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1. Introduction

In this paper we discuss existence/nonexistence and uniqueness of positive entire
(i.e. finite energy) solutions of the following semilinear elliptic equation on H =
Hn , the n dimensional Hyperbolic space:

�Hu + λu + u p = 0. (Eqλ)

Here �H denotes the Laplace-Beltrami operator on H, λ is a real parameter and
p > 1 if n = 2 while 1 < p ≤ 2∗ − 1 if n > 2 , where 2∗ := 2n

n−2 .
A basic information is that the bottom of the spectrum of −�H on H is

λ1(−�H) := inf
u∈H1(H)\0

∫
H

|∇Hu|2dVH∫
H

|u|2dVH

= (n − 1)2

4
. (1.1)

A straightforward consequence of (1.1) is the following non existence result:

Theorem 1.1. Let n ≥ 2 and λ >
(n−1)2

4 . Then (Eqλ) has no positive solution. If

λ = (n−1)2

4 there are no positive solutions of (Eqλ) in H1(H).
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So, in the sequel, we will assume λ ≤ (n−1)2

4 . Another consequence of (1.1) is

that if λ <
(n−1)2

4 then

‖u‖λ :=
[∫

H

(
|∇Hu|2 − λu2

)
dV

] 1
2

, u ∈ C∞
c (H)

is a norm, equivalent to the H1(H) norm. This is no longer true if λ = (n−1)2

4 . A
suitable definition of entire (or finite energy) solution in this case can be given tak-
ing into account an inequality which can be derived from Hardy-Sobolev-Maz’ya
inequalities (see Appendix B).

A sharp Poincaré-Sobolev inequality and the space H
For every n ≥ 3 and every p ∈ (

1, n+2
n−2

]
there is Sn,p > 0 such that

Sn,p

(∫
H

|u|p+1dVH

) 2
p+1 ≤

∫
H

[
|∇Hu|2 − (n − 1)2

4
u2

]
dVH (1.2)

for every u ∈ C∞
0 (H). If n = 2 any p > 1 is allowed.

Inequality (1.2) implies that ‖u‖ (n−1)2
4

is a norm as well on C∞
0 (H) and we will

denote by H the closure of C∞
c (H) with respect to this norm.

Definition 1.2. We will say that a positive solution u of (Eqλ) is an entire solution
if it belongs to the closure of C∞

c (H) with respect to the norm ‖.‖λ.

Before stating our main results, let us recall what it is known in the Euclidean
case (H replaced by Rn, n ≥ 3): in the subcritical case, a positive entire solution
exists iff λ < 0 ; for such λ′s the solution is radially symmetric and unique (up
to translations); in the critical case a positive entire solution exists iff λ = 0, it is
unique (up to translations and dilations) and it is explicitely known.

At our best knowledge, not much is known about (Eqλ). It naturally appears
when dealing with the Euler-Lagrange equations associated to Hardy-Sobolev-
Maz’ya inequalities (see Section 6). It is also related (see [9]) to the Yamabe equa-
tion on the Heisenberg group and hence to the Webster scalar curvature equation
(see [14]-[19], and, for a more general setting, [7]).

A relation between differential operators with mixed homogeneity and hyper-
bolic geometry was earlier observed by Beckner [2] in dealing with sharp Grushin
estimates. In connection with Beckner work, and trying to extend previous results
by Garofalo-Vassilev on Yamabe-type equations on groups of Heisenberg type [15],
Monti and Morbidelli [23] enlightened the role of hyperbolic symmetry built in
Grushin-type equations.

Motivated by these papers, we started investigating, among other things,
uniqueness for (Eqλ) and the main result in this paper, already announced in [9], is
the following
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Theorem 1.3. Let λ ≤ (n−1)2

4 if n ≥ 3 and λ ≤ 2(p+1)

(p+3)2 if n = 2. Then (Eqλ) has

at most one entire positive solution, up to hyperbolic isometries.

We also establish sharp existence results:

Theorem 1.4. Let p > 1 if n = 2 and 1 < p < 2∗ − 1 if n ≥ 3. Then (Eqλ) has a

positive entire solution for any λ ≤ (n−1)2

4 .

In the critical case the situation is more complicated. We have the following

Theorem 1.5. Let n ≥ 4, p = 2∗ − 1 and n(n−2)
4 < λ ≤ (n−1)2

4 . Then (Eqλ) has
a positive entire solution.

The restriction on λ in Theorem 1.5 is in fact sharp:

Theorem 1.6. Let n ≥ 3, p = 2∗ − 1 and λ ≤ n(n−2)
4 . Then (Eqλ) does not have

any entire positive solution.

We also observed a surprising low dimension phenomena

Theorem 1.7. Let n = 3 and p = 5. Then (Eqλ) has no entire positive solution.

The paper is organized as follows.
In Section 2 we improve a symmetry result given in [1] as a first step towards

a sharp uniqueness analysis.
In Section 3 we establish decay estimates for positive entire solutions, a crucial

step to prove in Section 4 our uniqueness result.
Section 5 and 6 are devoted to existence/nonexistence and applications.
In Appendix A we recall notations and basic facts on the half space model Rn+

and the ball model Bn for Hn and in Appendix B we derive the Poincaré-Sobolev
inequality in Hn .

Added in proof. After this paper was completed, we got to know from R. Musina
of a paper by Benguria, Frank and Loss [3] concerning critical Hardy-Sobolev-
Maz’ya inequality in the three dimensional upper half space, where the equivalent
formulation (1.2) is also given. Among other things, they prove that the best con-
stant in (1.2) is given by the Sobolev constant and it is not achieved. Theorem 1.7
above improves this result.

In addition, Yan Yan Li informed us that, in a recent work with D. Cao [11],
they obtained results on locally finite energy solutions for a related PDE, which
lead to conjecture uniqueness of such solutions. Indeed our result applies and the
conjecture turns out to be true.

ACKNOWLEDGEMENTS. This work was mainly done while the first author was
visiting TIFR, Bangalore, India. All the people there deserve gratitude for their
warm hospitality. The first author was supported by MIUR, national project ‘Metodi
variazionali ed equazioni differenziali non lineari’.
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2. Hyperbolic symmetry

The main purpose in this section is to prove symmetry properties of solutions of
(Eqλ). The result we need, a refinement of a result in [1], is the following

Theorem 2.1. Let λ ≤
(

n−1
2

)2
, n ≥ 2. Let u be a positive entire solution of (Eqλ).

Then u has Hyperbolic symmetry, i.e. there is x0 ∈ H such that u is constant on
hyperbolic spheres centered at x0.

The proof relies on moving planes techniques in connection with sharp Sobolev
inequalities, and follows closely [1].

We start pointing out the main difference with respect to [1]. The proof therein
relies on the classical sharp Sobolev inequality in H1(Hn), n ≥ 3 (see [17]):

n(n − 2)ω
2
n

4

(∫
H

|u| 2n
n−2 dVH

) n−2
n ≤

∫
H

|∇Hu|2dVH− n(n − 2)

4

∫
H

u2dVH. (2.1)

This allows to get symmetry for H1(H) positive solutions of (Eqλ) in case λ ≤
n(n−2)

4 .

To prove symmetry for any λ <
(n−1)2

4 (and n ≥ 2) it will be enough to replace
Sobolev inequality with the sharp Poincaré-Sobolev inequality, which by density,
holds true in H1(H), as well as in H.

