
second order differentiable almost everywhere. The graphs of # and u coincide on
the set of contact points B and  is a subsolution at all these contact points. More-
over, using the arguments from [4], one can show that at any point of B the graph of
u has a tangent paraboloid from below, hence i is C:’l on 1, (B). This implies that
the proof above applies for # when we restrict to B since the corresponding map
X — Y(X) is Lipschitz and u is a subsolution in the classical sense a.e. on B. [

4. Extension of the contact set

In this section we prove that the contact set from Proposition 3.1 becomes larger
and larger when we decrease the radius R. We introduce the sets L and Q; C L
used in the next three sections

L= Py O {lxas1] < 1/2),
0 = {0, xus)/ I <1 x| < 1/2).

Let l~)k, represent the set of points on the graph of u that have by above a tangent
surface S(Y, RC™%), where C is a large universal constant. Suppose that we have
some control on the e, coordinate of these sets and denote by Dy their projections
into L.

Recall that S(Y, RC %) is an approximate solution of equation (1.1) with a
C*¥R~! error. If S(Y, RC~*) touches u by above at X then, from Harnack in-
equality, the two surfaces stay C¥R~! close to each other in a neighborhood of X
(see Lemma 4.1). Thus, if we denote

Ex={Z e L:dist(Z, Dy) < C1},
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then we control the e, coordinate of a set on the graph of u that projects along e,
into Ey.

We want to prove that, in measure, E; almost covers Q; as k becomes larger
and larger.

Heuristically, at large scale the level sets satisfy a limiting equation. With this
in mind we prove in Lemma 4.2 that near (large scale) a point Z € D we can find
a set of positive measure in Dy 1. Using a covering argument we show that the sets
Ej “almost” cover Q; as k increases.

Next we state and prove two technical lemmas, Lemma 4.1 and Lemma 4.2.
At the end of the section we prove a covering lemma which links the two scales.
We use the following notation:

Vu n
v(x) = w(x) e R".

Throughout this section we assume that there exists a surface S(¥p, R) that touches
the graph of a solution u by above at a point Xo = (xg, u(xg)) with

Z((x0), en) < /4.

Lemma 4.1 (Small scale extension). Given a constant a > 1 large, there exists
C(a) > 0depending also on a such that for each point Z € L N B(w, Xy, a) there
exists x with

D mu(x,u(x)) =2, |x —xol <2a,
2) (x = x0) - v(x0) < Ho(u(x)) — Ho(u(x0)) + C(@)R™".

Lemma 4.2 (Large scale extension). Suppose that u is defined in the cylinder
{Ix"| <1} x {|x4| < I} and satisfies the hypothesis above with

Ixonl < 1/4,  Ixpl=gq, q <I1/4
There exist constants C1, Ca, such that if

q>Ci, R>IC;, 1>CjlogR
then the set of points (x, u(x)) with the following four properties

D |x'| <q/15, |x — xo|l < 2q, |u(x)| < 1/2,

2) there is a surface S(Y, R/Cy) that stays above u and touches its graph at
(x, u(x)),

3) Z(v(x), v(x0)) < CigR™",

4) (x —x0) - v(xg) < 61q2R_1 + Hy(u(x)) — Ho(u(xo)), projects along e, into a
set of measure greater than ¢" 1 /C}.
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Remark 4.3. The term Ho(u(x)) — Ho(u(xp)) that appears in property 2 of Lemma
4.1 and property 4 of Lemma 4.2 represents the distance between the u(x) level
surface and the u(x() level surface of a one dimensional solution.

Now we state the iteration lemma that links Lemmas 4.2 and 4.1.

Lemma 4.4 (Covering lemma). Let Dy be closed sets, Dy C L, with the following
properties:

1) DoNnQ; #@, DyC Dy CD;...
2) ifZoe DrN Qy, Z1 € L, |Z) — Zo| = q and 2]l > q > a then,
|Dk+1 N B(Z1, q/10)| > w1 |B(Z1, ) N L]

where a > 1 (large), 1 (small) are given positive constants andl > 2a. Denote
by Ey the set
E, :={Z € L : dist(Z, Dy) < a}.

Then there exists ;1 > 0 depending on n, 1 such that
101\ Exl = (1= | Qil.
We proceed with the proofs of these lemmas.

Proof of Lemma 4.1. Let S(Y, R) be the surface defined in (3.8). Notice that S(Y, R)
touches u by above at X. The restrictions

7Tn|_gis(Y0,R)—> P,, 7Tn+1|32S(Y(), R)—> Pn+l
are diffeomorphisms in a 3a neighborhood of X for R large. Denote by T the map
T = ui150 Tnjg : P O {Ixnp1] < 3/4) > Puyr.

In the set
01 =T (Py N {|xn41| < 3/4} N B(m, X0, a +2))

we have
vs—u >0, wvs(xg) —u(xg) =0

where vg is the function whose graph is S(Yp, R). From (3.10) and the fact that f
is Lipschitz we find

C(vs —u+ R™Y) > |F(D%vs) — F(D?u)|.
The open set

02 := T (Py N {|xn41] < 5/8} N B, Xo, a + 1))
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satisfies O, C 01, dist(O3, d01) > c. From Harnack inequality, one obtains

sup (vs —u) < C(a)Rfl. 4.1)

x€0y

For each Z € L N B(w, X0, a) we consider the line Z + te, and denote by X its
intersection with S(Y, R).

Notice that in O we have 9, S > c¢. From this, (4.1), and the continuity of u
we find that Z + te, intersects the graph of u at a point X, = (x2, u(x2)) with

X2 — X1| < C(@)R™".
Since
(x1 — x0) - v(x0) < Ho(zn+1) — Ho(u(x0)) + CR™"

we conclude that
(x2 — x0) - v(x0) < Ho(u(x2)) — Ho(u(xo)) + C(a)R™"
and the lemma is proved. O

Remark 4.5. From the equation we find u € C Le (see for example [4]). Thus, if
M is some given number and R > C(M), then (4.1) also implies that u is increasing
on the interval (xo — Me,, xo + Me,). So if the function u is M- monotone, then
X is the only point on the graph of u that projects along e, into Z (this is obvious
when u,, > 0).

