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Abstract. In this paper, we study triples a, b and c of distinct positive integers
such that ab + 1, ac + 1 and bc + 1 are all three members of the same binary
recurrence sequence.
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1. Introduction

A Diophantine m-tuple is a set {a1, . . . , am} of positive integers such that ai a j + 1
is a perfect square (i.e. a square of a number in Z) for all 1 ≤ i < j ≤ m. Find-
ing such sets was already investigated by Diophantus and he found the rational
quadruple {1/16, 33/16, 68/16, 105/16}. The first quadruple in integers, the set
{1, 3, 8, 120}, was found by Fermat. Infinitely many Diophantine quadruples are
known and it is conjectured that there is no Diophantine quintuple. This was almost
proved by Dujella [7], who showed that there can be at most finitely many Diophan-
tine quintuples and all of them are, at least in theory, effectively computable. Sev-
eral variants of this problem have been studied in the past. For example, Bugeaud
and Dujella [2], proved upper bounds for the size m of sets of positive integers with
the property that the product of any two distinct elements plus one is a perfect k-th
power for fixed k, namely m is bounded by 7 for k = 3, by 5 for k = 4, by 4 for
5 ≤ k ≤ 176, and by 3 for k ≥ 177. Another variant studied previously is con-
cerned with perfect powers instead of squares or k-th powers for fixed k. The second
author proved that the abc-conjecture implies that the size of such sets is bounded
by an absolute constant, whereas unconditionally there are bounds depending on
the largest element in the set (see [14] and the papers cited therein). For further
results on Diophantine m-tuples and its variants, we refer to [8].

In this paper, we treat another variant of this problem. Let r and s be nonzero
integers such that � = r2 + 4s �= 0. Let (un)n≥0 be a binary recurrence sequence
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of integers satisfying the recurrence

un+2 = run+1 + sun for all n ≥ 0.

It is well-known that if we write α and β for the two roots in C of the characteristic
equation x2 − r x − s = 0, then there exist constants γ, δ ∈ K = Q[α] such that

un = γαn + δβn (1.1)

holds for all n ≥ 0. We shall assume in what follows that the sequence (un)n≥0 is
nondegenerate, which means that γ δ �= 0 and α/β is not root of unity. We shall
also make the convention that |α| ≥ |β|. Note that |α| > 1.

Here, we look for Diophantine triples with values in the set U = {un : n ≥ 0},
namely sets of three distinct positive integers {a, b, c}, such that ab + 1, ac + 1,
bc + 1 are all in U . Clearly, there are always such pairs as e.g. {1, un − 1}. Note
that if un = 2n + 1 for all n ≥ 0, then there are infinitely many such triples
(namely, take a, b, c to be any distinct powers of two); in this situation, we can even
get arbitrarily large sets {a1, . . . , am} with the property that ai a j + 1 ∈ U for all
1 ≤ i < j ≤ m. Our main result is that the above example is representative for the
sequences (un)n≥0 with real roots for which there exist infinitely many Diophantine
triples with values in U . More precisely we prove the following.

Theorem 1.1. Assume that (un)n≥0 is a nondegenerate binary recurrence sequence
with � > 0 such that there exist infinitely many sextuples of nonnegative integers
(a, b, c; x, y, z) with 1 ≤ a < b < c such that

ab + 1 = ux , ac + 1 = uy, bc + 1 = uz . (1.2)

Then β ∈ {±1}, δ ∈ {±1}, α, γ ∈ Z. Furthermore, for all but finitely many of
the sextuples (a, b, c; x, y, z) as above one has δβz = δβ y = 1 and one of the
following holds:
(i) δβx = 1. In this case, one of γ or γα is a perfect square;

(ii) δβx = −1. In this case, x ∈ {0, 1}.
Theorem 1.1, of course, implies that there are only finitely many triples of positive
integers such that the product of any two plus one is in U , except in the cases
described (and these cases really occur as we saw above). We mention that the
problem can be reformulated as a Diophantine equation of polynomial-exponential
type with three independent exponential variables and three additional polynomial
variables, namely

(ab + 1 − ux )
2 + (ac + 1 − uy)

2 + (bc + 1 − uz)
2 = 0.

It is well-known that the Subspace theorem is a powerful tool for such problems,
e.g. it was also used to classify the solutions to the equation Aux + Buy + Cuz = 0
for fixed A, B, C ∈ Z in [18] (see [19] for a survey on such equations). A new



DIOPHANTINE TRIPLES WITH VALUES IN BINARY RECURRENCES 581

development in applying the Subspace theorem was started by Corvaja and Zan-
nier (see [10, 23, 24]), and their techniques will also be used in our proof (espe-
cially we use [6, 11] and [5]). We could not prove any finiteness result for the case
when � < 0, the reason being that in this case there is no dominant root in the
polynomial-exponential Diophantine equation, which is the main restriction in ap-
plying the Subspace theorem with these techniques at present. A simple example
for a sequence with this property is given by (un)n≥0 with (r, s) = (1, −2), u0 = 0,
u1 = 1, where � = −7 and α = (1 + i

√
7)/2, β = (1 − i

√
7)/2. We mention that

the same condition also appears in [16].
For example, it follows for the particular case of the Fibonacci sequence

(Fn)n≥0, given by (r, s) = (1, 1), F0 = 0 and F1 = 1, that there are at most
finitely many triples of positive integers such the product of any two plus one is
a Fibonacci number Fn . In the subsequent paper [17] the second and third author
show that there is in fact no triple of distinct positive integers a, b and c such that
ab + 1, ac + 1 and bc + 1 are all three Fibonacci numbers.
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2. A bird’s-eye-view of the proof

For the convenience of the reader we will give an overview of the proof of the the-
orem, since the proof is rather long and becomes more and more technical towards
the end. We mention that throughout the paper the symbols o, O, ∼, �, �, 	, are
used with their usual meaning.

Since � > 0, it follows that |α| > |β|. We shall show that one may as-
sume that both α and γ are positive. We assume that we have infinitely many
solutions (a, b, c; x, y, z) to equation (1.2). Then z → ∞, x < y < z if z is
sufficiently large, and c | gcd(uy − 1, uz − 1). The case δβz = 1 is not hard
to handle. When δβz �= 1, results from Diophantine approximations relying on
the Subspace theorem, as the finiteness of the number of solutions of nondegen-
erate unit equations with variables in a finitely generated multiplicative group and
bounds for the greatest common divisors of values of rational functions at units
points in the number fields setting, allow us to reduce the problem to elementary
considerations concerning polynomials. By using unit equations, we first conclude
that log b and log c have the same orders of magnitude, therefore x 	 y 	 z. Then
we show that a is also large which will come in handy later on. These preliminar-
ies can be found in the next two sections (see Section 3 and 4). Next, since the
multi-recurrence ((ux − 1)(uy − 1)(uz − 1))x<y<z has a dominant root and com-
parable positive integer subscripts, a result of the first author from [11] tells us that
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for infinitely many of our solutions, the positive integer abc is a linear combina-
tion of finitely many of the monomials in αx , βx , αy, β y, αz, βz appearing in
the formal Puiseux expansion of

√
(ux − 1)(uy − 1)(uz − 1). Hence, the relation

(abc)2 = (ux − 1)(uy − 1)(uz − 1), may now be regarded as a unit equation with
unknowns in the multiplicative group generated by α and β, and it remains to deal
with it (equivalently, it can be viewed as the problem of calculating the zeroes of
a multi-recurrence; this is not an easy task, see e.g. Remark 5 in [11]). The proof
now falls in two distinct cases depending on whether α and β are multiplicatively
independent or dependent. In case α and β are multiplicatively independent (which
together with the considerations outlined above is handled in Section 5), listing the
first few dominant units on both sides of the equation and identifying them, one
gets a few linear relations among the exponents x, y and z. It turns out that if one
goes back to the original equations, these few linear relations are enough to get a
contradiction in this case. In case when α and β are multiplicatively dependent (see
Section 6), we argue without going back to the before mentioned multi-recurrence.
Instead, we show first in an elementary way (using just the pigeon hole principle),
that there are only finitely many lines in Z3 the union of which contain all possible
triples (x, y, z) leading to a solution of our problem. Since we have infinitely many
solutions, we may assume that for infinitely many of them we have x = d1t + e1,
y = d2t + e2, z = d3t + e3, where d1, d2, d3, e1, e2, e3 are fixed integers with the
first three positive and t is some positive integer variable. But in this case, since α

and β are also multiplicatively dependent, it follows that ux −1, uy −1, uz −1 are
all polynomials in ρt , where ρ is some number such that α = ρi and β = ±ρ j for
some integers i and j . Since any two of these numbers have large greatest common
divisors, it follows that any two of these three polynomials have a common root and
the product of all three is the square of some other polynomial. The proof ends by
a careful analysis of how these polynomials might share their roots with a view of
getting a contradiction.

3. Preparations

Let L be any algebraic number field and S be a finitely generated multiplicative
subgroup of L. Given N ≥ 1, a unit equation is an equation of the form

N∑
i=1

ai xi = 1, (3.1)

where a1, . . . , aN ∈ L are fixed nonzero coefficients and x1, . . . , xN ∈ S . A solu-
tion (x1, . . . , xN ) of the above unit equation is called nondegenerate if

∑
i∈I ai xi �=

0 for all proper subsets I ⊆ {1, . . . , N }. In such a case, we will call the unit equa-
tion (3.1) itself nondegenerate. We record the following result about unit equations.
A proof can be found, for example, in [23].