To prove our theorem up to the limiting case λ =
(

n−1
2

)2
, we need first some

facts about H. Let D1
cyl(R

k × Rn−1) be the closure in D1(Rk+n−1) of C∞
0 y-radial

functions u = u(|y|, z), y ∈ Rk, z ∈ Rn−1. We have the following

Lemma 2.2 (An isometric model for H). Given u ∈ C∞
0 (Rn+), let

(T u)(y, z) := 1√
2π

|y|− n−1
2 u(|y|, z), (y, z) ∈ R

2 × R
n−1.

Then ‖T u‖D1(Rn+1) = ‖u‖H and hence T extends to an isometric isomorphism
between H and D1

cyl(R
2 × Rn−1).

Moreover (H, ‖u‖H) is a Hilbert space with the inner product 〈, 〉H given by

〈u1, u2〉H = 1

2π

∫
Rn+1

∇T u1∇T u2 dx .

Proof. Let v := T u. Then

2π |∇v|2 = r−(n−1)|∇zu|2 + r−(n−1)u2
r +

(
n − 1

2

)2

r−(n+1)u2 − n − 1

2
r−n(u2)r .
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Integrating in polar coordinates and then by parts∫
Rn+1

|∇v|2dydz =
∫

R+×Rn−1

[
|∇u|2
rn−2

+
(

n − 1

2

)2 u2

rn
− n − 1

2
r−n+1(u2)r

]
drdz

=
∫

R+×Rn−1

[
|∇u|2
rn−2

−
(

n − 1

2

)2 u2

rn

]
drdz = ‖u‖2

H.

Since T (C∞
0 (H)) contains all the cylindrically symmetric C∞ functions with com-

pact support in (R2 \ {0}) × Rn−1, and they are dense in D1
cyl(R

2 × Rn−1), by

density T extends to an isometry from H onto D1
cyl(R

2 × Rn−1). The same ar-
guments show that T preserves the scalar product. Finally, since convergence in
H and in D1

cyl(R
2 × Rn−1) imply, up to subsequences, pointwise convergence, we

can in particular conclude that any u ∈ H can be written as r
n−1

2 v(r, z) for some
v ∈ D1

cyl(R
2 × Rn−1).

Lemma 2.3. Let u ∈ H be compactly supported in H. Then u ∈ H1(H).

Proof. Let un ∈ C∞
c (H) such that ||un − u||H → 0. We may assume that support

of un’s are contained in a fixed compact subset K of H. From the Poincaré-Sobolev
inequality (1.2), we get un is Cauchy in L p(H) and hence converges to u in L p(H)

for any p > 2. This implies un → u in L2(H) thanks to the assumption on the
support of un’s. Convergence in L2 and convergence in ||.||H together implies ∇un
is Cauchy in L2(H) and hence the convergence of un to u in H1(H).

Lemma 2.4 (Poincaré-Sobolev inequality in H). Let p > 1 if n = 2 and 1 <

p ≤ n+2
n−2 if n ≥ 3. There exists Sn,p > 0 such that

Sn,p

(∫
H

|u|p+1 dVH

) 2
p+1 ≤ ‖u‖2

H ∀ u ∈ H. (2.2)

Equivalently, for every v ∈ D1
cyl(R

2 × Rn−1)

(2π)
p−2

p Sn,p

(∫
Rn+1

|v|p+1

|y| n+3−p(n−1)
2

) 2
p+1

dx ≤ ‖v‖2
D1(Rn+1)

. (2.3)

Remark 2.5. Notice that n + 3 − p(n − 1) < 0 if n+3
n−1 < p ≤ n+2

n−2 .

Proof. (2.2) follows from (1.2) and (2.3) follows from (2.2), Lemma 2.2 and

∫
R2×Rn−1

(
|y|− n−1

2 u(|y|, z)|
)p+1

|y| n+3−p(n−1)
2

dydz = 2π

∫
R+×Rn−1

|u|p+1

rn
drdz

= 2π

∫
H

|u|p+1 dVH.
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Furthermore, a direct computation gives

Lemma 2.6. Let u ∈ H be a positive solution of (Eqλ), λ =
(

n−1
2

)2
, n ≥ 2. Let

v := √
2π T u. Then v is a D1(Rn+1) solution of

−�v(y, z) = v p

|y| n+3−p(n−1)
2

in R
2 × R

n−1. (2.4)

Proof of Theorem 2.1. The proof is in the same lines as in [1]; so, we will only give
an outline. The main difference is in the use of sharp Poincaré-Sobolev inequali-
ties (2.2) and (1.2) instead of sharp Sobolev inequality (2.1).

Let At be a one parameter group of isometries of H which is C1(R×H, H) and
I be a reflection (i.e., I is an isometry and I 2 = Identity) satisfying the invariance
condition At I At = I, ∀t ∈ R. Define It = At I A−t and Let Ut be the hypersurface
of H which is fixed by It . We also assume that ∪t1<t<t2Ut is open for all t1, t2 ∈ R

and ∪t∈RUt = H. For t ∈ R define

Qt = ∪−∞<s<tUs, and Qt = ∪t<s<∞Us .

Then It (Qt ) ⊂ Qt and It (Qt ) ⊂ Qt for all t ∈ R. Now define for t ∈ R

ut (x) = u(It (x)), x ∈ H.

The theorem will be proved once we show the existence of a t0 ∈ R such that
ut0 = u in Qt0 (see [1] for details.) As in [1] we will prove this in three steps. We
will only give details for step 1; the other two steps follow as in [1]. Let

� = {t ∈ R : ∀s > t, u ≥ us in Qs}.

Step 1. � is nonempty.

Proof of Step 1. It is enough to show that for t large enough ut ≥ u in Qt . Since
It is an isometry, ut ∈ H and solves (Eqλ). Write, as in Lemma 2.2, v = √

2πT u,
vt = √

2πT ut . From Lemma 2.2, they are in D1,2(Rn) and, furthermore, they
solve (2.4). Now define

�t = {(y, z) ∈ R
2 × R

n−1 : (|y|, z) ∈ Qt }.

Then Step 1 will be proved once we show that vt ≥ v in �t . Now, �t is open in
Rn+1 and v = vt on ∂�t . We also have

−�(v − vt ) = |y|−τ (v p − v
p
t )
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where τ = 2(n+1)−p(n−1)
2 as in (2.4). Now multiplying the above equation by

(v − vt )
+ integrating by parts and applying (2.2) to (v − vt )

+ we get,∫
�t

|∇(v − vt )
+|2 dx =

∫
�t

v p − v
p
t

|y|τ (v − vt )
((v − vt )

+)2 dx

≤ C

(∫
�t

v p+1

|y|τ
) p−1

p+1
(∫

�t

((v − vt )
+)p+1

|y|τ
) 2

p+1

≤ C

(∫
�t

v p+1

|y|τ
) p−1

p+1 ∫
�t

|∇(v − vt )
+|2 dx .

Since
∫

Rn+1 |y|−τ v p+1 < ∞,
∫
�t

|y|−τ v p+1 → 0 as t → ∞. Hence there exist a

t0 such that
∫
�t

|∇(v − vt )
+|2 dx = 0 for all t > t0. This proves Step 1.

To complete the proof, one can show, following [1], that

Step 2. � is bounded below.

Step 3. ũt0 = ũ in Qt0 where t0 = inf �.