Proof of Lemma 4.2 The proof consists in 2 steps. In Step 1 we find a point that
satisfies properties 2-4 and property 1 with ¢ /40 instead of ¢/15. In Step 2 we use
Proposition 3.1 to extend properties 2-4 from that point to a set of positive measure.

Before we start, we introduce some notation. For a surface S(Y, R) we asso-
ciate its 0 level surface, the n — 1 dimensional sphere

Co
X(y,r) = {Ix —yl=r:=R— Ho(ynt+1) — ﬁyﬁﬂ .

We remark that the s level surface of S, |s| < 1/2, is a concentric sphere at a
(signed) distance

Ho(s) + O(1)CoR™", o] < 1/2 4.2)

from Z(y,r). Also for a point X = (x,x,41) € S, R), |xuy1] < 1/2 we
associate the point
X=[y,x)NX(y,r)

where [y, x) represents the half line from y going through x.
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First we prove the lemma in the following situation (this is a rotation of the
above configuration): the surface S(Yy, Rg) stays above the graph of u in the cylin-
der {|x’] < 2q} x {|xx| < 1/2} and touches it at Xo = (xg, u(xp)), |u(xg)| < 1/2.

Assume
foe(IWI=q)N{x =0}, yo=—en/rd — g%

q > cfl large, and g/ Rp < c1, c1 small, universal.

Step 1. We prove the existence of a surface S(Yy, R,) that stays above u in the
cylinder |x'| < 2g and touches it at (x4, #(x,)) such that

2
Y. = Yo+ tuen, R.> Ro/C3, Fise€ {x,, < Cz%} n {|x/| < i}.
0

Also, S(Y,, R,) is above S(Yy, Rp) outside the cylinder |x'| < 2gq.
We consider the function ¥ : R"~! — R

1
V(@) = ;(|Z’I*” — D), 7 eR",

where y is a large universal constant to be specified later.
We choose @ < 1, universal, such that ¥ ~2 = 2. The graph

has by below the tangent sphere X (yg, ro) when [x’| = ¢, and a tangent sphere of
radius r,, and center y,, when |x’| = wq, where

Fo = w7+2\/r§ + g2 (w22~ 1) > rp/2.

Let I'g denote the graph of X (yo, ro) for |x’| > ¢ below x, = 0, I'y, the graph of
the above function for wg < |x’| < g and T, the graph of |x — y,| = r, when
|x'| < wgq, x, > 0. We notice that

[:=ToUly, UT,
is a C! surface in R”. We define the following surface in R"*!

W = {Xp1 = gyg,,1.Ro (dr + Hyy, 1 Ry (0) ],

where g;-p is defined in (3.6) and dr represents the signed distance to the surface
" (dr is positive in the exterior of I'). Note that ¥ coincides with S(Yy, Ro) if dr
is realized on T'y.
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Claim 4.6. The surface W is a supersolution of (1.1) everywhere except the set
where |x,41| < 1/2 and dr(x) is realized on I'g U T',.

Proof. Let hy,, , R, be the corresponding function for gy, ., r, that we are going
to denote by & and g for simplicity. At distance d from I" we have in an appropriate
system of coordinates

D?g = diag |:g”, — ] = diag |:h/(s), KU h(s), .. ] , s=g,

/
l—lng’. 1 —«1d

where «; represent the principal curvatures of I (upwards) at the point where d is
realized.

Case 1. If d is realized at a point on I'g, then the result follows from the construction
of S(Y, R).

Case 2. If d is realized at a point on I'y,, then

0>k >—ry' >-3R;", i=1,...,n-2
y+1 _
kno1 = =Ry

provided that g /rp is small. Without loss of generality we assume |d| < Clog Ry
since otherwise, g is constant.

On the —1/2, respectively 1/2, level sets g(d) is a supersolution from (3.9).
For the other level sets we recall from Section 3 that there exist constants C;, C
universal such that

1 (s) — hy(s)| < C1Ry ' V/2h(s) if |s| < 1/2,
W(s) = hy(s) — CRy' ifs € (sg, —1/2)U(1/2,1),

hence

n—2
2 / _ N Kl’lfl
F(D g)fF(h,O,...,O)+<A;( 2u) = A= )m

1
< F(h}),0,...,0) + (ACl +6(n—2)A — x%) Ry'V2h < f(g),

provided that y is chosen large, universal.
Case 3. If d is realized at a point on I, and |s| > 1/2, then (see (2.3),(3.2))

1 (s) + C(n, 1, A)(Ro/2) ™' V/2h(s)
= hy(s) — CRy ' +2C(n, A, A)Ry'V/2h(s) < hiy(s),

and the claim is proved. O
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We remark that W and S(Yp, Rp) coincide outside the cylinder |x’| < 2q. Next
we consider S(Y,,, R{) with

Co
Rl =ra)+H0(y0n+l)+5R_O Ya): ()’w, y0n+l)'

We list some properties of S(Y,,, R;). First we notice that the sphere (v, r1)
stays at distance greater than 3CoR,, !"above I, and stays at distance greater than
3CoR; ' below T if

x| > qg(1 +w)/2 > wg + 86(1)/2.
This implies (see (4.2)):

i) the region of W where |x,11| < 1/2 and the distance to I" is realized on I, is
above S(Y,,, R})
ii) the region of S(Y,,, R1) where |x,+1| < 1/2 and the distance to X (y,, 1) is
realized at a point outside {|x'| < g(1 + w)/2} is above ¥
iii) S(Y,, R) is above W outside {|x'| < 2¢g}.

We slide from below W in the e, direction till we touch u for the first time.

Claim 4.7. There exists 8 > 0 such that the surface W — e, = {X — Be,, X € ¥}
touches u at a point (z, u(z)) with |u(z)| < 1/2 and the distance from z + Be;, to I’
is realized on T',.