Lemma 3.1. There are only finitely many nondegenerate solutions x=(x1,. . .,xN)∈
SN to the unit equation (3.1).
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We will use Lemma 3.1 several times in what follows. In our case (and for the
rest of the paper), S is the multiplicative group generated by α and β inside K; i.e.,
S = {αnβm : n, m ∈ Z}. In this special case (3.1) can be rewritten as

N∑
i=1

aiα
ni βmi = 1 (3.2)

to be solved in integers n1, . . . , nN , m1, . . . , m N . Lemma 3.1 tells us that there
are only finitely many (n1, . . . , nN , m1, . . . , m N ) ∈ Z2N such that no subsum on
the left of (3.2) vanishes. In the case when the right hand side of (3.2) is 0, then
Lemma 3.1 implies that the differences ni − n j , mi − m j are bounded for all 1 ≤
i < j ≤ N and for all n1, . . . , nN , m1, . . . , m N such that no subsum on the left
vanishes. We mention that the set of all K-linear combinations of elements in S is
easily understood: it is isomorphic to K[X±1, Y ±1] in the case when α and β are
multiplicatively independent and isomorphic to K[X±1] otherwise.

We will also need the following lemma. Assume that (un)n≥0 is the nondegen-
erate binary recurrent sequence whose general term is given by the formula (1.1).
Assume further that � > 0, therefore that |α| > |β|. We have the following result.

Lemma 3.2. There exist constants κ0 ∈ (0, 1) and z0 such that if y and z are
positive integers with z > max{y, z0}, δβz �= 1 and uy �= 1, then

gcd(uy − 1, uz − 1) < |α|κ0z .

Proof. We may assume that uy �= 0, since otherwise the assertion is trivially true.
Then clearly, |uy − 1| � |uy | � |α|y . Thus, if for some small but fixed ε > 0 we
have y < (1 − ε)z, then we can take κ0 = 1 − ε/2 and the desired inequality holds
for large z. From now on, we shall assume that the inequalities (1 − ε)z < y < z
hold with some small ε > 0 to be fixed later. Put λ = z − y ∈ (0, εz). Let
D = gcd(uy − 1, uz − 1). Then

D | γαy + δβ y − 1 and D | γαy+λ + δβ y+λ − 1. (3.3)

Multiplying the first divisibility relation in (3.3) by the algebraic integer αλ, we also
have that D | γαy+λ + δβ yαλ − αλ. From this and the second relation in (3.3), we
get

D | δβ y(αλ − βλ) − (αλ − 1). (3.4)

Let us first assume that the algebraic integer appearing on the right hand side above
is zero. We then get

1 = αλ + δβz − δβ yαλ. (3.5)

This is a unit equation in four terms. If it is nondegenerate, then it has only finitely
many solutions. Thus, taking z0 sufficiently large, it follows that if equation (3.5)
holds, then it must be degenerate. In this case, one of αλ, δβz , or −δβ yαλ equals
1. The case δβz = 1 is excluded by hypothesis. The case αλ = 1 leads to λ = 0,
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which is impossible. Finally, the case −δβ yαλ = 1 leads to δβz + αλ = 0, or
|α|λ = |δ||β|z . If |β| �= 1, we then get that z log |β| + log |δ| = λ log |α|. Since
λ < εz, it follows that the above relation is impossible for large z if we choose
ε < log |β|/(2 log |α|). Thus, if z > z0, then we must have |β| = 1, therefore
|α|λ = |δ|. Now the relation −δβ yαλ = 1 leads to |α|λ = |δ|−1. Thus, |α|λ =
|δ| = |δ|−1, leading to |δ| = 1. We next get |α|λ = 1, therefore λ = 0, which is a
contradiction.

From now on, we may assume that z is sufficiently large, and therefore that
relation (3.5) does not hold.

Assume first that K = Q. Then the nonzero integer appearing on the right
hand side of (3.4) is of size

∣∣δβ y(αλ − βλ) − (αλ − 1)
∣∣ � exp(y log |β| + λ log |α|)
≤ exp (z (log |β| + ε log |α|)) < |α|κ0z,

for a certain κ0 < 1 (depending on ε) provided that we first choose ε < (log |α| −
log |β|)/ log |α|, and then we let z be sufficiently large. This finishes the proof of
the lemma in this case.

Assume now that K is quadratic. Conjugating (3.4) by the nontrivial Galois
automorphism of K over Q, we get

D | γαy(βλ − αλ) − (βλ − 1). (3.6)

Multiplying relations (3.4) and (3.6), we get

D2 | (
δβ y(αλ − βλ) − (αλ − 1)

) (
γαy(βλ − αλ) − (βλ − 1)

)
,

and the right hand side above is a nonzero integer. Hence,

D2 � exp (y log |αβ|) + 2λ log |α|) ≤ exp ((log |αβ| + 2ε log |α|)z) .

Choosing ε < (log |α| − log |β|)/(2 log |α|), one checks easily that the last in-
equality above leads to the conclusion that D ≤ |α|κ0z for a certain κ0 ∈ (0, 1)

(depending on ε) provided that z is sufficiently large. This completes the proof of
Lemma 3.2.

We mention that Bugeaud, Corvaja and Zannier (see [1]), showed by using
the Subspace theorem that if a > b > 1 are multiplicatively independent integers,
then for all ε > 0 there exists nε such that gcd(an − 1, bn − 1) < exp(εn) if
n > nε. Afterwards, this result was extended in various ways by various authors
(see [5, 9, 15] and [21] for a sample of such extensions). The last lemma is a weak
form of such a result, which is enough for our purpose, and admits an easier proof.
Furthermore, we point out that a generalisation of these results to the number-field
setting can be found in [5], which will also be used later.
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4. Further preliminaries and the case δβz = 1

In this section, we will prove some useful information on the solutions of our prob-
lem. Especially, we will handle the case when δβz = 1, which gives the exceptional
solutions in the theorem.

4.1. Both z and y are large

Assume that 1 ≤ a < b < c and that ab + 1 = ux , ac + 1 = uy and bc + 1 = uz .
We may assume that there are infinitely many such triples, therefore that c → ∞.
Since |α| > |β|, we have

|un| = |γ ||α|n|1 − δγ −1(β/α)n|,
and (β/α)n tends to zero as n → ∞. This shows that if n > n0 is sufficiently large,
then |un| < |um | means n < m. Since

uz = bc + 1 > max{ux , uy} = max{|ux |, |uy |},
we get that z > max{x, y}. Further, since c is arbitrarily large and uy = ac+1 > c,
it follows that y is arbitrarily large. Since uy = ac + 1 > ab + 1 = ux , it follows
that if c is sufficiently large, then y > x . Thus, we may assume that x < y < z.
Clearly, z tends to infinity. We shall assume that z > z0, where z0 is a sufficiently
large number, not necessarily the same at each occurrence. Note that

uz = |γ ||α|z|1 − δγ −1(β/α)z| = bc + 1 ∈ [c, c2],
showing that

log c ≤ z log |α| + O(1) ≤ 2 log c. (4.1)

Since
uy = |γ ||αy ||1 − δγ −1(β/α)y | = ac + 1 > c,

we get that
log c ≤ y log |α| + O(1). (4.2)

Estimates (4.1) and (4.2) show that z ≤ 2y + O(1).

4.2. The case when δβz = 1

Since z is large, the above relation implies β = ±1, therefore δ = ±1. Hence,
α ∈ Z. Furthermore, since γ = u0 − δ = u0 ± 1, we get that γ ∈ Z. Moreover,
δβ y and δβx are both in {±1}. If δβ y = −1, we then have

bc = γαz and ac = γαy − 2.
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It is easy to see that for large z we have gcd(γ αz, γ αy − 2) = O(1). This shows
that c = O(1), therefore that z = O(1). This leads to only finitely many solutions.
Thus, if z is sufficiently large, then δβ y = 1. If also δβx = 1, then

ab = γαx , ac = γαy, bc = γαz,

therefore (abc)2 = γ 3αx+y+z , implying that either γ or γα is a perfect square,
according to whether x + y + z is even or odd, respectively. Assume now that
δβx = −1. Then

ab = γαx − 2, ac = γαy, bc = γαz .

Furthermore, since δβ y = δβz = 1 but δβx = −1, it follows that β = −1, y and z
have the same parity, and x has opposite parity. Since abc2 = γ 2αy+z and y and z
have the same parity, it follows that ab is a perfect square. Assume now that x ≥ 2.
Then

ab + 2 = γαx . (4.3)

But since a and b divide γαy and γαz , respectively, it follows that all primes di-
viding ab divide γα. The last relation above (4.3) shows now that the only prime
factor of ab is 2. Hence, ab is a power of 2 and since it is a square, it is ≥ 4. Thus,
2‖ab + 2 (i.e. 2|ab + 2, but 4 does not), therefore 2‖γαx , and since x ≥ 2, we
get that 2‖γ and α is odd. Now the relations ac = γαy and bc = γαz together
with the fact that ab is a power of 2, show that a ∈ {1, 2} and b ∈ {1, 2}. This is
impossible since 1 ≤ a < b and ab must be a perfect square. Thus, if δβx = −1,
then x ∈ {0, 1}. This takes care of the exceptions (i) and (ii) appearing in the text
of Theorem 1.1.

4.3. All three x , y and z are large

From now on, we assume that δβz �= 1. Note that uy = ac + 1 > 1. Lemma 3.2
shows that there exists a positive constant κ0 < 1 such that the inequality

gcd(uz − 1, uy − 1) < |α|κ0z

holds provided that z is sufficiently large. Thus, the fact that c divides gcd(ac, bc) =
gcd(uz − 1, uy − 1) shows that c < |α|κ0z , leading to

b = uz − 1

c
� |α|(1−κ0)z .

Since |α|x � ux = ab + 1 > b � |α|(1−κ0)z , it follows that x ≥ (1 − κ0)z + O(1).
Thus, x tends to infinity with c also and, in fact,

x 	 y 	 z. (4.4)

This will be essential when applying the Subspace theorem.
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4.4. Signs of γ and α

Here, we comment on the signs of α and γ . Assume that α > 0. Then the sign of un
is the same as the sign of γ once n > n0 is sufficiently large. Thus, if γ < 0, then
there are only finitely many n such that un is positive, and we obtain a contradiction.
Hence, γ > 0 when α > 0.