3. Decay estimates

The proof of our uniqueness result relies on decay properties of entire positive solu-
tions we are going to prove here. Let u be a positive symmetric solution of (Eqλ).
As a function on B := Bn , u = u(|ξ |), ξ ∈ Rn , |ξ | < 1 and[

1 − |ξ |2
2

]2

�u + (n − 2)

[
1 − |ξ |2

2

]
< ∇u , ξ > +λu + u p = 0. (3.1)

Setting |ξ | := tanh t
2 , u(t) := u(tanh t

2 ), q := (sinh t)n−1, it is easy to see that∫
B |u|pdVB = ωn

∫ ∞
0 q|u|p,

∫
B |∇Bu|2dVB = ωn

∫ ∞
0 q|u′|2 so that

u ∈ H1(Bn) ⇔ ωn

∫ ∞

0

[
|u|2 + |u′|2

]
q =

∫
B

[
|u|2 + |∇Bu|2

]
dVB < +∞. (3.2)

Poincaré-Sobolev inequality reads as follows: ∀ p ∈ (1, 2∗ − 1], ∃c(n, p) > 0:

c(n, p)

[∫ +∞

0
q|w|p+1

] 2
p+1

≤
∫ +∞

0
q|w′|2 − (n − 1)2

4

∫ +∞

0
qw2 (3.3)

∀ w ∈ C∞
0 ([0, +∞)); if n = 2 any p > 1 is allowed. In addition, (3.1) rewrites

u′′ + n − 1

tanh t
u′ + λ u + u p = 0, u′(0) = 0 (3.4)
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as well as
(qu′)′ + λq u + qu p = 0, u′(0) = 0 (3.5)

and if u ∈ H1(B) solves (3.1), then
∫ ∞

0 q[|u′|2 − λu2] = ∫ ∞
0 qu p+1. The above

relations are no longer true if u /∈ H1(B). However, we can derive an analogue
of (3.2) and (3.3) for functions in H possessing hyperbolic symmetry. As above,
and if there is no confusion, we will write u(tanh t

2 ) as u(t).

Lemma 3.1. Let u ∈ H be a symmetric function. Then

||u||2H = ωn

∫ ∞

0




(
u′ + n − 1

2
tanh

t

2
u

)2

+ (n − 1)u2(
2 cosh

t

2

)2


 q < ∞ (3.6)

and hence the Poincaré - Sobolev inequality for u rewrites as

c(n, p)

[∫ ∞

0
q|u|p+1

] 2
p+1≤

∫ ∞

0



(

u′+ n−1

2
tanh

t

2
u

)2

+ (n−1)u2(
2 cosh

t

2

)2


q. (3.7)

If u satisfies (3.4) and (3.6) then for every w satisfying (3.6), we have

∫ ∞

t0




(
u′ + n − 1

2
tanh

t

2
u

) (
w′ + n − 1

2
tanh

t

2
w

)
+ (n − 1)uw(

2 cosh
t

2

)2


 q

=
∫ ∞

t0
qu pw where either t0 = 0 or w(t0) = 0.

(3.8)

Proof. Let u ∈ C∞
0 (B) and v := (

2 cosh2(t/2)
) n−1

2 u. Integrating by parts,

‖u‖2
H : = ωn

∫ ∞

0

[
(u′)2 −

(
n − 1

2

)2

u2

]
(sinh t)n−1 dt

= ωn

∫ ∞

0

[
(v′)2 + n − 1

4

(
v

cosh(t/2)

)2
]

(tanh(t/2))n−1 dt.

(3.9)

Now, given u ∈ H, there is a sequence of radial functions um ∈ C∞
c (B) such that

um →m u in H and a.e. Hence, if vm := (
2 cosh2(t/2)

) n−1
2 um , then vm →m v :=



ON A SEMILINEAR ELLIPTIC EQUATION IN H
n 643

(
2 cosh2(t/2)

) n−1
2 u and

||um ||2H = ωn

∫ ∞

0

[
(v′

m)2 + n − 1

4

(
vm

cosh(t/2)

)2
]

(tanh(t/2))n−1 dt. (3.10)

Since un is a Cauchy sequence in H, we can then pass to the limit in (3.10) and
see that (3.9) actually holds for every u ∈ H. Now (3.6) follows just substituting

v = (
2 cosh2(t/2)

) n−1
2 u in (3.9).

The Poincaré-Sobolev inequality (3.7) follows from (3.3) and (3.6).
As for (3.8), let w satisfy (3.6). Then there is a sequence wn ∈ C∞

0 ([0, ∞))

with w′
n(0) = 0 such that wn → w in the H norm given by (3.6). Since u satisfies

(3.5), multiplying this relation by wn and integrating by parts we see that (3.8) holds
for wn . Since w satisfies (3.6) we can pass to the limit proving (3.8).

Now, let us notice that if u solves (3.4) and Eu(t) := u′2
2 + λ

2 u2 + |u|p+1

p+1 , then

d

dt
Eu(t) = −n − 1

tanh t
u′2 ≤ 0 ∀t > 0.

In particular, u and u′ remain bounded and hence u is defined for every t . En-
ergy considerations also lead to monotonicity properties and exponential decay of
positive solutions of (3.4) as can be seen below.

Lemma 3.2. Let n ≥ 2, p > 1. Let v > 0 be a solution of (3.4). If λ < 0 we also
assume that v satisfies (3.2). Then v′(t) < 0 for every t > 0 and limt→+∞ v(t) =
limt→+∞ v′(t) = 0.

Proof. If λ ≥ 0, equation (3.5) implies (qv′)′(t) < 0 ∀t > 0 and then v′(t) < 0
∀t > 0 because v′(0) = 0. In particular, it exists v(∞) := limt→+∞ v(t) and,
since Ev is decreasing, v′(∞) := limt→+∞ v′(t) exists as well and is zero because
v is positive. Finally, (3.4) gives v′′(∞) = −[λv(∞) + v p(∞)] with, necessarily,
v′′(∞) = 0 and hence v(∞) = 0.

If λ < 0, v is not decreasing and does not vanish at infinity, in general. How-
ever, assuming (3.2), we have that lim inft+∞ q(t)[v2(t) + v′2(t)] = 0. In partic-
ular, 0 = limt→+∞ Ev(t) < Ev(t) ∀t by monotonicity. Now, let by contradiction

v′(t0) = 0 for some t0 > 0. Then 0 < Ev(t0) = 1
2λv2(t0) + |v|p+1

p+1 (t0) and hence
λv(t0) + v p(t0) > 0 and hence, by equation (3.4), v′′(t0) < 0. Thus t0 is the only
zero of v′ and v′ > 0 in (0, t0). Since Ev(0) > 0 and v′(0) = 0, λv(t) + v p(t) > 0
for t small, and hence v′′ < 0 for t small and hence v′ is negative for t small, a
contraddiction. This and (3.2) imply v(∞) = 0. As above, v′(∞) exists and it is
necessarily zero.

Remark 3.3. In case λ < 0 and assuming v →t→+∞ 0 instead of (3.2), the same
argument as above implies again v′(t) < 0 for t > 0 and v′(∞) = 0.
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Lemma 3.4. Let n ≥ 2, p > 1, λ <
(n−1)2

4 . Let v > 0 be a solution of (3.4)

satisfying (3.2). Then

lim
t→+∞

log v2

t
= lim

t→+∞
log v′2

t
= lim

t→+∞
log[v2+v′2]

t
=−

[
n − 1+

√
(n − 1)2− 4λ

]
v′

v
→t→+∞ −n − 1 + √

(n − 1)2 − 4λ

2
.