Proof. In this proof we write W9 for W and let

W =W Uy Ul
depending on the part of I" where the distance is realized. It suffices to show that W,
cannot be strictly above the graph of u. Then it is clear from Claim 4.6 that by slid-
ing W7 from below the first contact points must occur in the region corresponding
to W (since \Ilg C S(Yo, Rp) is above u from the hypothesis).

We construct W97¢ the same way that we constructed W4 except that its 0 level
set separates from X (yg, r9) on the n — 1 dimensional sphere of radius g + ¢. If
W is strictly above the graph of u then Wit is above the graph of u for small ¢
hence, by sliding from below, we find that the full surface W97¢ is above u. This is
a contradiction since X is clearly above W4*¢ and the claim is proved. O

Now we consider the surfaces S(Yy + te,, R1) and increase ¢ till we touch
for the first time the graph of u. From i) we see that when Yy + te, = Y, — Be,
then the point (z, u(z)) is above the surface S(Yy + te,, R1). Thus we can find
0 <1t < |Yy—Yy,| — Bsuchthat S(Yy, Ry), Y1 = Yy + te, touches u from above
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at a point (x1, u(x1)), lu(x1)| < 1/2 in the cylinder |x’| < 2q. Moreover from ii)
above

Fre (I <q(l+@)/2 N {x, < C2g*R;Y  Ri > Ro/3.

We apply the argument above with (x1, u(x;)) and S(Y1, Ry) instead of (xg, u(xp))
and S(Yy, Ro) and continue inductively at most a finite number of times till we find
a point (xy, u(x,)) with the required properties.

Step 2. Using the result from Step 1, we prove that all contact points (x, u(x)) with
D) x| < q/40, |x — xo| < 4q/3, lu(x)| < 1/2
2) in the cylinder |x'| < 2q, u is touched by above at (x, u(x)) by S(Y, Ry/Cs),

and S(Y, Ry/Cy) is above S (Y, Ro) outside this cylinder
3) L(v(x),v(xg) < C Rio and the contact points belong in each level set to a

Lipschitz graph with Lipschitz constant less than Cq R, !
4) (x — x0) - v(xo) < Ho(u(x)) — Ho(u(x)) + C% project along e, in a set of

measure greater than cy¢" .

We slide from below, in the e, direction, the surfaces S(Y, R) with

R=2C C4=4C5(400) (4.3)

Iy — %] < !
* 4’ Cy

q
- <
till they touch u.
Claim 4.8. The point (¥, 2C2q2Ra 1) is in the exterior of X (y, r).

Proof. Assume not, then X(y, r) is above x, = 3C2q2(2R0)*1 in the cylinder
|x' — X.| < g(100)~2. One has

% = &+ v (How(@) + 0(ToCaRy ")

Z(0(xs), en) < qC3R; ",

hence
Xiwen < v en + Hou(x)) + C(@” Ry > + Ry .

Thus, if g is greater than a large universal constant, one has that x, is at a signed
distance less than

Ho(u(x)) + C(q*Ry* + R™") = Cag>@Ro) ™" < Ho(u(x.)) — CoCaRy'

from X(y, r). This implies that x, is in the interior of the u(x,) level surface of
S(Y, R) which is a contradiction.
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From the claim and (4.3) we find that X (y, r) is below x, = 4C2q2R0_1, and
below x, = 0 outside |x’| < ¢/50. Thus, X(y, r) is at a distance greater than
612(4R0)’1 in the interior of X (yp, o) outside

{x, > 0} x {|x/| < q/50}.
The s level surface of S(Yy, Rp) is at distance greater than (see (3.11))

Co
H)’On+1sR0 (S) - H)’On+1vRO (0) z H)’On+1aR(s) - H}’On+1sR0(0) z Hyon+1,R(S) - 2—RO

from X (yg, ro). The s level surface of S(Y, R) is at distance less than

CoCy
Ro

Hy, . .r(s) — Hy,,, r(0) = Hy,, ., .R(s) +

from X (y, r). Hence, at the points x for which
d(y.r) (X) = dx(y9.r9) (x) = 2CoCaRy"

we have that S(Y, R) is above S(Yy, Rg). Since S(Yy, Rp) is constant outside a
C log Rg neighborhood of X (yo, r9), we can conclude that, for ¢ greater than a
large universal constant, S(Y, R) is above S(Yy, Ro) outside |x'| < ¢/40. This
implies that the contact points (x, u(x)) have the properties |u(x)| < 1/2,

2

Z (), en) < cRio, Fp < 4@%0, ] < %

and, from Proposition 3.1 they project along e, in a set of measure greater than
c2¢™~'. We notice that on each level set the contact points belong to a Lipschitz

graph with Lipschitz constant less than Cq R I, Also, one has

x — xo| < =q,
| 0l 34

x =&+ 000 (Ho(u() + 0(HCoCyRy")

thus,

2
(x —x0) - ep < C%o + Ho(u(x)) — Ho(u(xo))

2
(x — x0) - v(x0) < Cquo + Ho(u(x)) — Ho(u(x0))

which proves Step 2. O
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End of proof of Lemma 4.2. In the general case we denote by X| € S(Yy, Ro) the
point such that 7, X1 = 0 and let

X1 =)0
lx1 — yol
The cylinder
{Ix =x1) - &1 <1/2} x {lme (x — x1)| < 2| (Ko — x1)[}
is included in {|x'| < I} x {|lx,| < 1}. Also, |x(|/2 < |mz(Xo — x| < [x)13/2,
hence we are in the situation above. The contact points obtained in Step 2 belong in
each level set to a Lipschitz graph (in the e,, direction) with Lipschitz constant less

than 2. The result follows now by projecting these points along the e, direction.
With this the lemma is proved. O