Assume now that α < 0. Then for large n, the sign of un alternates; namely, the
sign of un is the sign of γ (−1)n . Thus, if γ > 0, then for large c the three numbers
x, y, z are even, while if γ < 0, then for large c the three numbers x, y, z are
odd. Thus, we may replace the pair of roots (α, β) by the pair (α2, β2), and keep
the pair of coefficients (γ, δ) (if γ > 0), or replace it by (γ α, δβ) (if γ < 0), and
consequently suppose again that both α and γ are positive. From now on, we work
under this assumption, namely that α and γ are positive.

4.5. a is large

Here, we shall prove a fact that will turn out to be useful later.

Lemma 4.1. We have a → ∞ as z → ∞ through integer values such that δβz �=
1. Furthermore, in case α and β are multiplicatively independent, there exists a
positive constant κ1 such that a > |α|κ1z when z > z0.

Proof. We start by assuming that for each ε > 0 there are infinitely many solutions
with a < |α|εz . We will see that this condition with a sufficiently small ε > 0 and
a sufficiently large z entails that a = O(1) when α and β are multiplicatively inde-
pendent. Then we shall show that this last condition leads to a contradiction without
any assumption on α and β with regard to their multiplicative independence.

The equation

a2 = (ux − 1)(uy − 1)

(uz − 1)
(4.5)

implies
|a2αz − γαx+y | � a2 max{|α|y |β|x , |α|y, |β|z}. (4.6)

By estimate (4.4), it follows easily that there exists a constant κ2 ∈ (0, 1) such that
if ε > 0 is sufficiently small, then

|a2αz − γαx+y | < |α|κ2 max{x+y,z}. (4.7)

Indeed, putting κ3 for a positive constant such that min{x/z, x/(x + y)} > κ3, a
little calculation shows that the estimate (4.7) is implied by the estimate (4.6) for
large z when

ε < 2−1κ3 min{log |α|, log |α/β|}
with some constant κ2 (depending on ε) provided that z > z0 (here, z0 also depends
on ε). Assume that x + y ≥ z since the other case can be dealt with similarly. Then

|a2αz−x−y − γ | <
1

|α|(1−κ2)(x+y)
. (4.8)
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This shows that z − x − y = O(εz). Our next aim is to deduce for z > z0 that
the left hand side of (4.8) has to be zero. Indeed, if K = Q, and the left hand
side is not zero, then its naı̈ve height is exp(O(εz)). By the Liouville principle,
if ε is sufficiently small and z is large, then inequality (4.8) cannot hold. If K is
quadratic, and the right hand side is not zero, then the conjugate of a2αz−x−y − γ

in K is a2βz−x−y − δ. Thus, the height of this number is again exp(O(εz)). By the
Liouville principle again, we arrive at a contradiction in inequality (4.8) for small
ε > 0, assuming that its left hand side is nonzero.

Hence, for z > z0, it follows that a = ±γ 1/2α(x+y−z)/2. Now equation (4.5) is

a2δβz − a2 = γ δ(αxβ y + αyβx ) + δ2βx+y − γαx

− γαy − δβx − δβ y + 1.
(4.9)

This is a unit equation. Let E be some nondegenerate subequation containing the
variable 1. Then any unit in E can take only finitely many values. If α and β are
multiplicatively independent, it then follows that either E contains a2 = γαx+y−z ,
or one of the other units. In the first case, x + y − z = O(1), so a = O(1). In the
second case, one checks using the fact that α and β are multiplicatively independent,
that x = O(1); hence there are only finitely many possibilities for x .

From now on, we assume that a is bounded for infinitely many solutions. Thus,
infinitely many of these solutions will therefore have the same value for a. Now
rewrite equation (4.5) (keeping in mind again that a2γαz = γ 2αx+y as we did for
(4.9)), as

a2 + 1 = a2δβz + δβx + δβ y − δ2βx+y

+ γαx + γαy − γ δαxβ y − γ δαyβx .
(4.10)

This is again a unit equation. In order to discuss its degeneracies, we distinguish
several cases.

Assume first that α and β are multiplicatively independent. Then there must
be a nondegenerate subequation containing the left side (a2 + 1 �= 0) and some
member from the right hand side. There are only finitely many such subequations,
and each one of them has only finitely many solutions. In each one of the cases, we
get that x = O(1); hence, only finitely many possibilities.

Assume now that α and β are multiplicatively dependent. In this case, there
exists ρ > 1 and coprime integers i > j such that α = ρi and β = ±ρ j .

If j > 0, then again there must be some non-degenerate subequation of equa-
tion (4.10) containing the fixed nonzero number a2 + 1 from the left hand side and
some variable from the right hand side. This leads to x = O(1); hence, only finitely
many possibilities.

If j = 0, then β = ±1, α > 1 and γ, δ are all integers. We may also assume
that the class of (x, y, z) in (Z/2Z)3 is fixed. Thus, the three numbers δβx , δβ y

and δβz are fixed in {±δ}. We rewrite equation (4.10) as

a2 + 1 − a2δβz − δβx − δβ y + δ2βx+y = γ (1 − δβ y)αx + γ (1 − δβx )αy .
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The left hand side as well as the coefficients γ (1 − δβ y) and γ (1 − δβx ) from
the right hand side of αx and αy , respectively, are fixed. Assume first that these
coefficients are zero. Then δβx = δβ y = 1 and the left hand side must also be zero.
This leads to a2(1 − δβz) = 0, therefore δβz = 1, which is not allowed. Thus, at
least one of the two coefficients γ (1−δβ y) and γ (1−δβx ) from the right hand side
is nonzero. Note that the left hand side is a fixed integer. Thus, if the left hand side
is nonzero, then equation (4.10) is a unit equation (3.1) with N = 1 or 2 according
to whether one or none of the coefficients of αx and αy from the right hand side
vanishes. This leads again to x = O(1); hence, only finitely many possibilities.
Assume now that the right hand side is zero. Then

αy−x = −1 − δβ y

1 − δβx
, a2 = − (1 − δβx )(1 − δβ y)

1 − δβz
.

Since α > 1, it follows from the first of the above two equations that the cases
β = 1, or β = −1 and x ≡ y (mod 2) are impossible. Thus, up to replacing δ by
−δ if needed, we may assume that

αy−x = − (1 − δ)

(1 + δ)
.

Since y > x and α is an integer, we get that 1 + δ | 1 − δ. Thus, 1 + δ | 2 leading
to 1 + δ = −2, − 1, 1, 2. The cases 1 + δ = 1, 2 lead to δ = 0, which is not
allowed, and α = 0, which is not allowed either. The cases 1 + δ = −2, − 1 give
αy−x = 2, 3, respectively. Thus, α = 2, 3, respectively, and y = x + 1. Now

a2 = − (1 − δβx )(1 − δβ y)

(1 − δβz)
= −1 − δ2

1 ± δ
∈ {−4, −3, 2, 1},

so the only possibility is that a = 1. This happens if δ = −2 and a2 = −(1 + δ),
therefore 1−δβz = 1−δ, so z is even. On the other hand, 1 = a = γ 1/2α(x+y−z)/2

and γ and α are positive integers, therefore γ = 1 and z = x + y = 2x + 1 is odd.
This contradiction shows that it is not possible that the left hand side of equation
(4.10) is zero and not both of the coefficients γ (1 − δβ y) and γ (1 − δβx ) of αy and
αx , respectively, from its right-hand side are zero. Hence, if j = 0, then there are
only finitely many possibilities for x, y and z.

Finally, assume that j < 0. Since ρ > 1, it follows that |β| < 1, therefore β

cannot be rational. Hence, α and β are quadratic conjugates. Now α j = ρi j = ±β i .
Conjugating this relation in K, we also get αi = ±β j . Thus,

αi2 = (αi )i = ±(β j )i = ±(β i ) j = (α j ) j = α j2
,

so i2 = j2. Since i > 0 and j < 0, we get that j = −i , and since i and j are
coprime, we get that i = 1, j = −1. Thus, β = ±α−1. Rewrite equation (4.10) as

a2 + 1 − a2δβz − δβx − δβ y + δ2βx+y + γ δ(αxβ y + αyβx )

= γ (αx + αy).
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Its right hand side is � αy . Its left hand side is in absolute value � αy−x , since
β = ±α−1. Thus, αy−x � αy , leading to αx � 1, therefore x = O(1); hence,
finitely many possibilities.

Having analyzed all the possible scenarios and having arrived to only finitely
many possibilities in each case, we conclude that a = O(1) leads to only finitely
many possibilities. Thus, it must be the case that a → ∞ as z → ∞. Furthermore,
in case α and β are multiplicatively independent, we have a > |α|κ1z when z > z0,
where κ1 > 0 is some constant.

We saw that δβz �= 1. For future use, we also record that δβ y �= 1 and δβx �=
1. Indeed, if say δβx = 1, then β = ±1 and b | gcd(γ αz + (δβz − 1), γ αx ).
Since δβz − 1 = O(1) is nonzero, it follows easily that b is bounded, which is a
contradiction. The similar contradiction that c = O(1) is obtained if one assumes
that δβ y = 1.

5. The case α and β multiplicatively independent

In this section we will finish the proof of the theorem in the case when α and β

are multiplicatively independent. This will be done by applying Theorem 1 of [11],
which follows from the general result from [6] (see also [3,4,10], or [12]). We will
indicate the proof to see that we get an additional piece of information which is not
stated explicitly, although well-known, in [11, Theorem 1]. Then we show that the
assumption of α and β being multiplicatively independent leads to a contradiction.
As a first independent step we show that min{y − x, y − 2x, z − 2x} = O(1) in this
case. Afterwards, the contradiction is derived.