Proof. By Lemma 3.2, v →t→+∞ 0. Then it exists tε > 0 such that

coth t ≤ 1 + ε, v p(t) ≤ εv(t), ∀t ≥ tε.

Since, again by Lemma 3.2, v′ is negative, we have, for t ≥ tε ,

v′′ + (n − 1)(1 + ε)v′ + λv ≤ v′′ + (n − 1) coth t v′ + λ v + v p = 0 (3.11)

v′′ + (n − 1)v′ + (λ + ε)v ≥ v′′ + (n − 1) coth t v′ + λ v + v p = 0. (3.12)

Let µ±(ε) := −(n−1)(1+ε)±
√

(n−1)2(1+ε)2−4λ

2 , ν±(ε) := −(n−1)±
√

(n−1)2−4(λ+ε)

2 be
the characteristic roots of the differential polinomials in the left hand side of (3.11)-

(3.12), respectively (notice that µ±(ε) are real and distincts for λ ≤ (n−1)2

4 ; to have

ν±(ε) real and distinct we need to choose ε <
(n−1)2

4 − λ and with this choice
µ−(ε) < ν−(ε)). Let

w := v′ − µ+(ε)v, z := v′ − ν+(ε)v. (3.13)

Then, from (3.11) and (3.12), we have, for t ≥ tε ,

w′ − µ−(ε)w = v′′ + (n − 1)(1 + ε)v′ + λv ≤ 0 (3.14)

z′ − ν−(ε)z = v′′ + (n − 1)v′ + (λ + ε)v ≥ 0. (3.15)

From (3.14)-(3.15) we derive
(
e−µ−(ε)tw

)′ ≤ 0 ≤ (
e−ν−(ε)t z

)′ for every t ≥ tε and
hence, integrating such inequalities in [τ, t], tε ≤ τ ≤ t , we get, respectively,

v′(t) − µ+(ε)v(t) = w(t) ≤
(

e−µ−(ε)τw(τ)
)

eµ−(ε)t := cε(τ )eµ−(ε)t (3.16)

v′(t) − ν+(ε)v(t) = z(t) ≥
(

e−ν−(ε)τ z(τ )
)

eν−(ε)t := dε(τ )eν−(ε)t (3.17)

for every t ≥ τ ≥ tε . Again by integration, we finally get, for every t ≥ τ ≥ tε ,

v(t) ≤
(

e−µ+(ε)τ v(τ )
)

eµ+(ε)t + cε(τ )
eµ−(ε)t − e(µ−(ε)−µ+(ε))τ+µ+(ε)t

µ−(ε) − µ+(ε)

=
[

e−µ+(ε)τ v(τ ) − cε(τ )

µ−(ε) − µ+(ε)
e(µ−(ε)−µ+(ε))τ

]
eµ+(ε)t

+ cε(τ )eµ−(ε)t

µ−(ε) − µ+(ε)

(3.18)
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v(t) ≥
(

e−ν+(ε)τ v(τ )
)

eν+(ε)t + dε(τ )
eν−(ε)t − e(ν−(ε)−ν+(ε))τ+ν+(ε)t

ν−(ε) − ν+(ε)

=
[

e−ν+(ε)τ v(τ ) − dε(τ )

ν−(ε) − ν+(ε)
e(ν−(ε)−ν+(ε))τ

]
eν+(ε)t

+ dε(τ )eν−(ε)t

ν−(ε) − ν+(ε)
.

(3.19)

Now, v positive, µ−(ε) < µ+(ε) and (3.18) imply

e−µ+(ε)τ v(τ ) − cε(τ )

µ−(ε) − µ+(ε)
e(µ−(ε)−µ+(ε))τ ≥ 0 ∀ τ ≥ tε

that is

v(τ) ≥ cε(τ )eµ−(ε)τ

µ−(ε) − µ+(ε)
= w(τ)

µ−(ε) − µ+(ε)
= v′(τ ) − µ+(ε)v(τ )

µ−(ε) − µ+(ε)
∀ τ ≥ tε.

Hence
v′(τ ) ≥ µ−(ε)v(τ ), ∀ τ ≥ tε (3.20)

and integrating on [tε, t] we find

v(t) ≥
(
v(tε)e

−µ−(ε)tε
)

eµ−(ε)t ∀ t ≥ tε. (3.21)

We notice, for future reference, that in case λ ≥ 0 (3.20) and (3.21) hold true for any
positive solution: assumption (3.2) is used, at this stage, to insure monotonicity and
decay properties of v and hence it is required just in case λ < 0 (see Lemma 3.2;
accordingly with Remark 3.3, we might have asked, alternatively, to v to vanish at
infinity). We similarly infer from (3.19) that

d̂ε(τ ) := e−ν+(ε)τ v(τ ) − dε(τ )

ν−(ε) − ν+(ε)
e(ν−(ε)−ν+(ε))τ ≤ 0 ∀ τ ≥ tε.

Otherwise, since ν−(ε) < ν+(ε), (3.19) gives v(t) ≥ 1
2 d̂ε(τ )eν+(ε)t . But, since λ <

(n−1)2

4 and hence n − 1 + 2ν+(ε) > 0, this inequality implies that
∫ ∞

0 qv2 = +∞,
violating (3.2) (in case λ < 0, and hence ν+(ε) > 0, it would even follow that v is
unbounded). Thus, d̂ε(τ ) ≤ 0 ∀ τ ≥ tε , that is

v(τ) ≤ dε(τ )eν−(ε)τ

ν−(ε) − ν+(ε)
= z(τ )

ν−(ε) − ν+(ε)
= v′(τ ) − ν+(ε)v(τ )

ν−(ε) − ν+(ε)
∀ τ ≥ tε.

Hence
v′(τ ) ≤ ν−(ε)v(τ ), ∀ τ ≥ tε (3.22)
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and integrating on [tε, t] we find

v(t) ≤
(
v(tε)e

−ν−(ε)tε
)

eν−(ε)t ∀ t ≥ tε. (3.23)

We see from (3.21) and (3.23) that

2µ−(ε) ≤ lim inf
t→+∞

log v2

t
≤ lim sup

t→+∞
log v2

t
≤ 2ν−(ε), ∀ ε > 0

and hence limt→+∞ log v2

t = −
[
n − 1 + √

(n − 1)2 − 4λ
]
.

From (3.20)-(3.22) and (3.21)-(3.23) we see that similar bounds hold true for
v′ as well and hence

lim
t→+∞

log(v′)2

t
= lim

t→+∞
log(v2 + (v′)2)

t
= −

[
n − 1 +

√
(n − 1)2 − 4λ

]
.

Finally, taking lim sup and lim inf in (3.20)-(3.22) and then sending ε to zero, we

see that v′
v

→t→+∞ − n−1+
√

(n−1)2−4λ

2 .

Remark 3.5. In case λ < 0 assumption (3.2) can be replaced by limt→+∞ v = 0.
Thus, if λ < 0 a positive solution vanishes at infinity iff it is in H1.

Let us now consider the limit case λ = (n−1)2

4 . Here we have more precise
estimates, which will be actually needed later on.