Proof of Lemma 4.4. Denote by F, C Ej the closed set
Fr ={Z e L : dist(X, Dy N Qi+q) < a}.
We prove that there exists w(n, p1) > 0 small, such that
101\ Fil = (1= w*| Q. (4.4)

Let Z € O;\ Fi, Z1 € Fy be suchthat |Z — Z| = dist(Z, Fy) = r. We claim that
for some py(n, uy) >0

|Fre1 N Qi NB(Z,1)| = u2| Qi NB(Z, 7). 4.5)
Let Zy be the point for which |Z — Zy| = r + a and Z; belong to the segment

[Z, Zp]. We obtain that Zy € Dy N Q44 from the definition of F.
If 2r > a, let Z; be such that

Z — 7y = = B(z r)ﬂLCQ
2_29 292 l

From property 2 and a 4+ r/2 < |Zy — Zo| < 5r we obtain
r
|Fet 0 QI NVB(Z. )| = 1Dt N B (22, 5) 1 = 1Dt NB(Za. 122 = Zol/10)]
r
> wilB (22, 5) N LI = m2lBZ. 1) N Q.
If 2r < a then, from property 2, there exists a point

r+a
10

Zye Dy NB (Z, ) C Olta
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thus,
QiNB(Z,r)yC QiNB(Z3,a) C Fi1,

which proves (4.5). We take a finite overlapping cover of Q;\ Fy with balls B(Z, r).
Using (4.5) we find a constant (w2, n) > 0 such that

[Fip1 N (O \ Fi)| = plOp \ Fil

hence,
1O\ Fr1l < (1 =)0\ Frl,

and (4.4) is proved. ]

5. Estimate for the projection of the contact set

Throughout this section we assume that u is a subsolution of (1.1) in the cylinder
|x'| < 321,

lim u(/, x,) = —1,
Xp—>—00

and we satisfy the following hypotheses from Theorem 2.1,
{u =0} N {|x"] <320} C {x-& > 0},
for some unit vector & € R",|&| = 1, Z(&y, en) < /8, and
0,9)e{u=0}, 6=06

for some fixed 6y. We denote
2] —

We use the results of the previous section and prove the following

Lemma 5.1. There exist universal constants 6*, M, c1 such that if

Cie<ar. 1=C@)
then the set of points
(r, u(x)) € {Ix'] < 1} x {lxp1] < 1/2)

that satisfy
—k
x-& < C,0 + Ho(u(x))

projects along e, into a set of measure greater than (1 — (1 — 0)*)| Q.

Before we prove Lemma 5.1 we need another lemma that gives us a first surface
S(Y, R) that touches u from above.
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Lemma 5.2 (The first touching surfaces). If ¢ < ¢,, then the points (x, u(x))
with the following properties

D x| <1, Jux)| <1/2;
2) there is a surface S(Y, Ry) that stays above u in the cylinder |x’| < 16l and
touches its graph at (x, u(x)), where
12

—, 1> ClogRo;
39’ > C110g Ko

Ry =

3) £ (v(x), &) <IR;';

4) x, - & < (1 4+ b)0 4+ Ho(u(x)), b < 1 is a positive fixed number project along
ey, into a set of measure greater than c(l N provided that | > C (b, 0p).

First we obtain a bound for u from having information on the location of {u = 0}.
This is done using the following barrier function.

Lemma 5.3. There exists a function g; that is constant for |t| > 1/2, such that
gi1(|x] — 1) is a supersolution everywhere except on the O level set. Moreover, the
associated function Hy : [—1 + el 1] > R, satisfies
c —cl/2
——log(1 = Is]) = Ho(s) = Hi(s) 2 0, for Is| < 1—e™"% (.1

Proof. Let s; = e~ and define,

C
ho(s)=ho(st = D——1(1 + 5)% — s} fors;—1 <s <0,
hi(s) = c (5.2)
ho(s)+ho(s; — 1)+7(1 —s+s)(—5) forO<s <1.

According to (2.3), we need to show that

Cn, A, N)
hy(s) + f\/%l(s) < hy(s) (5.3)
for all s # 0.
From
ho(s) ~c(s+1), nears =—1, hy(s) ~c(s —1), nears = 1.
we obtain

hi(s) ~ c[(1 +$)? = s71,s € [sg — 1,0]
hi(s) ~ c[(1 — $)* + 51,5 € [0, 1].

Then, (5.3) and the corresponding estimates for H; follow from straightforward
computations. O
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Proof of Lemma 5.2. First we obtain a bound using the comparison function of
Lemma 5.3. The surfaces

Yy o= {1 = g(lx =yl =D}

with |y’| < 20/ and y, — —oo0 are above u, hence, by increasing ¢, they can touch
u for the first time only on {x,4+1 = 0} since they are strict supersolutions on all the
other level sets. This implies that

u(x) < gi(x-&) if x| < 16l

Let
Ro = 1%2(320)~!

and notice that lRO_1 issmall and [ > C, log Ry if I > C(6p). Let yo = x9 — &oRo
and consider the surfaces S(Y, Rg) that contain xy = (0, ) with

Vb
|70 (y — yo)| < El, [Yng1l <

sl —

Claim 5.4. The surface S(Y, Ry) is above g;(x - &) (and therefore above u) in the
region {I < |x'| < 16l}.

Proof. We observe that

Vb
|7y (v — yo)| < ?l

which implies that the 0 level surface of S(Y, Rg), the n — 1 dimensional sphere
% (y, r) is below the hyperplane {x - &, = (1 + b/2)0}. Let dx, dp, denote the
signed distance to X, respectively to the hyperplane P := {x - §y = 0}.