5.1. An application of the Subspace theorem

The three relations (1.2) yield

(ux − 1)(uy − 1)(uz − 1) = (abc)2. (5.1)

Note that
(ux − 1)(uy − 1)(uz − 1) = γ 3αx+y+z(1 + η),

where

η =
∏

t∈{x,y,z}

(
γ1

(
β

α

)t

+ δ1

(
1

α

)t)
,

with γ1 = δ/γ and δ1 = −1/γ . Thus,

abc = γ 3/2α(x+y+z)/2(1 + η)1/2 = γ 3/2α(x+y+z)/2
∑
k≥0

(
1/2

k

)
ηk .
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Furthermore, using the binomial formulae, for each k we have

ηk =
∑

(i,j)∈�k

c(i,j)α
−i1x−i2 y−i3zβ j1x+ j2 y+ j3z,

where �k is the set of all sextuples (i, j) with i = (i1, i2, i3), j = ( j1, j2, j3) ful-
filling i1 + i2 + i3 = k, and 0 ≤ j� ≤ i� for all � = 1, 2, 3, while c(i,j) are certain
coefficients in K indexed over the members of �k .

Since x, y and z have the same order of magnitude, the arguments from [11]
show that there exists a finite set 
 of sextuples (i, j) (note that if (i, j) is given, then
k is the sum of the entries in i), and nonzero coefficients d(i,j) ∈ Q for (i, j) ∈ 
,
such that infinitely many of the solutions (a, b, c; x, y, z) have the property that

abc = α(x+y+z)/2
∑

(i,j)∈


d(i,j)α
−i1x−i2 y−i3zβ j1x+ j2 y+ j3z . (5.2)

From now on, we work only with such solutions. We insert abc given by for-
mula (5.2) into formula (5.1) and we end up with

(ux −1)(uy −1)(uz −1)=αx+y+z


 ∑

(i,j)∈


d(i,j)α
−i1x−i2 y−i3zβ j1x+ j2 y+ j3z




2

(5.3)

which upon expansion of both sides above leads to an S-unit equation with infinitely
many solutions. We now study this equation.

5.2. min{y − x, y − 2x, z − 2x} = O(1) when α and β are multiplicatively
independent

We order the units appearing on the left hand side of the unit equation (5.3) accord-
ing to their sizes of their absolute values.

5.2.1. The case |β| > 1

It is then easy to see that

(ux − 1)(uy − 1)(uz − 1) = γ 3αx+y+z + γ 2δαz+yβx + γ 2δαz+xβ y

+ γ 2δαx+yβz + γ δ2αzβx+y + smaller units.
(5.4)

We claim that for large z, we have

αz+y |β|x > αz+x |β|y > αx+y |β|z > αz|β|x+y .

Indeed, the ratios of any two consecutive expressions above are

(
α

|β|
)y−x

,

(
α

|β|
)z−y

,

(
α

|β|
)x+y−z

.
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The first two expressions are certainly > 1 and they remain bounded only when
y − x = O(1) and z − y = O(1), and the fact that the third one tends to infinity as
z → ∞ is a consequence of Lemma 4.1 and of the fact that αx+y−z � a2 ≥ ακ1z .
Especially, it follows that x + y − z → ∞ as z → ∞, which will be used later on.

We now insert the right hand side of (5.4) in (5.3) and use Lemma 3.1 (see
also the remarks made below Lemma 3.1). We may assume that αx+y+z can-
cels from both sides of equation (5.3). Indeed, if not, then (0, 0) �∈ 
, and the
largest unit present on the right hand side is ≤ αy+z−x |β|2x . Let E be some non-
degenerate subequation containing αx+y+z . If E contains some unit from the right
hand side of (5.3), we deduce that the ratio of αx+y+z to αy+z−x |β|2x is bounded;
hence, (α/|β|)2x = O(1), leading to x = O(1); thus, only finitely many possi-
bilities. If on the other hand E contains some other unit from the left hand side
of equation (5.3), then the ratio of αx+y+z to αy+z|β|x is bounded. Thus, again
(α/|β|)x = O(1), which leads to only finitely many possibilities. From now on, we
assume that αx+y+z cancels from both sides of equation (5.3), so in particular that
(0, 0) ∈ 
.

Let E be some nondegenerate subequation containing αz+yβx .
If E contains either αzβx+y or one of the smaller units, then the ratio of αz+yβx

to αzβz+y stays bounded. This gives (α/|β|)y = O(1), therefore y = O(1); thus,
only finitely many possibilities.

If E contains either αz+xβ y , or αx+yβz , we then get that (α/|β|)y−x = O(1),
which is what we are after.

If E does not contain any unit from the left hand side of (5.3), then it must
contain one from the right hand side. Hence, the ratio of

αy+zβx to αx+y+z β j1x+ j2 y+ j3z

αi1x+i2 y+i3z

is bounded for some (i, j) ∈ 
 with i1 + i1 + i3 = k �= 0. Thus,

α(i1−1)x+i2 y+i3z � |β|( j1−1)x+ j2 y+ j3z . (5.5)

Since j� ≤ i� for � = 1, 2, 3, it follows that (α/|β|)(i1−1)x+i2 y+i3z � 1. If i2 + i3 >

0, we then get y − x � 1, which is what we want. Thus, i2 = i3 = 0, and since
k > 0, we get that i1 ≥ 1. If i1 ≥ 2, we then get x = O(1), so we get only finitely
many possibilities. Thus, infinitely many of the solutions will have i0 = (1, 0, 0). If
i1 = 1, j1 = 0, then estimate (5.5) shows that |β|x 	 1, therefore again x = O(1).
Hence, j1 = 1 for infinitely many solutions. This shows that for i0 = (1, 0, 0) and
j0 = (1, 0, 0) we have that (i0, j0) ∈ 
. In particular, αx+y+z(β/α)2x appears in
the formula for (abc)2. Let F be some nondegenerate equation that contains this
variable.

If F contains a unit from the left hand side equal to αzβx+y or smaller, we
then get that the ratio of

αx+y+z
(

β

α

)2x

to αzβx+y
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is O(1). This implies that (α/|β|)y−x � 1, or y − x = O(1), which is what we
want.

If F contains a unit from the left hand side which is in

{αy+zβx , αz+xβ y, αx+yβz},

we then get that the ratio of αy+z−xβ2x to one of these three units belongs to a fixed
finite set of numbers. Thus, one of

(
α

β

)x

,

(
α

β

)y−2x

,

(
α

β

)z−2x

belongs to a fixed finite set of numbers. The first possibility gives x = O(1), so
only finitely many possibilities. The second and third show that y − 2x = O(1), or
z − 2x = O(1), which is what we wanted.

Assume now that F does not contain any unit from the left hand side of equa-
tion (5.3). Then it must contain some unit from the right hand side. Thus, there must
exist (i1, j1) �= (2i0, 2j0) such that the ratio of (β/α)2x to β j ′1x+ j ′2 y+ j ′3z/αi ′1x+i ′2 y+i ′3z

belongs to a finite set of numbers. Here, i1 = (i ′1, i ′2, i ′3) and j1 = ( j ′1, j ′2, j ′3). Put
k = i ′1 + i ′2 + i ′3. If k ≥ 3, then

|β| j ′1x+ j ′2 y+ j ′3z

αi ′1x+i ′2 y+i ′3z
�

( |β|
α

)3x

,

and so we get that (α/|β|)x � 1, showing that x = O(1); hence, again only finitely
many possibilities. If k = 2, then it is easy to see that units of this shape of maximal
absolute value not equal to (β/α)2x have maximal value at most (|β|/α)x+y . So,
the ratio of (β/α)2x to such a unit is � (α/|β|)y−x . Hence, (α/|β|)y−x � 1,
showing that y − x = O(1), which is what we want.

The only elements in F with k = 1 are

1

αx
,

1

αy
,

1

αz
,

(
β

α

)x

,

(
β

α

)y

,

(
β

α

)z

.

Thus, the ratio of (β/α)2x to one of the above six units belongs to some finite set
of numbers. If one of these six units is one of the first four, then we get that one of
β2xα−x , β2xαy−x , β2xαz−x , or (β/α)x belongs to a finite list of numbers. Since
α and β are multiplicatively independent, we get that x = O(1); hence, there are
only finitely many possibilities. Finally, if one of these six units is one of the last
two, we then get that one of (β/α)2x−y or (β/α)2x−z belongs to a fixed finite set of
numbers. Thus, y − 2x = O(1) or z − 2x = O(1), as we wanted.

This finishes the case when |β| > 1.



594 CLEMENS FUCHS, FLORIAN LUCA AND LASZLO SZALAY

5.2.2. The case |β| < 1

Here, we just sketch the main steps since the argument is very similar to the previous
one. Instead of (5.4), we have

(ux − 1)(uy − 1)(uz − 1) = γ 3αx+y+z − γ 2αz+y − γ 2αz+x

− γ 2αx+y + γαz + smaller units.
(5.6)

The main roots are, in decreasing order of their absolute values,

αx+y+z, αy+z, αz+x , αx+y, αz,

and the ratio between any two consecutive ones is

αx , αy−x , αz−y, αx+y−z,

respectively. The last one tends to infinity with z by Lemma 4.1. The same ar-
gument as the one used in the case |β| > 1 shows that one may assume that the
unit αx+y+z cancels from both sides of the unit equation (5.3), for otherwise we get
x = O(1); hence, only finitely many possibilities. Thus, (0, 0) ∈ 
.

Let E be again some nondegenerate subequation of (5.3) containing αy+z on
the left hand side. If it contains some other unit from the left hand side which is αz

or smaller in absolute value, we get that αy = (αy+z)/αz = O(1). Thus, we have
only finitely many possibilities. If E contains one of the units αz+x or αx+y from
the left hand side, we then get αy−x = O(1), which is what we want. Suppose now
E contains some unit from the left hand side, say of the form

αx+y+z β j1x+ j2 y+ j3z

αi1x+i2 y+i3z
, (5.7)

where k = i1 + i2 + i3 > 0. Then

α(i1−1)x+i2 y+i3z � β j1x+ j2 y+ j3z .