Lemma 3.6. Let n ≥ 2, λ = (n−1)2

4 , p > 1. Let v > 0 be a solution of (3.4). Then

lim
t→+∞

log v2

t
= lim

t→+∞
log(v′)2

t
= lim

t→+∞
log[v2 + (v′)2]

t
= −(n − 1). (3.24)

Let, in addition, v satisfy (3.6). Then there is A > 0 such that

e
n−1

2 tv(t) → A and e
n−1

2 tv′(t) → −n − 1

2
A as t → ∞. (3.25)

Proof. Since, µ± (see the proof of Lemma 3.4) are real and distinct, (3.14)-(3.18)
and hence the bound from below v(t) ≥ cεeµ−(ε)t given in (3.21), still holds true,
because, at this stage, it was just required that v decreases to zero, a property satis-
fied here (Lemma 3.2). For the same reason, an upper bound for v and (3.20) will
give a similar upper bound for −v′.

A bound from above for v can be obtained as follows. First observe that v′′(t)
cannot be definitely negative and then it is definitely positive because, otherwise,
it has a sequence t j → j +∞ of zeros, that is, denoted w := v′, then w < 0 and
w′(t j ) = 0. Taking the derivative of (3.4), we get

w′′ + (n − 1) coth tw′ +
(

λ − n − 1

sinh2 t
+ pv p−1

)
w = 0
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and we see that there is t such that w′′(t j ) > 0 for t j ≥ t , while w′′ has to change
sign at two consecutive zeros of w′. In turn, v′′ > 0 for large t implies that v

(and v′) has exponential decay. In fact, if v′′ > 0 for t ≥ t , then, using (3.4),
we see that 0 > (n − 1) coth tv′ + λv for t ≥ t and hence v′

v
≤ −λ tanh t

n−1 and

hence v(t) ≤ v(t)e− λ tanh t
n−1 (t−t). As a consequence, as observed above, a similar

upper bound holds true for −v′. Now, from (3.5) and (3.21), we get, for positive λ,

−(qv′)(t) ≥ −(qv′)(tε) + λ
∫ t

tε
qe−( n−1

2 +ε)τ dτ ≥ cεe( n−1
2 −ε)t and then −v′(t) ≥

cεe−( n−1
2 +ε)t . Here λ = (n−1)2

4 , so we got, for any given ε > 0, positive numbers
bε, cε such that

bεe−( n−1
2 +ε)t ≤ v ≤ cεe−( n−1

4 −ε)t , bεe−( n−1
2 +ε)t ≤ −v′ ≤ cεe−( n−1

4 −ε)t .

Now, let V := (v, v′), F(V, t) := (0, (n − 1)v′(1 − coth t) − v p) and A :=(
0 1

−λ −(n − 1)

)
. We can write (3.5) as V ′ = A V + F(V, t).

The above asymptotic analysis gives b := lim supt→+∞
log |V |

t < 0. Since
|F(V, t)| ≤ ε|V | for t large and V small, b has to be a non positive characteristic

root of A (see ( [11, Theorem 4.3]), i.e. b = 1
2

[
−(n − 1) ± √

(n − 1)2 − 4λ
]

=
− n−1

2 . This proves (3.24).
To prove (3.25), note that using (3.24) we can rewrite (3.4) as

v′′ + (n − 1)v′ + (n − 1)2

4
v = f

where | f (t)| ≤ Ce−αt , t > 0 for some α > n−1
2 and C > 0. Let w = v′ + n−1

2 v.
Then (

e
n−1

2 tw
)′ = e

n−1
2 t

(
w′ + n − 1

2
w

)
= e

n−1
2 t f (t). (3.26)

Since v satisfy (3.6), we have lim inft→∞ q
(
v′ + n−1

2 tanh t
2 v

)2 = 0. Thus, there

exist a sequence tn → ∞ such that e
n−1

2 tn w(tn) → 0. Let t < tn, integrating (3.26)
from t to tn and then taking the limit as n → ∞ we get

e
n−1

2 tw(t) = g(t) (3.27)

where |g(t)| ≤ Ce( n−1
2 −α)t for some C > 0. This implies(

e
n−1

2 tv(t)
)′ = e

n−1
2 tw(t) = g(t). (3.28)

Integrating from 0 to t observing that g has exponential decay, we get

e
n−1

2 tv(t) = v(0) +
∫ t

0
g(s) ds → A ≥ 0, as t → ∞.
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Suppose A = 0, then integrating (3.28) from t to ∞ we get

e
n−1

2 tv(t) ≤ Ce( n−1
2 −α)t

which contradicts (3.24) as α > n−1
2 . Now the estimate on e

n−1
2 tv′(t) follows

from (3.27). This completes the proof of the lemma.

Remark 3.7. Because of the asymptotic behaviour proved above, positive solutions

of (Eqλ) cannot be in H1 if λ = (n−1)2

4 .
The final argument just relies on some exponential decay of v, v′, which was

shown to hold true also in case
∫ ∞

0 q|v′|2 = +∞. In this case, which is not covered
by the above lemma, we can conclude anyway that

lim sup
t→+∞

log(v2 + v′2)
t

= −(n − 1) +
√

(n − 1)2 − 4λ.

Remark 3.8. Exact asymptotic behaviour can be observed explicitely. Given λ ≤
(n−1)2

4 , let p = 1 + 2

n−1±
√

(n−1)2−4λ
or p = 1 + 4

n−1±
√

(n−1)2−4λ
. Then

v±(t) :=
[

c

1 + cosh t

] n−1±
√

(n−1)2−4λ
2

and u± :=
[ c

cosh t

] n−1±
√

(n−1)2−4λ
2

are solutions of (3.4) for suitable constants c. Notice that while v+, u+ are entire
solutions, v− and u− decay too slowly to have finite energy.

4. Proof of the uniqueness result

We prove here uniqueness of positive entire solutions u of (Eqλ) when n ≥ 3 and

λ ≤ (n−1)2

4 or n = 2 and λ ≤ 2(p+1)

(p+3)2 . By Theorem 2.1 u is a solution of (3.4). We
start proving a comparison lemma.

Lemma 4.1. Let λ ≤ (n−1)2

4 . Let p + 1 ≤ 2∗ if n ≥ 3 and p > 1 if n = 2. Let u, v

be distinct positive solutions of (3.4). Then

(i) Given R, M > 0, there is δ = δ(u, R) such that if v(0), u(0) ≤ M then

u(ti ) = v(ti ), 0 < t1 < t2 ≤ R, ⇒ t2 − t1 ≥ δ.

If, in addition, u satisfies (3.2) or (3.6) depending on λ <
(n−1)2

4 or λ = (n−1)2

4
respectively, and v(0) < u(0), then

(ii) there is tv such that u(tv) = v(tv) and there is t = t(u) such that

v(t1) = u(t1), t1 ≥ t ⇒ v(t) > u(t) ∀ t > t1.
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Proof. We start proving that if 0 < t1 < t2 < +∞, v(ti ) = u(ti ) then

∃C(p, n) > 0 : 0 ≤ v ≤ u in [t1, t2] ⇒
∫ t2

t1
qu p+1 ≥ C(p, n). (4.1)

If t2 = +∞, assumption u(t2) = v(t2) can be replaced by assuming u satisfies (3.2)

or (3.6) when λ <
(n−1)2

4 or λ = (n−1)2

4 respectively.
To prove (4.1), let us write w := u − v. From (3.3) and (3.5) we get:

c(p, n)

[∫ t2

t1
qw p+1

] 2
p+1 ≤

∫ t2

t1
q|w′|2 − λ

∫ t2

t1
qw2

=
∫ t2

t1
q(u p−v p)w≤ p

∫ t2

t1
qu p−1w2 ≤ p

[∫ t2

t1
qu p+1

] p−1
p+1 ×

[∫ t2

t1
qw p+1

] 2
p+1

.