If |¢| < Clog Ry, the sphere |[x — y| = r 4+« is below x - £y = —6 4 « outside
|x’| < 1/2, thus

ds >dp+0, in{lds| <ClogRo}N{l < |x'| < 16l}. 5.4
It suffices to show
HS(),R()(S) - HSQ,RQ(O) = H](S) +0, S0 = Yn+1 (55)

since this implies
gS(),R()(d + HSQ,RQ(O)) > gl(d - 9)

and
gS(),R() (dE + HY(),R()(O)) = 81 (dE - 0) > 81 (dP)v

hence S(Y, Ry) is above g;(x - &) in the region [ < |x’| < 161.
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To prove (5.5) we first recall that

§ 1
Hso,R()(S) - HS(),R()(O) = ,/() 7d§,

2hs9. Ry ()
and
H,, Ry (s) — Hyy,ry(0) < Ho(s) + 2C_R00 (5.6)
< Ho(s) + C1617> < Ho(s) +6/2
for [ large.

From (3.4), (5.2) we find that

hsy. 2o (8) < hi(s),  ifs < —1+c(6)
hso 8o (8) = i), if s = 1— (@)l 2.

This implies that the maximum of Hy, gr,(s) — H;(s) occurs for 1 — [s| > c(6p)! _%.
For these values of s we have (see Lemma 5.3)

1

12

c1(6o)

Ho(s) < Hi(s) + Cl~ ' log < Hi(s) + 60/2

and this together with (5.6) proves (5.5).
In conclusion the surfaces S (y, Rp),

ly" — 7ayol < —bl
16

touch u for the first time (as we increase y,+1 from —oo) at points (x, u(x)) that
satisfy properties 1,2,3 of the lemma and

b
x-§ < (1 + 5) 0+ Hso,Ro(u(x)) - HSO,RQ(O)

b Co 326
< (1 n 5) 0+ Ho(u(x) + S22 < (14 5)6 + Ho(u(x)

if I > C(b). Now the lemma follows by Proposition 3.1. O

Proof of Lemma 5.1. Let Ry = 12(326)~" and define Dy the set of points (x, u(x))
with the following properties

D |x'| <161, |u(x)] < 1/2
2) the graph of u is touched by above in |x’| < 16/ at (x, u(x)) by S(Y, Ry) with
Re > RoCj "
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3) Z(v(x), &) < C5IRy"

4) x & < 2C%0 + Ho(u(x))

where C3 is large, universal depending on Cq, C>. Also, set Dy = nn(ﬁk).
From Lemma 5.2 (with b = 1) we find that if ¢ < ¢, then Dy N Q; # 0.

Claim 5.5. As long as
€’§1R51 < min{l1/Cy, 7/8}/8 (5.7)

Dy, satisfies property 2 of Lemma 4.4 with a = C;.

Proof. Let Zy = 1y (x, u(xx)) € O N Dgandlet Z € L, lx, =71 =¢q,2l > q >
C1. We apply Lemma 4.2 in the cylinder |x’ — 7’| < 8/ and obtain that the points
(x, u(x)) with the following four properties project along e, in a set of measure
greater than ¢"~!/C.

D X' =21 < q/15, lu(x)| < 1/2, |x — x| < 41
2) the graph of u is touched by above in |x’| < 16/ at (x, u(x)) by S(Y, Rg+1) with

—1 — k-1
Riy1=RiCy = RoCy

3) Z(x), v(xp) < 2C1IR;"
hence,

Z(v(x), &) < C3' IRy

(x — x%) - v(xx) < 4C1PR; + Ho(u(x)) — Ho(u(xp))

4)
— =k —_
(x = xp) - §0 < 8C1C3I* Ry ' + Ho(u(x)) — Ho(u(xp))
thus,
—k+1
(x —xx) 80 =2C3 0+ Ho(u(x)).
All these points are in 5k+1 which proves the claim. [

Let Ej, be the sets defined in Lemma 4.4. From Lemma 4.1 we know that each point
in E} is the projection of a point (x, u(x)) with |[x — xz| < 2C{ and

(x — xg) - v(x) < Ho(u(x)) — Ho(u(xp)) + C(CHR; !,
for some point (xg, u(xy)) € Bk. Thus,

(x —xp) - &0 < C(COR T +2C1IR; " + Ho(u(x)) — Ho(u(xx))
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or
x £ < 2C5 "0 + Ho(u(x)).

We apply Lemma 4.4 and obtain that
Exn Qi = (1= (1 -9l

for all k& for which (5.7) holds. With this the lemma is proved. O]

6. Proof of Theorem 2.1

Assume that u is a solution of (1.1), (1.3) in |x’| < 32/, u is monotone in the e,
direction and satisfies the assumptions of the previous section. We want to show
that

{u=01N{x"| <1/4) C {x-& < K6}

for some K universal provided that [ > C(6p).
Using the notation of Lemma 5.1, suppose that there is a point x; on {u = 0}
such that 4
xk~‘§024c*9, |x,’<|§l/2, kzk().

We prove that if kg is a large universal constant then we can construct a sequence
of points x; and then reach a contradiction. .
Let C; be a large constant depending on c2, C, and let

2= 2

Cr :=4C1Cy(1 — ) -1,

Claim 6.1. As long as
_ 2 \k

(Ca-m 1) e=c (6.1)

and kg large, universal, then we can find x; on the level surface {u = 0} such that
—k+1 .k
Xkl - &0 > 4C, 0, X1 — x| < Cr(1 —)n-11.