Since |β| < 1, the above inequality leads easily to the conclusion that x = O(1),
unless i0 = (i1, i2, i3) = (1, 0, 0) and j0 = ( j1, j2, j3) = (0, 0, 0). Thus, (i0, j0) ∈

, which shows that the square of (5.7) appears on the right hand side of equa-
tion (5.3). Let F be some subequation containing αy+z−x from the right hand side
of (5.3). Assume that F contains some unit from the left hand side of (5.3). If
this is αz or some unit of a smaller absolute value, we get that αy−x � O(1).
Thus, y − x = O(1), which is what we want. If it contains one of αy+z, αx+z ,
or αx+y , then one of the numbers αx , αy−2x or αz−2x belongs to a finite list.
Thus, either x = O(1), which happens for only finitely many possibilities, or
min{y − 2x, z − 2x} = O(1), which is what we want.

Finally, assume that F contains some other unit from the right hand side of
equation (5.3) of the form αx+y+zβ j ′1x+ j ′2 y+ j ′3z/αi ′1x+i ′2 y+i ′3z . We scale everything
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by αx+y+z . If k ≥ 3, then the largest such unit in absolute value is 1/α3x . The ratio
of 1/α2x to this unit is � αx , so if this ratio is in a finite set of numbers, we then
get x = O(1); hence, only finitely many possibilities. If k = 2, then the largest
such unit in absolute value which is not 1/α2x is ≤ 1/αx+y . The ratio of 1/α2x to
such a unit is � αy−x . So, if this ratio is in a finite set, we get y − x = O(1), as
desired. Finally, the only possibilities when k = 1 are

1

αx
,

1

αy
,

1

αz
,

(
β

α

)x

,

(
β

α

)y

,

(
β

α

)z

.

If F contains one of these units, we then get that one of

αx , αy−x , αz−x , (αβ)x , αy−2xβ−y, αz−2xβ−z

belongs to a finite list. In the first case, we get x = O(1). In the next two, we get
y − x = O(1), as desired. Finally, since α and β are multiplicatively independent,
in the last three cases we get x = O(1); hence, finitely many possibilities also.

In conclusion, we proved that both when |β| > 1 and |β| < 1, assuming that
α and β are multiplicatively independent, infinitely many of the solutions will have
one of y − x, y − 2x , or z − 2x bounded.

5.3. Proof of the theorem for α and β multiplicatively independent

Suppose first that y − x = λ is a fixed number for infinitely many of our solutions.
Then

a | γαx + δβx − 1 and a | γαx+λ + δβx+λ − 1.

Multiplying the first relation above by αλ and subtracting them, we get that

a | δβx (αλ − βλ) − (αλ − 1), (5.8)

and, as in the proof of Lemma 3.2, the right hand side above is nonzero for z > z0.
Note further that αλ − βλ �= 0 because λ �= 0 and α/β is not a root of 1. Put
ζ = δ−1(αλ − 1)/(αλ − βλ). Note that ζ �= 0. Relation (5.8) shows that

a | κ4(β
x − ζ ),

where we can take κ4 to be some fixed positive integer which is divisible by the
norm of |αλ − βλ| with respect to K. The same argument (interchanging α with β)
shows that

a | κ4(α
x − η),

where η = γ −1(βλ − 1)/(βλ − αλ). The fact that η �= 0 follows because β �= ±1
and λ �= 0. Furthermore, both αx − η and βx − ζ are nonzero. Hence,

a � NK

(
gcd(αx − η, βx − ζ )

)
,
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where the last expression is to be interpreted as the norm of the ideal greatest com-
mon divisor of the two algebraic numbers in K (see also [21]). Since α and β

are multiplicatively independent, the Main Theorem from [5, page 205] shows that
a = exp(o(x)) as x → ∞. This contradicts Lemma 4.1 for large values of x .

Suppose now that y − 2x = λ for some fixed value of λ. We will get the
contradiction by a similar argument as in the first case. It follows

a | γαx + (δβx − 1) | (γ αx )2 − (δβx − 1)2.

Thus,

a | γ 2α2x − δ2β2x + 2δβx − 1 and a | γα2x+λ + δβ2x+λ − 1.

Multiplying the first relation above by αλ, the second by γ , and subtracting them,
we get

a | β2xδ(γβλ + δαλ) − 2δαλβx + αλ − γ.

The last expression above is nonzero for large x . Indeed, this expression is a poly-
nomial of degree at most 2 in βx . If it were zero, then it must happen that all three
coefficients δ(γβλ + δαλ), −2δαλ and αλ − γ are zero, which is not the case since
δα �= 0. Thus,

a | κ4 P(βx ),

where P(X) ∈ K[X ] is a nonzero monic polynomial of degree at most 2. Inter-
changing β to α in the previous argument, we get that

a | κ4 Q(αx ),

where Q(X) ∈ K[X ] is some nonzero polynomial of degree at most 2. Hence, at
the level of ideals,

a | κ4

∏
ζ,η

P(ζ )=0, Q(η)=0

NL

(
gcd(βx − ζ, αx − η)

)
,

where L is the splitting field over K of P(X)Q(X) and where the roots ζ and
η of P(X) and Q(X) in L, respectively, are counted with their multiplicities. If
ζη �= 0, then NK(gcd(βx − ζ, αx − η)) = |α|o(x) as x → ∞ by [5, Main Theorem,
page 205]. It remains to deal with the case when one of ζ or η is zero. Assume say
that ζ = 0. Let π be any prime ideal dividing β in K. All we need to understand
is an upper bound for µπ(a), where for a number ω ∈ K we use µπ(ω) for the
exponent of π in the factorization of ω in prime ideals inside K. If π divides also
α, then π does not divide ux − 1 for large x . Thus, µπ(a) = 0 in this case. If π

does not divide α, then

µπ(ux − 1) = µπ(γ αx + δβx − 1) ≤ min{xµπ(β), µπ(γ αx − 1)}.
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By linear forms in π -adic logarithms (see, for example, [22]),

µπ(γ αx − 1) � log x .

Thus, for large x , µπ(a) ≤ µπ(ux − 1) � log x . A similar argument applies to
the ideals dividing α. This argument shows that the roots with ζη = 0 contribute a
factor of size |α|O(log x) = |α|o(x) as x → ∞ in a. Consequently,

a ≤ |α|o(x)

holds as x → ∞, contradicting again Lemma 4.1.
The same argument works also in the case z − 2x = O(1), the role of a being

played by b. We give no further details.

6. The case α and β multiplicatively dependent

We begin with some remarks about the case when α and β are multiplicatively
dependent. Since they are also either rational or quadratic integers, there exist ρ >

1, coprime integers i > 0 and j , and η ∈ {±1}, such that α = ρi and β = ηρ j . If
j ≥ 0, then ρ is a rational integer. Otherwise, i = 1, j = −1, and ρ is a quadratic
unit (compare with the arguments in Section 4.5).

Observe now that if j ≥ 0, then

un − 1 = γ (ρn)i + ηnδ(ρn) j − 1

is a polynomial in ρn when η = 1, and one of two polynomials when η = −1
according to whether n is even or odd. When j = −1, then

un − 1 = ρ−n(γ (ρn)2 − ρn + ηnδ)

is associated (because ρ−n is a unit) to one (if η = 1), or one of the two (if η = −1)
polynomials of degree 2 in ρn with coefficients in K. The following result is very
important in what follows.

Lemma 6.1. All solutions (x, y, z) of equation (1.2) are contained in the union of
finitely many lines in Z3.

Proof. We let b1 and c1 be the largest divisors of b and c, respectively, which are
free of primes dividing ρ. Note that both b/b1 and c/c1 are O(1). Indeed, if j > 0,
then ρ > 1 is in Z and un − 1 is coprime to ρ for all n sufficiently large. If j < 0,
then ρ is a unit, so b1 = b and c1 = c. Finally, if j = 0, then, since δβz �= 1 and
δβ y �= 1, we get that δβz − 1 = O(1) and δβ y − 1 = O(1) are both nonzero. This
justifies that b/b1 = O(1) and c/c1 = O(1).
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We now fix the class of (x, y, z) modulo (Z/2Z)3. For j ≥ 0, we may write

bc = uz − 1 = γ P(ρz) = γ

�∏
i=1

(ρz − µi )
σi ,

ac = uy − 1 = γ Q(ρ y) = γ

�′∏
j=1

(ρ y − µ′
j )

σ ′
j .

In the above formulae, µ1, . . . , µ� are all the distinct roots of P(X) having mul-
tiplicities σ1, . . . , σ�, respectively. Similarly, µ′

1, . . . , µ
′
�′ are the distinct roots of

Q(X) of multiplicities σ ′
1, . . . , σ

′
�′ , respectively. Note that µ1, . . . , µ�, µ

′
1, . . . , µ

′
�′

are all nonzero. Note also that P(X) and Q(X) have degrees i . When j < 0, then
we write

bc = uz − 1 = γρ−z P(ρz), and ac = uy − 1 = γρ−y Q(ρ y),

where now P(X) and Q(X) are monic quadratic polynomials. We keep the nota-
tions µi , σi and µ′

j , σ ′
j with 1 ≤ i ≤ �, 1 ≤ j ≤ �′ for the distinct roots with their

corresponding multiplicities of P(X) and Q(X), respectively.
In all cases, we put d for the common degree of P(X) and Q(X).
We now write σ = max{σi , σ

′
j : 1 ≤ i ≤ �, 1 ≤ j ≤ �′}, L for the splitting

field of P(X)Q(X) over K, and κ5 for a positive integer divisible by the denomina-
tors of γ , µi and µ′

j for all 1 ≤ i ≤ � and 1 ≤ j ≤ �′. We then get that

c1 | gcd(uz − 1, uy − 1) | gcd(γ P(ρz), γ Q(ρ y))

| κd3+1
5 γ

∏
1≤i≤�
1≤ j≤�′

gcd
(
ρz − µi , ρ

y − µ′
j

)σ

. (6.1)

The last product above is to be interpreted as a product of ideals in L.
Now let T > 2 be a large positive integer. Consider the set of numbers T =

{pz + qy : 1 ≤ p ≤ T, 1 ≤ q ≤ T }. Clearly, all numbers in T are ≤ 2zT for large
z. Since there are T 2 pairs of positive integers (p, q) ∈ [1, T ]2, it follows, by the
pigeon hole principle, that there there exist (p, q) �= (p′, q ′) such that |pz + qy −
(p′z+q ′y)| ≤ 2T z/(T 2−1) < 3z/T . Write u = p− p′ and v = q−q ′ and assume
that uz + vy ≥ 0 (otherwise, we replace the pair (u, v) by the pair (−u, −v)). For
1 ≤ i ≤ � and 1 ≤ j ≤ �′, put c1,i, j for the ideal gcd(c1, ρ

z − µi , ρ
y − µ′

j ) in L.
Since

ρz ≡ µi (mod c1,i, j ) and ρ y ≡ µ′
j (mod c1,i, j ),

and ρ is invertible modulo c1, we get that ρuz+vy ≡ µu
i µ′v

j (mod c1,i, j ). We thus
get, using relation (6.1), that

c1 | κ
2T (d3+1)
5 γ

∏
1≤i≤�
1≤ j≤�′

(
ρuz+vy − µu

i µ′v
j

)
. (6.2)
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Assume that the right hand side above is nonzero. Then, taking norms in L and
using the fact that 0 ≤ uz + vy � z/T , we get that

c1 ≤ exp(O(z/T + T )).