If t2 = +∞, and λ <
(n−1)2

4 the argument works unchanged, because
∫ ∞

0 q|u′|2 <

+∞ ⇒ ∫ ∞
0 q|v′|2 < +∞; in fact, from (3.2) and Lemma 3.2 it follows that

u′ < 0 and u(t) →t→+∞ 0 and then v(t) →t→+∞ 0 and, again by Lemma 3.2,
v′ < 0. Then, using (3.5),

∫ t
0 q(v′)2 ≤ ∫ t

0 q(v′)2 − (qvv′)(t) = − ∫ t
0 [qv′]′v =∫ t

0 λqv2 + qv p+1 ≤ ∫ t1
0 λqv2 + qv p+1 + ∫ ∞

0 |λ|qu2 + qu p+1 < +∞.

Let us consider the case t2 = +∞, and λ = (n−1)2

4 . The proof follows as above
with the help of (3.7) and (3.8) once we show that v satisfies (3.6). To prove this,
let tn > 0. Then from (3.5) we have∫ tn

0
qv p+1 = −q(tn)v(tn)v

′(tn) +
∫ tn

0

[
(v′)2 − (n − 1)2

4
v2

]
q

= −q(tn)v(tn)

[
v′(tn) + n − 1

2
tanh

tn
2

v(tn)

]

+
∫ tn

0




(
v′ + n − 1

2
tanh

t

2
v

)2

+ (n − 1)v2(
2 cosh

t

2

)2


 q.

Since v(t) ≤ u(t), t ≥ t1, and u satisfies (3.6) the left hand side is finite as
tn → ∞. It remains to show that there exist a sequence tn → ∞ such that the
first term on the right hand side is greater than or equal to zero in the limit as

n → ∞. Note that using (3.24) if lim inft→∞ e
n−1

2 t (v′(t) + n−1
2 tanh t

2 v(t)) > 0

then lim inft→∞ e
n−1

2 t (v′(t)+ n−1
2 v(t)) > 0 and hence e

n−1
2 t u(t) ≥ e

n−1
2 tv(t) → ∞

which contradicts (3.25) as u satisfies (3.6). Therefore we can find a sequence

tn → ∞ such that limn→∞ e
n−1

2 tn (v′(tn) + n−1
2 tanh tn

2 v(tn)) ≤ 0 and hence

limn→∞ q(tn)v(tn)
[
v′(tn) + n−1

2 tanh tn
2 v(tn)

]
≤ 0.
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Proof of (i). Assume, by contradiction, that there exist un, vn with un(0) ≤ M and
0 ≤ t1,n < t2,n ≤ R with t2,n − t1,n →n 0 such that 0 ≤ vn ≤ un in [t1,n, t2,n]. We
can also assume un(0) →n α. Let uα be the solution of (3.4) with uα(0) = α. By
continuous dependence,

∫ t2,n
t1,n

qu p+1
n ≤ ∫ t2,n

t1,n
q[1+u p+1

α ] → 0, contraddicting (4.1).

Proof of (ii). Let first prove that there is t0 such that v(t0) = u(t0). Arguing by
contraddition, we can assume 0 ≤ v ≤ u for every t .

Consider the case λ < n−12

4 . Then
∫ ∞

0 qv2 ≤ ∫ ∞
0 qu2 < +∞ and, as

above, v′ ≤ 0. In particular, lim inft→+∞ |qvu′|(t) = 0 while, from (3.5), 0 <∫ t
0 quv

(
u p−1 − v p−1

) = q
[
v′u − vu′] (t) ≤ −(qvu′)(t), a contradiction.

When λ = n−12

4 with the help of (3.8) we see that 0 = ∫ ∞
0 quv

(
u p−1 − v p−1

)
which is possible only when u = v. As for the second statement, just observe that
if v(t) < u(t) for some t > t1, then there is t2 > t1 with v(t2) = u(t2) and either
v < u for t > t2, or there is t3 > t2 with v(t3) = u(t3) and v < u in (t2, t3). In both
cases, by (4.1), t1 cannot be too large.

An auxiliary energy

Let us introduce, following Kwong (see [18]),

v̂ := (sinhα t)v, α := 2(n − 1)

p + 3
, β := α(p − 1). (4.2)

It results (sinhβ t)v̂′′ + 1
2 [sinhβ t]′v̂′ + G(t)v̂ + v̂ p = 0 where

G := A sinhβ t + B sinhβ−2 t = (sinhβ−2 t)[A sinh2 t + B]
A := λ − α2(p + 1)

2
= λ − 2(n − 1)2(p + 1)

(p + 3)2
, B := α

2
[2 − α(p + 1)]. (4.3)

Notice that A = λ − n(n−2)
4 if n ≥ 3, p = 2∗ − 1 and

α <
n − 1

2
and 2(n − 1) > α(p + 1) > n − 1 ∀ p > 1

B > 0 if n = 2 and B < 0 if n ≥ 3

β < 2 ∀ p < 2∗ − 1 while β = 2 if n ≥ 3 and p + 1 = 2∗.

(4.4)

A crucial role will be played by the auxiliary energy

Ev̂(t) : = 1

2
(sinhβ t)v̂′2 + |v̂|p+1

p + 1
+ 1

2
Gv̂2

= sinhα(p+1) t

2
v2

[(
α

tanh t
+ v′

v

)2

+ 2v p−1

p + 1
+ A + B

sinh2 t

]
.

(4.5)
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Notice that

d

dt
Ev̂(t) = 1

2
G ′v̂2 = 1

2
[Aβ sinh2 t + B(β − 2)]v̂2 sinhβ−3 t cosh t. (4.6)

We list below monotonicity properties of G.

Lemma 4.2.

(i) Let n = 2. Then λ ≤ 2(p+1)

(p+3)2 ⇒ G ′(t) < 0 ∀ t > 0.

(ii) Let n ≥ 3. If p < 2∗ − 1, then

λ <
2(n − 1)2(p + 1)

(p + 3)2
⇒ ∃t̃ > 0 : G ′(t)(t̃ − t) > 0 ∀ t > 0, t �= t̃

λ ≥ 2(n − 1)2(p + 1)

(p + 3)2
⇒ G ′(t) > 0 ∀ t.

If p = 2∗ − 1, then

λ �= n(n − 2)

4
⇒ G ′

[
λ − n(n − 2)

4

]
> 0; λ = n(n − 2)

4
⇒ G ′ ≡ 0.

Proof.

(i) In fact, B(β − 2) < 0 ∀ p > 1 and A ≤ 0 if λ ≤ 2(p+1)

(p+3)2 .

(ii) If 1 < p < n+2
n−2 then B(β − 2) > 0 and A < 0 ⇔ λ <

2(n−1)2(p+1)

(p+3)2 while if

p = n+2
n−2 then β = 2 and hence G ′ has the sign of A = λ − n(n−2)

4 .

We now derive asymptotic properties of Ev̂ .

Lemma 4.3.