Proof. First we notice that if (6.1) is satisfied then

—k 2k

Cie =Gl =) T < ¢

if kg is large. The result of Lemma 5.1 can be applied and we find that the points
(x, u(x)) with |x'| <1, |u(x)| < 1/2 and

x & < C6 + Ho(u(x)) (6.2)

project along ¢, into a set of measure greater than (1 — (1 — ﬁ)k )| O1l.
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Assume by contradiction that {# = 0} stays below the hyperplane x - &y =
46];“ 0 in the cylinder

k
Ix" —xp| < Ci (1 — @)1l =: 32
and notice that x; is at distance less than

6 := 4(Cy — 1)C'0

s

from this hyperplane. Next we check that we can apply Lemma 5.2 “upside-down’

with b = (4(6* — 1))71 (we use that u is a supersolution and we slide down
surfaces from oo). For kg large we have

1 —k ko _ 1N\K
Ol < CCho( —m Tl < C(C*(l — ) n—l) ¢
ki
< CO(1 - <a,
and
1 2% N3 1 1

Iy = CI? ((1 ~mi11)’ = 6/ C)? = C@)

hence we can apply the lemma since 6, > 6y. The points (x, u(x)) with |x’ — x,’(| <

Ik, lu(x)] < 1/2, and

4T —x g9 < (14 b)6 — Ho(u(x))

or
x - § = 3C40 + Ho(u(x) 6.3)

project along e, in a set of measure greater than

1—,

G " = (1 - DA 16(C1 /32" (AT, — D) T > (1 — DN Q]

provided that C; is chosen large. If kg is large so that

k,
02U < C (-l <1

then we reach a contradiction. Indeed, from (6.2) and (6.3) we see that the points
of the graph of u with |x| <[, |[u(x)| < 1/2 project along ¢, into a set of measure
strictly greater than |Q;| and we contradict the fact that # is monotone in the e,
direction. With this the claim is proved.

We choose kg universal such that the inequalities above hold and

o0
Z 320 < 1/4.

k=ko
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If, by contradiction, there is a point xi, on {u = 0} with

Xi - &0 = 4C,0,  |xj | <1/4

then, by the claim above, we can construct a sequence x; on {u = 0} with x; - &y >
461;9 that stays inside |x’| < /2 as long as (6.1) is satisfied.
For the last value of k£ for which (6.1) holds we have

R = & <c21(6 (1 —)—%)4‘ -1
k= 320, 1 * 12 &

C2C\Co(l — )~ T =
116 Lk w) 1 =1/4.

IA

Now we can argue as in the claim above and reach a contradiction directly from the
fact that Ry < [/4 without constructing x;1. To see this we recall that in the proof
of the claim we applied Lemma 5.2 in the cylinder |x" — x;| < 32[; by sliding a

family of surfaces S(Y, Ry) in the e, direction from co. Now we slide the same
family in whole R" without the restriction to the cylinder. Since Ry < [/4 and [
large, all contact points occur in |x’| < [. Clearly the contact points still satisfy (6.3)
together with the measure estimate for the projection set (from Proposition 3.1).
This contradicts again that u is monotone and Theorem 2.1 is proved. O

7. The limiting equation

The statement of Theorem 2.2 requires the smoothness condition F € C!. We
actually prove the theorem under weaker assumptions in order to include also some
cases of interest like when F € C! except at the origin or when F is the extremal
Pucci operator M;{ por M,

We denote by I the set of t € R for which F admits a “tangent cone” T at
tE Q & forall £ € R", |&€] = 1. To be more precise we assume that for r € [

|F(t§ @5 +eM) — F(t§ ®§) —eT (1,6, M)| < en(e, t, | M])
where M is an x n symmetric matrix and
a) T uniformly continuous in & for (¢, M) in any compact set of the domain of
definition
b) T continuous in ¢ for fixed &, M
c) n(e, t,||M]|]) — 0as e — 0 and the convergence is uniform for (¢, M) in any

compact set of the domain of definition.

Finally we assume that /2, maps (—1, 1) into / except at a finite number of points.
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Remarks.
1) If F € C! then it satisfies the conditions above for all # and
T (1,6, M) = Fj(t§ ® §)M;j.

2) If F e C! except at the origin then it satisfies the conditions above for ¢ # 0. If
f has only a finite number of 0’s then we satisfy also the hypothesis on hé.

3) T(¢,§&,-) is the tangent cone of F at t£ ® &, is homogenous of degree 1, uni-
formly elliptic with ellipticity constants A, A, and 7' (¢, £, 0) = 0.

4) The operators /\/l;\|r A» M satisfy the hypotheses for 7 # 0.

The limiting equation that we obtain depends on the following operator

Definition 7.1. If M& = 0 then we define G (¢, £, M) to be the unique solution #;
of the equation
T(t,§n508—-M)=0.

We remark that G (¢, &,-) is uniformly elliptic with ellipticity constants AA~1, AL ™!,
homogenous of degree 1, G(¢,£,0) = 0 and is defined on the space of n — 1
symmetric matrices of the hyperplane perpendicular to &.

If F € C! then G is linear in the variable M. This is not always the case, for
example when F = /\/l;f  then

A_l./\/l;,A(M) fort > 0,

G, &, M) = )\—IM;’A(M) fort < 0.

Let us fix a vector &y with

T
5ol =1,  Z(o,en) < 2

and let M be a symmetric matrix such that M&y = 0.

Proposition 7.2. Let u be a solution of (1.1), (1.3) in |x'| < I, u(0) = 0 and
assume u < 0 below the surface

0 r 0
= x-§o=l—2x Mx+7§-7tgox ,
with

IMI| <1, [&§]<1, 6=6.

Given &, there exists 1(8, 6p) > 0 small such that if /1 < o then

- 1
G €0, M) = / G0). b0, M) o) <.
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Remarks.

1) The function G(hi)(s), &0, M) has a finite number of discontinuities from the
hypothesis on 7" and hj,.

2) The operator G (&, -) has ellipticity constants AATE AL 5(5;‘% 0) =0.
3) When F € C! then G is linear in M and when F = MIA then G = M ,.

Proof of Theorem 2.4. Assume by contradiction that there exists a smooth surface
P = {x - & =xTMx} ,
with -
Mg =0, G, M) >25 M| <82

that touches ¥ by below at 0 in |x’| < § and, assume for simplicity £ (&g, e,) <
/4.
For k large, vertical translations of

A
Pri={x g0 =x"Max} . Myi=M—-Z-(U -5 @)

touch e {u = 0} by below at points §15 close to the origin for some é; small de-
pending on §. This implies that, after possibly a translation of the origin

{x &) = exx! Max +51§'7Tst}, €l <1

touches {u# = 0} from below at the origin in |x’| < 5188]:1. If we denote [ = 51881:1,
6= 8%8 8;] then the surface above can be written as

0 ; 0
x~§0=l—2x (8M2)x+7§~715kx ,

with - -
I8Mal < 1,  G(&0, 8Mp) = 8G (&, M) > 8%

This contradicts Proposition 7.2 if §; is chosen so that 8/1 = §; < o0 (8%, 1) and k
is large enough. O

For the rest of this section we prove Proposition 7.2. First we construct an
explicit supersolution given by the following lemma.