The constant implied by the above O depends on the sequence (un)n≥0. Since
c1 � c � αz/2, we get that

αz/2 ≤ exp(O(z/T + T )),

therefore z � z/T +T . This inequality is false if we first choose T > 2κ−1
6 , where

κ6 is the constant implied by the above O , and then make z large. The contradiction
comes from the fact that we have assumed that the right hand side of (6.2) is nonzero
for T = �κ−1

6 � + 1 once z is large. If the right hand side of (6.2) is zero with this
value for T , then ρuz+vy = µu

i µ′v
j for some i, j, u, v, and since ρ is not a root of 1,

we get that uz + vy is uniquely determined once i, j, u, v have been fixed.
We now repeat the argument but with x instead of y and with b instead of c.

The similar argument leads to the conclusion that unless some equality of the form
ρu′z+v′x = µu′

i µ′′v′
j holds with some integers u′, v′ of absolute values at most T ′

and not both zero, then b ≤ exp(O(z/T ′ + T ′)). Here, µ′′
1, . . . , µ

′′
�′′ are the roots

of the polynomial R(X) such that ux − 1 is associated to γ R(ρx ) in the same way
as uz − 1 and uy − 1 were associated to γ P(ρz) and γ Q(ρ y), respectively. Since
b � α(1−κ0)z for some constant κ0 ∈ (0, 1), we get again that z � z/T ′+T ′, which
is a contradiction if T ′ is first chosen to be sufficiently large, and then z is allowed to
be large. In conclusion, there must exist a relation of the form ρu′z+v′x = µu′

i µ′′v′
j ,

with exponents u′, v′ of sizes O(1), which are not both zero, leading again to the
fact that u′z + v′x = O(1). Since we also have uz + vy = O(1), we get that
(x, y, z) belongs to one of finitely many effectively computable lines in Z3.

Since we have infinitely many solutions (x, y, z) and only finitely many possi-
bilities for the lines in Z3 on which they might lie, it follows that infinitely many of
the x, y and z are of the form

x = d1t + e1, y = d2t + e2, z = d3t + e3,

where d1, d2, d3, e1, e2, e3 are fixed integers with the first three positive and t is a
positive integer which may be arbitrarily large. Note that d3 ≥ d2 ≥ d1 > 0. We
may also fix the parity of t , therefore the signs of βx , β y, βz are all determined by
η and the parities of e1, e2 and e3. We now distinguish the following cases.

6.1. The case j > 0

This is the easiest case. We have

ab = ux − 1 = (γρie1)(ρt )id1 + ζ1(δρ
je1)(ρt ) jd1 − 1,

ac = uy − 1 = (γρie2)(ρt )id2 + ζ2(δρ
je2)(ρt ) jd2 − 1,

bc = uz − 1 = (γρie3)(ρt )id3 + ζ3(δρ
je3)(ρt ) jd3 − 1,
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where ζi = ηei ∈ {±1} for i = 1, 2, 3. Multiplying the three relations above we get
a polynomial with rational coefficients in ρt which is a perfect square for infinitely
many values of t . It follows easily that this polynomial must be the perfect square
of a polynomial with rational coefficients (see, for example, [13]). However, this is
impossible because its constant term is −1, which is not a perfect square.

6.2. The case j = 0

In this case, α ∈ Z, β = ±1. We mention that below we will use i and j without
the meaning from above. We have

ab = ux − 1 = γ1(ρ
t )d1 + δ1,

ac = uy − 1 = γ2(ρ
t )d2 + δ2,

bc = uz − 1 = γ3(ρ
t )d3 + δ3,

where δ1, δ2, δ3 ∈ {−δ − 1, δ − 1} are nonzero and γi = γρei for i = 1, 2, 3. Let
us put Pi (X) = γi Xdi + δi . Then

a | gcd(P1(ρ
t ), P2(ρ

t )), b | gcd(P1(ρ
t ), P3(ρ

t )), c | gcd(P2(ρ
t ), P3(ρ

t )).

We now look at gcd(Pi (X), Pj (X)) for i �= j . The roots of Pi (X) in C are
e2π iµ/di ηi , for µ = 0, 1, . . . , di − 1, where ηi is any fixed determination of
(−δi/γi )

1/di . It now follows easily that gcd(Pi (X), Pj (X)) is a polynomial of de-
gree at most gcd(di , d j ). In particular, gcd(P3(X), P1(X))· gcd(P3(X), P2(X)) is
a polynomial of degree at most gcd(d3, d3) + gcd(d3, d2). Since

P3(ρ
t ) = bc | gcd(P1(ρ

t ), P3(ρ
t )) gcd(P2(ρ

t ), P3(ρ
t ))

holds for infinitely many positive integers t, we get that d3 ≤gcd(d3,d1)+gcd(d3,d2).
Since d1 ≤ d2 ≤ d3, the above inequality shows that either d3 = d2, or d1 = d2 =
d3/2. We treat only the case d1 = d2, since the case when d2 = d3 is similar.
Since d1 = d2 and y > x , we get that e2 > e1. Putting d = d1, we get that
P1(X) is associated to Xd + δ1/γ1 and P2(X) is associated to Xd + δ2/γ2. They
have a common root if and only if δ1/γ1 = δ2/γ2. This leads to ρe2−e1 = δ2/δ1.
If δ2 = δ1, then e2 = e1, therefore x = y, which is a contradiction. This shows
that δ2 �= δ1, therefore δ2/δ1 equals either (δ − 1)/(−δ − 1), or (−δ − 1)/(δ − 1).
Changing δ to −δ, if necessary, we may assume that

ρe2−e1 = −δ − 1

δ + 1
.

Since ρ is an integer, we get that 1 + δ | δ − 1, therefore 1 + δ | 2. Thus, 1 + δ =
−2, −1, 1, 2. The cases 1+δ = −2, −1, 2 give ρe2−e1 = −2, −3, 0, respectively,
which are impossible because ρ is positive, while the case 1 + δ = 1 gives δ = 0,
which is not allowed. This completes the analysis of this case.
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6.3. The case j = −1

This is by far the most technical one. Again we will use the indices i, j without
referring to α = ρi = ρ, β = ηρ j = ±ρ−1. We have that

ux − 1 = γρx+e1((ρt )2d1 − γ1(ρ
t )d1 + δ1),

uy − 1 = γρ y+e2((ρt )2d2 − γ2(ρ
t )d2 + δ2),

uz − 1 = γρz+e3((ρt )2d3 − γ3(ρ
t )d3 + δ3),

where γi = γ −1ρ−ei , δi = ηiδγ
−1ρ−2ei and ηi = ηei ∈ {±1} for i = 1, 2, 3. We

put
Pi (X) = X2di − γi Xdi + δi = Qi (Xdi ) for all i = 1, 2, 3,

where Qi (X) = X2 − γi X + δi for i = 1, 2, 3. Note that P(ρt ) = ∏3
i=1 Pi (ρ

t ) is
associated to a perfect square in K for infinitely many t . Since P(X) = ∏t

i=1 Pi (X)

does not have just two simple roots, it follows, again by [13], that P(X) is a square
of a polynomial in K[X ]. In particular, all roots of P(X) have even multiplicities.

We now fix i ∈ {1, 2, 3} and take a closer look at Pi (X). Let zi,1 and zi,2
be the roots of Qi (X). Since Pi (X) = Qi (Xdi ), it follows that all roots of Pi (X)

are e2π i�/di z1/di
i, j for � = 0, 1, . . . , di − 1 and j = 1, 2, where z1/di

i,1 and z1/di
i,2 are

two fixed determinations of these complex nonzero numbers. Thus, if Pi (X) has
a double root, then it must be the case that e2π i�/di z1/di

i,1 = e2π i�′/di z1/di
i,2 for some

�, �′ ∈ {0, 1, . . . , di − 1}. Upon exponentiating this last relation to the power di ,
we get zi,1 = zi,2. Thus, Qi (X) has a double root. This happens if and only if
γ 2

i − 4δi = 0, which leads to ηei γ δ = 1/4. Furthermore, if this is the case, then
zi,1 = zi,2 = γi/2 is an algebraic integer and Pi (X) = (Xdi − γi/2)2 is the square
of a polynomial whose coefficients are algebraic integers in K.

6.3.1. The case of double roots

Assume that Pi (X) has a double root for some i ∈ {1, 2, 3}. Then writing {1, 2, 3}=
{i, j, k}, we get, from the fact that P(X) and Pi (X) are both squares of other poly-
nomials with coefficients in K, that Pj (X)P�(X) is a square of a polynomial with
coefficients in K. If Pj (X) has a double root, then again z j,1 = z j,2 = γ j/2 and
Pj (X) = (Xd j − γ j/2)2. This leads to the fact that P�(X) is also the square of a
polynomial with coefficients in K, therefore P�(X) = (Xd� − γ�/2)2.

Put R(X) = ∏3
i=1(Xdi − γi/2). Thus, R(X) is monic and P(X) = R2(X).