(i) If n = 2, Ev̂(t) = sinhα(p+1)−2 t
2 v2[α2+B]+◦(1) at t = 0. If n ≥ 3, Ev̂(t) = ◦(1)

at t = 0.
(ii) Let n ≥ 2. Then λ <

2(n−1)2(p+1)

(p+3)2 ⇒ Ev̂(t) →t→+∞ 0

Proof.

(i) Since α(p +1) > 1 we have Ev̂(t) = sinhα(p+1)−2 t
2 v2[α2 + B]+◦(1) for t close

to zero. Now just recall that α(p + 1) > 2 iff n ≥ 3.

(ii) Since λ <
(n−1)2

4 , we derive from Lemma 3.4 that, as t goes to infinity,

Ev̂(t)= sinhα(p+1) t

2
v2


(

α − n − 1 + √
(n − 1)2 − 4λ

2

)2

+ A+◦(1)


 . (4.7)
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The result follows because, by Lemma 3.4, v2 ≤ ce−(ε+n−1+
√

(n−1)2−4λ)t

while α(p + 1) < n − 1 + √
(n − 1)2 − 4λ ⇔ λ <

2(n−1)2(p+1)

(p+3)2 .

We first prove a uniqueness result for a Dirichlet problems in [0, T ].

Proposition 4.4. Let λ ≤ (n−1)2

4 and p + 1 ≤ 2∗ if n ≥ 3. If n = 2 assume

λ ≤ 2(p+1)

(p+3)2 . Then the Dirichlet problem

v′′ + (n − 1) coth t v′ + λ v + v p = 0

v′(0) = 0, v(T ) = 0, v(t) > 0 ∀t ∈ [0, T )
(4.8)

has at most one solution and no solution if n ≥ 3, p + 1 = 2∗, λ = n(n−2)
4 .

Proof. We prove this proposition in two steps.

Step 1. Let u be a solution of (4.8) and let v be a solution of (3.4) with initial value
0 < v(0) ≤ u(0). Then

∃t1 ∈ (0, T ) : v(t1) = u(t1) and v(t) > 0 ∀ t ∈ [0, t1].

Step 2. If, in addition, v(T ) = 0, then ∃t2 ∈ (t1, T ) : u(t2) = v(t2).

Conclusion. Assume, by contraddiction, that there are two solutions u and v of
(4.8) with, say, v(0) < u(0). Let us denote by vα the solution of (3.4) such that
vα(0) = α ≤ v(0) and set

A := {α ∈ (0, v(0)) : ∃tα,1 < tα,2 in (0, T ) such that vα(tα,i ) = u(tα,i )

and vα(t) < u(t) ∀ t ∈ [0, tα,1), vα(t) > u(t) ∀ t ∈ (tα,1, tα,2)}.
In view of Step 2 and continuous dependence of vα on α, A is a nonempty open set.
In particular, inf A /∈ A and hence inf A = 0. In fact, inf A > 0 ⇒ inf A ∈ A, by
continuous dependence and because, by Lemma (4.1)-(i), tα,2 − tα,1 ≥ δ(u) > 0 for
every α ∈ A. Now, if αn → 0, by continuous dependence, tαn,i →n T for i = 1, 2,
contraddicting Lemma 4.1-(i).

Proof of Step 1. It relies on a standard Sturm comparison argument: arguing by
contraddiction, we find t0 ≤ T with v(t0) = 0 and 0 < v(t) < u(t) ∀t ∈ [0, t0).
From the equation for u and v, we get:

[q(v′u − vu′)]′ = quv(u p−1 − v p−1) (4.9)

and hence 0 ≥ (qv′u)(t0) = ∫ t0
0 quv(u p−1 − v p−1)(τ )dτ > 0.



ON A SEMILINEAR ELLIPTIC EQUATION IN H
n 653

Proof of Step 2. Let us assume, by contradiction, that v(t) > u(t) in (t1, T ). Set
γ (t) := v(t)

u(t) , γ (T ) := limt→T
v(t)
u(t) = v′(T )

u′(T )
. We first claim that

γ (t) is strictly increasing in [0, T ] (4.10)

and in fact v′u − vu′ > 0 in (0, T ). To see this, notice first that, since [u(t) −
v(t)](t1 − t) > 0 ∀ t �= t1, we have [q(v′u − vu′)]′(t1 − t) > 0 ∀ t �= t1 thanks
to (4.9). If (v′u − vu′)(t̂) = 0 for some t̂ , necessarily bigger than t1, then (v′u −
vu′)(T ) < 0 while u(T ) = v(T ) = 0. This prove the claim.

Now, let, as above, v̂ := (sinh t)αv, û := (sinh t)αu. Notice that Eû(T ) =
1
2 (sinh T )2α+βu′2(T ) because u(T ) = 0 and similarly for Ev̂(T ). Now, for any
t ∈ (0, T ) and ε > 0 it results

1

2
(sinh T )2α+β [v′2(T ) − γ 2(t)u′2(T )] = Ev̂(T ) − γ 2(t)Eû(T )

= Ev̂(ε) − γ 2(t)Eû(ε) + 1

2

∫ T

ε

G ′(τ )[v̂2 − γ 2(t)û2](τ )dτ.

(4.11)

We first deal with the case n ≥ 3 where, by Lemma 4.3-(i), Ev̂(ε), Eû(ε) go to zero
as ε goes to zero. In addition, by Lemma 4.2-(ii) we know that if p + 1 < 2∗ there
is t̃ ∈ (0, +∞] such that G ′ > 0 in (0, t̃) and G ′ < 0 if t > t̃ while, if p + 1 = 2∗,
then G ′(t) �= 0 for all t > 0 provided λ �= n(n−2)

4 .
Assume first T ≤ t̃ , and hence v̂2(t) < γ 2(T )û2(t) for every t ∈ [0, T ] and

G ′ �= 0 in [0, T ]. Taking t = T in (4.11) and then sending ε to zero, we get

0 = 1

2
(sinh T )2α+β [v′2(T ) − γ 2(T )u′2(T )] = 1

2

∫ T

0
G ′[v̂2 − γ 2(T )û2] �= 0.

If t̃ < T , from γ (t̃) < γ (T ), we get, as above, but choosing t = t̃ ,

0 < (sinh T )2α+β [v′2(T ) − γ 2(t̃)u′2(T )]

=
∫ t̃

0
G ′[v̂2 − γ 2(t̃)û2] +

∫ T

t̃
G ′[v̂2 − γ 2(t̃)û2] < 0

Now, let n = 2 and λ ≤ 2(p+1)

(p+3)2 so that G ′(t) < 0 ∀ t by Lemma 4.2-(i). Taking
t = ε in (4.11) and using Lemma 4.3-(i), we see that

(sinh T )2α+β [v′2(T )−γ 2(t)u′2(T )] = ◦(1)+
∫ T

0
G ′[v2(τ )−γ 2(t)u2(τ )]χ[t,T ]dτ.

Since the integrand is non positive, sending t to zero we get (since γ ′ > 0),

0 < (sinh T )2α+β [v′2(T ) − γ 2(0)u′2(T )] ≤
∫ T

0
G ′[v2(τ ) − γ 2(0)u2(τ )]dτ < 0.
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Finally, in case λ = n(n−2)
4 , p + 1 = 2∗, we know that G ′ ≡ 0 and hence Ev̂ ≡ 0.