Lemma 7.3. Assume _
Géo, M) >4, M| <1,

and let T be the surface

= {x cEg = %xTMx + 7g,x -S} N{lx'| <ooe™ '}, €] < oo.
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There exists og(8) > 0 small, depending on universal constants and §, such that if
0 < & < 0p(08) then we can find a function g (respectively h, H, associated with
it) for which g(dr) is a supersolution, where dr represents the signed distance to
I', dr > 0 above I'. (We consider only the set where the distance d is realized at a
point in the interior of T'.)

Proof. We define

N

h(s) = ho(s) — ho(ss.e) + 8/ p(g)ds  fors > ss., (7.1)

88,¢

where s5 ¢ is defined so that

8 2
ho(ss,e) = 2~ (1 +s5,6)

and the function p is continuous, bounded, satisfying

A
lol < 27(1 + max +/ho), /

58,e

1 3
p(&)ds > 18 (7.2)

(we specify the exact p later). For ¢ < 0¢(8) < § we find

1
h(s) > E(hO(S) —ho(ss,e)) for sse<s<c—1
h(s) > ho(s) — Ce forc—1<s<1-—c¢8

8
h(s) = ho(s) + 18 for 1 —cé <,

hence
H(sse) > Cloge, H(1) <C|loge|.

The function g(s) = H~1(s) is defined for s < H(1) < C| log ¢| and it is constant
for s > Cloge. We also remark that max(H — Hy) occurs in the interval (¢§ —
1,1 — ¢d) thus

H — Hy < C(6)e. (7.3)

Let d be the signed distance to I". In an appropriate system of coordinates

D*d = diag | —L ., =t g
1 —dk 1 —dk,—1

where k; are the principal curvatures of I' at the point where the distance is realized.
From the bounds on || M]|, £ we find

diag(—«1, ..., —kn—1,0) = —eM + &Ny, [[N1]| < Coy.
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For |d| < C|log¢| one has

D*d = —eM + N, N2l < Coy,
D*g(d) = ¢'D*d + ¢"Dd ® Dd = /2hD*d + h'Dd ® Dd
thus,
F(D*3(d)) = F <h’Dd ® Dd + ev/2h(—M + Nz))
= F <thd ® Dd + epDd & Dd + &(—M+/2ho + N3)> (7.4)

<F (hg)Dd ® Dd + e(p&o ® & — \/ZhOM)> + £Coy.
If hé)(s) € K with K C I compact we can bound the term above by

f(s)+eT (h(), Dd, péo ® &) — 2hoM) + en(e, hly, C) + eCoy

< ) +eT (. 60, 080 ® 0 — v/2hoM ) + 0/ (K, 00)

= F@@) + oM, (p = V2oG i, &0, M) + e/ (K. 00)
with '(K, 0g) — 0 as o9 — 0. From (7.4) we also obtain

F(D?g(@) = f(8() +eM] (pko ® &0 — v/2hoM ) + eCop
hence, for o small,

F(D*s(d)) < f(g(d)  ifp <—2A%"'(1 + max v/Fg).

In conclusion g(d) is a strict supersolution if either hg)(s) € K and

1
p(s) < G(ho(s), o, M)+/2ho(s) — Xln'(K, 00)|

or p(s) < —2Ar~1(1 + max /hg).
Using the hypothesis on F, ho and the fact that

G(Ey, M) > 8

we can find a continuous function p that satisfies the condition above and (7.2),
provided that og is small enough. With this the lemma is proved. O

Proof of Proposition 7.2. Assume by contradiction that (N?(So, M) > §. Consider
the surface

e
Irp:= {x <&y = EXTMZX +oé -thox}
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with
M M * 8(1 & ® &) 26 o
=M-——( — , £€=—, O0=-—
2 A 2n 0 %50 12 I

and let g2 (d>) be the function constructed in Lemma 7.3. Since
G (&, My) > 8/2

we conclude that g>(d>) is a strict supersolution if ¢ < 09(§/2).

As in the proof of Lemma 5.2 one can bound u by above from the fact that
{u = 0} stays above I'y. For this we use again the surfaces W, ;/10 (see Lemma 5.3)
which are supersolutions everywhere except on the 0 level set |x — y| = [/10. We
slide these surfaces by below with |y’| < 3//4, use that I'; admits at each point a
tangent ball of radius //10 from below and obtain

u(x) < giyro(dy) if [x'| <1/2

where d) represents the signed distance to the surface I';.
In order to obtain a contradiction it suffices to prove that for o < o1(§, 6p)

82(d2) > gijr0(dr) on{|x’| =1/2}N{ldi| <1/10}. (7.5)

Indeed, then we slide the graph of g»(d>) from below in the ¢, direction in the
cylinder |x’| < /2 till we touch the graph of u. Since u(0) = 0, we obtain from the
inequalities above that the first contact point cannot occur on the boundary |x’| =
/2. Therefore it is an interior point which contradicts that gr,(dr,) is a strict
supersolution.

We notice that on {|x’| = 1/2} N {|di| <1/10} we have

dy > dy + cdel® > dy + ¢80
thus, in order to prove (7.5), it suffices to show that
Hy(s) < Hjj10(s) + ¢80 (7.6)

where Hj, Hj/y are the corresponding functions for g2, g7/10. We sketch the proof
of (7.6) which is similar to the proof of (5.5) from Lemma 5.2.
From (5.2), (7.1) we find that the maximum of H, — Hj /o occurs if

1—|s| > cB/)? .
Using (7.3) and Lemma 5.3 we find
Hy — Hyj10 = Hy — Ho + Ho — Hjjo

I
< C)0I7% 4 Cl ' log 5 < cd0

provided that [ > 6po,” ! > C(4, bp) is large enough. O
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8. Proof of Theorem 2.2 and Theorem 1.2

In this section, we finally present the proofs of Theorem 2.2 and Theorem 1.2.