For a fixed t even, we have that abc is associated in K to γ 1/2 R(ρt ). Indeed, note
that (abc)2 = γ 3ρx+y+z+e1+e2+e3 · R2(ρt ), and

x + y + z + e1 + e2 + e3 = t (d1 + d2 + d3) + 2(e1 + e2 + e3)

is even, therefore γ 1/2 must be a member of K. Since bc is associated to γ 2 P3(ρ
t )=
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γ 2((ρt )d3 − γ3/2)2, we have that a is associated to H(ρt ), where

H(X) = γ 1/2γ −2 (Xd1 − γ1/2)(Xd2 − γ2/2)

(Xd3 − γ3/2)
.

We now show that H(X) is a polynomial. Assume that this is not so and let H(X) =
F(X)/G(X), where G(X) is of positive degree and F(X) and G(X) are coprime.
Then the algebraic integer G(ρt ) in K divides the resultant ResX (F(X), G(X))

evaluated at X = ρt , which is a nonzero algebraic integer in K, since H(ρt ) is
associated to a and thus G(ρt ) divides F(ρt ). Thus, G(ρt ) is associated to some
element from a finite list in K. However, since G(X) is of positive degree and does
not have zero as a root, this resulting Diophantine equation has only finitely many
positive integer solutions t . In fact, by the classical theory of Diophantine equations
(see [20], for example), this Diophantine equation can be immediately reduced to a
unit equation in three terms in K[(γ3/2)1/d3]. This contradiction shows that H(X)

is a polynomial, therefore that Xd3 − γ3/2 divides (Xd1 − γ1/2)(Xd2 − γ2/2).
The polynomials Xd3 − γ3/2 and Xdi − γi/2 can have at most gcd(d3, di ) roots in
common for i = 1, 2. Thus, d3 ≤ gcd(d3, d1) + gcd(d3, d1). Since d3 ≥ d2 ≥ d1,
it follows that either d3 = d2, or d1 = d2 = d3/2. If d3 = d2, then by putting
d = d3 and using the fact that Xd −γ3/2 and Xd −γ2/2 have a root in common, we
also get γ3 = γ2, therefore ρe2 = ρe3 . Thus, z = y which is not allowed. Finally,
if d1 = d2, then using the fact that also Xd1 − γ1/2 and Xd2 − γ2/2 have a root
in common (because a becomes arbitrarily large), we get that γ1 = γ2, therefore
e1 = e2, leading to x = y, which is again not allowed.

We now return to the situation where Pi (X) = (Xdi − γi/2)2 but Pj (X) does
not have a double root. Then P�(X) does not have a double root either, and since
Pj (X)P�(X) is a square, we get that Pj (X) = P�(X). By identifying degrees and
coefficients, we get d j = d� and γ j = γ�. The last equation implies that ρe j = ρe� ;
hence, e j = e j . Since (d j , e j ) = (d�, e�), we get again that the two of the three
variables {x, y, z} corresponding to j and � are equal, which is impossible.

6.3.2. Bounding the number of common roots

From now on, we can assume that all three polynomials P1(X), P2(X) and P3(X)

have only simple roots. We look at

P3(X) = (Xd3 − z3,1)(Xd3 − z3,2),

and count the number of common roots that P3(X) can have with Pi (X) for some
i = 1, 2. Let

Pi (X) = (Xdi − zi,1)(Xdi − zi,2).

Note that both P3(X) and Pi (X) are product of two binomial polynomials. Our aim
is to show that P3(X) has ≤ 2 gcd(d3, d1) roots in common with each of Pi (X) for
i = 1, 2.

Assume say that z3,1/z3,2 is not a root of 1. Suppose that zi,1/zi,2 is not a
root of 1 either. Then, since all roots of Xd3 − z3,1 differ one from another mul-
tiplicatively by roots of unity, it follows that if Xd3 − z3,1 has a root in common
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with Xdi − zi, j , then it will not have a root in common with Xdi − zi,�, where
{ j, �} = {1, 2}. Thus, in this case there exists at most one j ∈ {1, 2} such that
Xd3 − z3,1 has a common root with Xdi − zi, j , and clearly the number of such roots
is ≤ gcd(d3, di ). Hence, Xd3 − z3,1 has at most gcd(d3, di ) common roots with
Pi (X). The same is true for Xd3 − z3,2. Hence, in this case the number of common
roots of P3(X) and Pi (X) is ≤ 2 gcd(d3, di ).

Assume now that still z3,1/z3,2 is not a root of 1, but that zi,1/zi,2 is a root
of 1. If each of Xd3 − z3,i for i = 1, 2 has common roots with at most one of the
two binomials Xdi − zi, j for j = 1, 2, then the above argument shows again that
the number of common roots of P3(X) and Pi (X) is at most 2 gcd(d3, di ). If say
Xd3 − z3,1 has common roots with both Xdi − zi,1 and Xdi − zi,2, then it has at most
gcd(d3, di ) common roots with each one of them, while Xd3 − z3,2 does not have
common roots neither with Xdi − zi,1, nor with Xdi −di,2, since otherwise z3,1/z3,2
will end up being a root of 1, which is not the case. Hence, again P3(X) and Pi (X)

have at most 2 gcd(d3, di ) roots in common.
Assume next that z3,1/z3,2 is a root of 1, but that zi,1/zi,2 is not. If both Xd3 −

z3,1 and Xd3 −z3,2 have common roots with Pi (X), then these common roots will be
roots of Xdi − zi, j for the same value of j . Thus, each of Xd3 − z3,1 and Xd3 − z3,2

will have at most gcd(d3, di ) common roots with Xdi − zi, j (and none common
with Xdi − zi,�, where � is such that { j, �} = {1, 2}), so again P3(X) and Pi (X)

have at most 2 gcd(d3, di ) roots in common. Of course, if only one of Xd3 − z3, j
for j = 1, 2 has common roots with Pi (X), then again it will have common roots
with only one of Xdi − zi,� for � = 1, 2, and the number of such is ≤ gcd(d3, di ),
so in this case P3(X) and Pi (X) have at most gcd(d3, di ) < 2 gcd(d3, di ) common
roots.

So far, we have always obtained that P3(X) and Pi(X) have at most 2 gcd(di ,d3)

roots in common.
Assume now finally that both z3,1/z3,2 and zi,1/zi,2 are roots of 1.
Note that by definition we have Qi (X) = (X − zi,1)(X − zi,2) = X2 −

γi X + δi with γi = γ −1ρ−ei , δi = ηei δγ −1ρ−2ei . Therefore, it follows that
(zi,1γρei , zi,2γρei ) are the roots of X2 − X + ηei γ δ, and γ δ ∈ Q∗ because γ

and δ are conjugates in K. Thus, while zi,1, zi,2 might belong to a quadratic field
over K (hence, a field of degree 4 over Q), their ratio belongs to a quadratic field.
Thus, if zi,1/zi,2 �= 1 is a root of 1, then its order is one of 2, 3, 4, or 6. Note
next that the order cannot be 2 (i.e., zi,1 = −zi,2), because the coefficient of X in
the quadratic polynomial X2 − X + ηei γ δ is not zero. Hence, zi,1/zi,2 is a root of
unity of order 3, 4, or 6. One checks easily that zi,1/zi,2 is a root of 1 of order 3, 4,
6, respectively, if and only if ηei γ δ = 1, 1/2, or 1/3, respectively. Since we are
discussing the case when both z3,1/z3,2 and zi,1/zi,2 are roots of unity, we deduce
that either η = 1, or η = −1 and ei ≡ e3 (mod 2), and in any case these two roots
of unity have the same order. Let this order be k ∈ {3, 4, 6}, and put ε = e2π i/k .

If each of Xd3 − z3,1 and Xd3 − z3,2 has common roots with at most one of two
polynomials Xdi −zi,1 and Xdi −zi,2, then the previous argument shows that P3(X)

and Pi (X) have at most 2 gcd(d3, di ) roots in common. Further, if at most one of
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the two polynomials Xd3 − z3,1 and Xd3 − z3,2 has common roots with Pi (X), then
again the previous argument shows that the number of common roots of P3(X) and
Pi (X) is at most 2 gcd(d3, di ).

We now look at the remaining cases. Here, we shall show that the number of
common roots of P3(X) and Pi (X) is < d3.

We start by noting that up to relabeling the roots of Pi (X), we may assume
that zi,1 = zi , that zi,2 = ziε, and that Xd3 − z3,1 has a root in common with
Xdi − zi , and another root in common with Xdi − ziε. Certainly, z3,2 = z3,1ε

±1,
and Xd3 − z3,2 has a root in common with at least one of Xdi − zi or Xdi − ziε.

Since Xd3 − z3,1 has a root in common with Xdi − zi , we get that there is a
number ν such that νd3 = z3,1 and νdi = zi . Thus,

Pi (X) = (Xdi − νdi )(Xdi − νdi ε).

Since Xd3 −νd3 has also a root in common with Xdi −νdi ε, it follows that for some
integers j and � we have

νe2π i j/d3 = νe2π i/(kdi )+2π i�/di .

Thus,
1

kdi
∈ �

di
− j

d3
+ Z,

implying that lcm[d3, di ] is a multiple of kdi . Thus,

kdi ≤ lcm[d3, di ] = d3di/ gcd(d3, di ),

giving gcd(d3, di ) ≤ d3/k.
Suppose first that Xd3 −z3,2 does not have a common root with both of Xdi −zi

and Xdi − ziε. Then P3(X) and Pi (X) have at most 3 gcd(d3, di ) ≤ 3d3/k roots in
common. Note that 3d3/k ≤ d3. Thus, P3(X) and Pi (X) have at most d3 roots in
common. Let us show that in fact the inequality is strict. From the above arguments,
the inequality is strict unless k = 3 and gcd(d3, di ) = d3/3. Put gcd(d3, di ) = λ.
Then d3 = 3λ and di ∈ {λ, 2λ}. If di = λ, then Pi (X) has a totality of 2λ < d3
roots, and we obtain a contradiction. Thus, di = 2λ. Hence,

P3(X) = (X3λ − ν3λ)(X3λ − ν3λε±1), Pi (X) = (X2λ − ν2λ)(X2λ − ν2λε).