Proof of Theorem 2.2. The proof is by compactness.
Assume by contradiction that there exist uy, 6k, lx, & such that uy is a solution
of (1.1), (1.3) in |x'| < I, |&k| =1, £(&, en) < /4 and

0 € {ux =0y N{|x"| <} C{lx - &l < Ok}

O > 60, Ol — Oask — oc

for which the conclusion of Theorem 2.2 does not hold.
Let Ay be the rescaling of the O level sets given by

x € {ug =0} > (¥, yu) € Ak

Y =1 Te(g %), yn =67 'x - &

where T : {x - & = 0} — R"! is an orthogonal transformation. We notice that

A C Q1= {Iy'I < 1} x {lyal < 1}.

Claim 8.1. Aj has a subsequence that converges uniformly on |y’| < 1/2 to a set
A* = {(y/,w(y)), |y| < 1/2} where w is a Holder continuous function. In
other words, given ¢, all but a finite number of the A;’s from the subsequence are
in an ¢ neighborhood of A*.

Proof. Fix y(, |yyl < 1/2 and suppose (y;, y) € Ai. In the cylinder |(x — xp)'| <
I /2 centered at
xp = lka_ly() + Ok yéi

we have
x0 € {ur =0} C {|(x — xo0) - &| < 26k}

From Harnack inequality applied in this cylinder we obtain

{ur = 0} N {|(x — x0)'| < Lke/4} C {I(x — x0) - &kl < 26k (1 — o)}

provided that 46;/, I < €(26y), where ng > 0 is universal and €(0) is an increasing
function, £(#) — 0 as & — 0 (see Theorem 2.1).
Rescaling back we find that

A 01" = yol = 1/4) C {lya — 31 = 201 = 10)}.

We apply Harnack inequality repeatedly and we find that

A N {1y = yol <271 < {lyn — 31 < 2(1 — o)™} (8.1)



ENTIRE SOLUTIONS 403

provided that
Ol <272 (2(1 — 19)™"6p) -

Since these inequalities are satisfied for all k£ large we conclude that (8.1) holds for
all but a finite number of k’s. Now the proof of the claim follows from Arzela-
Ascoli theorem.

For each k we associate an elliptic operator defined on the space of n — 1
symmetric matrices (over the y’-space)

GK(N) =G (s,-k, (Tkngk)TNTkngk> .

Since all G* have the same ellipticity constants, by passing if necessary to a sub-
sequence, we can assume that A converge uniformly to A* and G¥ converges uni-
formly on compact sets to a uniformly elliptic operator G*.

We prove next that

G*(D*w) =0 (8.2)

in the viscosity sense.
The proof is by contradiction. Fix a quadratic polynomial

T _ _
y=PO)=y" Ny +&-y, INIl<&"', gl <8712

such that G*(N) > 28, P(y)+38|y’|* touches the graph of w, say, at 0 for simplicity
and stays below w in |y’| < 2. Thus, for all k large we find points (yx’, yk,) close
to 0 such that P(y’) 4 const touches Ay by below at (i, yk,,) and stays below it in
Iy — v'| < 68 and GK(N) > 8. This implies that, possibly after a translation, there
exists a surface

O O _
{x & = ﬁ(ﬂst)TTkTNTkﬂskx +o.8 -ﬂst} . e <o
k

that touches {u; = 0} at the origin and stays below it in the cylinder |x/| < 8l;. We
write the above surface in the form

Ok
{X'Sk—(al )2 xT Mx +—5‘§ g X }

with _
Mg =0, M| <1, G&, M) > 8.

This contradicts Proposition 7.2 if k is large so that
O/ Ik < 801(8°, 60)

and (8.2) is proved.
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From the fact that w satisfies (8.2), and |w| < 1 we conclude that (see [4])
||w||cl.a(31/4) <C(, A, n)
hence there exist 0 < 11 < 1 small (depending only on A, A, n) such that
lw—&-y'l<m/2  for|y|<2n.

Rescaling back and using the fact that A; converge uniformly to the graph of w we
conclude that for k large enough

{ug = 0y N {Ix'| < 3lema/2) CA{Ix - & — Okl '& - Ti(me, %) < 36km1/4).

Then uy; satisfies the conclusion of Theorem 2.2 and we reached a contradic-
tion. ]

Proof of Theorem 1.2. The rescaled sets k~!{u = 0} are Lipschitz graphs in the e,
direction with the same Lipschitz constant as {# = 0}. Thus, we can find a sequence
of sets e {u = 0} that converges uniformly on compact sets to a Lipschitz graph X.
According to Theorem 2.4, ¥ satisfies in R” the geometric equation

G, 1) =0

in the viscosity sense. It suffices to show that ¥ is a hyperplane and then the theorem
will follow from Corollary 2.3.

Caffarelli and Wang studied this equation in [7]. They showed an interior C Le
estimate for Lipschitz surfaces X provided that the operator G (£, M) is uniformly
elliptic in M and Lipschitz in £. A consequence of their result is that the only global
Lipschitz surfaces satisfying the equation are the hyperplanes.

We apply this result in_our case, so the only thing that remains to check is
the Lipschitz continuity of G in &. If F € C' then G(&, -) is linear on the space
of symmetric matrices M with M& = 0 and the linear coefficients depend on the
derivatives of F along the line & ® &.

We extend the definition of G (&, M) for all symmetric n x n matrix M by eval-
uating the operator G (£, -) on the restriction of M to the hyperplane perpendicular
to £. Then it is clear that F € C!'! implies

G (&1, M) — G (&, M)| < Cl& — & M]|. 0
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