However, it is now easy to see that X3λ − ν3λε±1 cannot have a common root with
Pi (X). Indeed, any such common root x will satisfy x3λ = ν3λε±1 and either
x2λ = ν2λ (leading to ν6λε±2 = x6λ = ν6λ, which is false since ε±2 �= 1), or
x2λ = ν2λε (leading to ν6λε±2 = x6λ = ν6λε3, which is again false since ε3 = 1
and ε±2 �= 1).

So, it remains to treat the case when also Xd3 − z1,3ε
±1 has a root in common

with both Xdi − zi and Xdi − ziε. With the previous notations, since Xd3 − νd3ε±1
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and Xdi −νdi have a root in common, we get that for some integers j and � we have
νe±2π i/(kd3)+2π i j/d3 = νe2π i�/di . This leads to

± 1

kd3
∈ �

di
− j

d3
+ Z,

so lcm[d3, di ] is a multiple of kd3. Thus, kd3 ≤ lcm[d3, di ], leading to gcd(d3, di )≤
di/k. In particular, di �= d3. Write λ = gcd(d3, di ). Then di ≥ kλ, therefore
d3 ≥ (k + 1)λ. Thus, λ ≤ d3/(k + 1). Since P3(X) and Pi (X) have at most 4λ

roots in common anyway, we get that the number of common roots of these two
polynomials is ≤ 4d3/(k + 1) ≤ d3. Equality is obtained if and only if k = 3 and
d3 = 4λ. Clearly, di cannot be λ (otherwise Pi (X) and P3(X) will have at most
2di ≤ 2λ < d3 roots in common), and di �= 2λ, for otherwise λ = gcd(d3, di ) =
2λ, which is a contradiction. So, it must be the case that di = 3λ. Hence,

P3(X) = (X4λ − ν4λ)(X4λ − ν4λε±1), Pi (X) = (X3λ − ν3λ)(X3λ − ν3λε).

Note now that the second factor of Pi (X) above cannot have a common root x with
the first factor of P3(X) above, for if not, we would have ν12λ = x12λ = ν12λε4,
therefore ε4 = 1, which is false.

Having covered all the possibilities, we get that P3(X) has < d3 common
roots with Pi (X). If this is true for both i, j ∈ {1, 2}, it follows that there is a root
of P3(X) which is not a root of P1(X)P2(X), and this is a contradiction because
P1(X)P2(X)P3(X) has the property that all its roots are double.

So, there could be at most one i ∈ {1, 2} such that P3(X) has < d3 roots in
common with Pi (X), and for j �∈ {i, 3}, P3(X) and Pj (X) have at most 2 gcd(d3, d j )

roots in common. If gcd(d3, d j ) �= d3, it follows that gcd(d3, d j ) ≤ d3/2, so P3(X)

has < 2d3 roots in common with P1(X)P2(X), which is false. So, it must be the
case that gcd(d3, d j ) = d3, so d j = d3. Write d = d3. Thus,

P3(X) = (Xd − z3,1)(Xd − z3,2), Pj (X) = (Xd − z j,1)(Xd − z j,2).

But it is clear that if the above polynomials have more than d roots in common, then
they will have all roots in common so they will coincide. In particular, d3 = d j and
γ3 = γ j , leading to e3 = e j , so we get again the contradiction that two of the
positive integer unknowns x, y and z are equal. Hence, P3(X) and Pj (X) have at
most d3 roots in common, therefore P3(X) and P1(X)P2(X) have less than 2d3
roots in common, which is false.

In conclusion, it must be the case that P3(X) has ≤ 2 gcd(d3, di ) roots in com-
mon with each of Pi (X) for i = 1, 2. Thus, 2d3 ≤ 2 gcd(d3, d1) + 2 gcd(d3, d2),
therefore either d2 = d3, or d1 = d2 = d3/2. Assume that d1 = d2 = d3/2. Then
P3(X) has at most d3 roots in common with each of P1(X) and P2(X). Since all its
roots are common to either P1(X) or P2(X), we get that P3(X) and P1(X)P2(X)

are monic and have the same roots which are all simple for each of these two poly-
nomials. Hence, P3(X) = P1(X)P2(X). Evaluating this in X = ρt with large t , we
get that a = O(1), which is a contradiction.
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6.3.3. The case d1 < d2 = d3

Let d = d2 = d3. Then the two polynomials

P3(X) = (Xd − z3,1)(Xd − z3,2), P2(X) = (Xd − z2,1)(Xd − z2,3)

cannot have more than d root in common, for otherwise, by an argument already
used before, we would get that they coincide, therefore z = y, which is a contra-
diction. Thus, P3(X) and P2(X) have exactly d roots in common, therefore P3(X)

and P1(X) also have d roots in common. Since the number of such roots is ≤
2 gcd(d3, d1), we get that either d1 = d, or d1 = d/2. Assume that d1 = d/2. Then
P1(X) divides P3(X). Furthermore, up to relabeling the roots of Q2(X), it follows
that we may assume that gcd(P3(X),P2(X))= Xd−z2,1. Then P1(X)P2(X)P3(X)=
P1(X)2(Xd − z2,1)

2(Xd − z2,2), and since this must be the square of a polynomial
with coefficients in K, we get that Xd − z2,2 is a square of a polynomial with coef-
ficients in K, and this is false again.

6.3.4. The case d = d1 = d2 = d3

It now follows immediately that Q1(X)Q2(X)Q3(X) must be a perfect square of a
polynomial of degree 3 with coefficients in K[X ]. Furthermore, Qi (X) and Q j (X)

have precisely one root in common for all i �= j ∈ {1, 2, 3}. We now analyze this
last situation.

Assume first that either η = 1, or η = −1 but that e1, e2, e3 are all congruent
modulo 2. Let us write u and v for the roots of X2 − X + ηeγ δ, where the value
of e modulo 2 is congruent to ei (i = 1, 2, 3) in case η = −1. It then follows that
Qi (X) has roots uγ −1ρ−ei and vγ −1ρ−ei . Note that since Qi (X) ∈ K[X ] for all
i ∈ {1, 2, 3}, and any two of them have precisely one root in common, it follows
that u, v ∈ K. Furthermore, since u/v �= ±1, and K is real, it follows, up to
interchanging u and v, that we may assume |u| > |v|. Since the root uγ −1ρ−ei is
also a root of Q j (X) for some j ∈ {1, 2, 3}\{i}, we get that either uγ −1ρ−ei =
uγ −1ρ−e j , leading to ei = e j , therefore two of the positive integer unknowns
x, y and z are equal, which is impossible, or for each i there is j �= i such that
uγ −1ρ−ei = vγ −1ρ−e j . Thus, u/v = ρei −e j , and since |u| > |v| and ρ > 1, we
get that ei > e j . Thus, for each i ∈ {1, 2, 3}, there is j �= i in the same set such
that ei > e j . This is of course impossible because there must be some index i such
that ei = min{e j : j ∈ {1, 2, 3}}.

Finally, we assume that η = −1 and that not all ei are congruent modulo
2 for i = 1, 2, 3. Thus, there are two of them, say i and j such that ei ≡ e j
(mod 2), and the third one � is such that e� �≡ ei (mod 2). Let e ≡ ei (mod 2),
and we assume that u and v are the roots of X2 − X + (−1)eγ δ, and that u1 and
v1 are the roots of X2 − X − (−1)eγ δ. An argument used previously shows that
u, v, u1, v1 are all in K. In particular, they are real. Then the pairs of roots of
Qi (X), Q j (X) and Q�(X) are (uγ −1ρ−ei , vγ −1ρ−ei ), (uγ −1ρ−e j , vγ −1ρ−e j ),
and (u1γ

−1ρ−e� , v1γ
−1ρ−e�), respectively. Up to interchanging u and v, we may

assume that uγ −1ρ−ei is also a root of Q j (X). If uγ −1ρ−ei = uγ −1ρ−e j , we
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then get again ei = e j , which leads again to the conclusion that two of the three
positive integer unknowns x, y and z coincide, which is false. Thus, uγ −1ρ−ei =
vγ −1ρ−e j , so u/v = ρei −e j . In particular, (−1)eδγ = uv = v2(u/v) = v2ρei −e j

is a positive number. Now each of the roots of Q�(X) is also a root of Qi (X) or
Q j (X). In particular, u1γ

−1ρ−e� = w1γ
−1ρ−em and v1γ

−1ρ−e� = w2γ
−1ρ−en ,

where w1, w2 ∈ {u, v}, and m, n ∈ {i, j}. Hence, (−1)e+1δγ = u1v1 =
w1w2ρ

2e�−em−en, but this last number is positive since ρ >1 and w1w2∈{u2, v2, uv}.
This contradicts the fact that (−1)eγ δ > 0, and completes the proof of Theorem 1.1.

References

[1] Y. BUGEAUD, P. CORVAJA and U. ZANNIER, An upper bound for the G.C.D. of an − 1
and bn − 1, Math. Z. 243 (2003), 79–84.

[2] Y. BUGEAUD and A. DUJELLA, On a problem of Diophantus for higher powers, Math.
Proc. Cambridge Philos. Soc. 135 (2003), 1–10.

[3] Y. BUGEAUD and F. LUCA, On the period of the continued fraction expansion of square
root of 22n+1 + 1, Indag. Math. (N.S.) 16 (2005), 21–35.

[4] P. CORVAJA and U. ZANNIER, Diophantine equations with power sums and Universal
Hilbert Sets, Indag. Math. (N.S.) 9 (1998), 317–332.

[5] P. CORVAJA and U. ZANNIER, A lower bound for the height of a rational function at S-unit
points, Monatsh. Math. 144 (2005), 203–224.

[6] P. CORVAJA and U. ZANNIER, S-unit points on analytic hypersurfaces, Ann. Sci. École
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