Since A = 0, this implies

[(
α

tanh t + v′
v

)2 + 2v p−1

p+1 + B
sinh2 t

]
= 0 if v(t) �= 0.

Hence v cannot vanish.

Remark 4.5. The last argument above also shows that (Eqλ) has no postive H1

solution if λ = n(n−2)
4 and p + 1 = 2∗. In fact it also implies that if v is a solution

of (3.4), with v(0) > 0, then v′
v

→t→+∞ − n−2
2 . Hence v cannot satisfy (3.2), oth-

erwise, in view of Lemma 3.4, it should result limt→+∞ v′
v

= − n−1+
√

(n−1)2−4λ

2 =
− n

2 .

Corollary 4.6. Let n ≥ 3, p + 1 ≤ 2∗, λ ≤ (n−1)2

4 or n = 2 and λ ≤ 2(p+1)

(p+3)2 . Let

u, v be solutions of (3.4), u > 0 and 0 < v(0) < u(0). Then v(t) > 0 ∀ t .

In addition, if u satisfies (3.2) or (3.6) depending on λ <
(n−1)2

4 or λ = (n−1)2

4
respectively, then u − v has exactly one zero.

Proof. We argue by contraddiction, assuming v has a first zero t0. Hence, denoted
by vα the solution of (3.4) such that vα(0) = α, the set

A := {α ∈ (0, u(0)) : vα has a zero}
is, by continuous dependence, an open set containing v(0). Let (α, α) be the largest
open interval in A containing v(0). If we denote by tα the first zero of vα , then
α → tα is continuous in (α, α). We claim that tα → +∞ as α goes to α. Assume,
by contradiction, that αn → α+ and tαn → t < +∞. Since vαn → vα uniformly
on bounded intervals, it results vα(t) = 0 and hence, by the definition of α, α =
0. Now, we notice that, exactly as in the proof of Step 1 in Proposition 4.4, we
have that for every α ∈ A there is τα ∈ (0, tα) such that vα(τα) = u(τα). For a
subsequence, ταn → τα ≤ t and hence u(τα) = limn u(ταn ) = limn vαn (ταn ) = 0,
a contraddiction. Similarly, if αn → α− then tαn → +∞. This implies that, for
large T , (4.8) has at least two solutions, contradicting Proposition 4.4.

Thus v(t) > 0 for every t . In particular, if u ∈ H1(B), it follows from Propo-
sition 4.1-(ii) that there is tv , a first zero of u − v and that tv is the unique zero if it
is large enough, say tv ≥ tu . We first notice that tv is large if v(0) is small. In fact,
since vα goes to zero uniformly on bounded sets as α goes to zero, clearly tv has to
go to infinity as v(0) goes to zero. Thus, for α small, u − vα has exactly one zero.
To prove that u−v has exactly one zero if v(0) < u(0), we argue by contraddiction,
assuming

α := sup{α∈(0, u(0)) : ∀ β ∈(0, α) ∃!tβ >0 such that u(tβ)=vβ(tβ)} < u(0).

Then, there are αn > α converging to α such that u − vαn has at least two zeros, say
0 < tn,1 < tn,2, with vαn (t) > u(t) in (t1,n, t2,n). Since, by continuous dependence,
vα − u has exactly one zero, say t , then tn,1 →n t and tn,2 →n +∞. But this
contradicts Proposition 4.1-(ii).
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Proof of Theorem 1.3. By contradiction, assume u and v are two distinct entire pos-
itive solutions of (Eqλ) with, say, v(0) < u(0). By Corollary 4.6 u − v has ex-
actly one zero, say tv and v(t) > u(t) for t ≥ tv . As in Step 2, Proposition 4.4,
γ (t) := v(t)

u(t) is strictly increasing; here, this follows from

lim
t→+∞ q(v′u − vu′)(t) = 0. (4.12)

When λ <
(n−1)2

4 , (4.12) follows from Lemma 3.4. When λ = (n−1)2

4 , we have
from (3.25) that |γ (t)| ≤ M < ∞ for all t . Thus

lim inf
t→∞ u−2(uv′ − vu′)(t) = lim inf

t→∞ γ ′(t) = 0.

Then (3.25) implies lim inft→∞ q(uv′ − vu′)(t) = 0 and hence (4.12) follows
as (4.9) shows that q(uv′ − vu′)(t) is a decreasing function for t > tv .

Now, write, as above, v̂ := (sinh t)αv, û := (sinh t)αu and let Ev̂(t), Eû(t) be
the related auxiliary energies. For any T > 0, t ∈ (0, T ) and ε > 0 we have

Ev̂(T )−γ 2(t)Eû(T )=Ev̂(ε)−γ 2(t)Eû(ε)+1

2

∫ T

ε

G ′(τ )[v̂2−γ 2(t)û2](τ )dτ (4.13)

We first consider the case λ < 2 (n−1)2(p+1)

(p+3)2 (in case n ≥ 3, p + 1 = 2∗ this

means λ <
n(n−2)

4 ). Here the arguments are the same as in the proof of Step 2
in Proposition 4.4. If n ≥ 3, by Lemma 4.3 Ev̂(ε), Eû(ε) go to zero as ε goes to
zero and as T goes to infinity and, by Lemma 4.2-(ii), G ′(t) < 0 for all t > 0 if
p+1 = 2∗ while, if p+1 < 2∗, there is t̃ ∈ (0, +∞] such that G ′ > 0 in (0, t̃) and
G ′ < 0 if t > t̃ . Thus, taking in (4.13) t = 0 if p + 1 = 2∗ and t = t̃ if p + 1 < 2∗
and then sending ε to zero and T to infinity, we find

0 = 1

2

∫ ∞

0
G ′(τ )[v̂2 − γ 2(t)û2](τ )dτ < 0

a contradiction. If n = 2, G ′(t) < 0 ∀ t by Lemma 4.2-(i) and, by Lemma 4.3-(ii),
Ev̂(ε), Eû(ε) go to zero and as T goes to infinity. Taking t = ε in (4.13) and using
Lemma 4.3-(i), we see that

Ev̂(T ) − γ 2(t)Eû(T ) = ◦(1) + 1

2

∫ T

0
G ′[v2(τ ) − γ 2(t)u2(τ )]χ[t,T ]dτ.

Since the integrand is non positive, sending t to zero and T to infinity we get

0 ≤
∫ ∞

0
G ′[v2(τ ) − γ 2(0)u2(τ )]dτ < 0.
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Let us now consider the case n = 2 and λ = 2 (n−1)2(p+1)

(p+3)2 . In this case A = 0 and

G ′ < 0. Taking t = ε in (4.13), it rewrites, making use of (4.7), as

sinhα(p+1) T

2

{
v2(T )

[(
p +1

p +3

)2

+ ◦(1,T )

]
−γ 2(t)u2(T )

[(
p +1

p +3

)2

+ ◦̃(1,T )

]}

=◦(1,t)+ 1

2

∫ T

0
G ′[v2(τ ) − γ 2(t)u2(τ )]χ[t,T ]dτ, ◦(1,T )→T →∞ 0, ◦(1,t)→t→0 0.

Since by Corollary 4.6 v(T ) ≥ u(T ) for T large, taking the lim sup as t goes to
zero, we get the contradiction

sinhα(p+1)T

2
v2(T )

[
(1−γ 2(0))

(
p+1

p+3

)2

+◦(1)

]
≤ 1

2

∫ T

0
G ′[v2(τ )−γ 2(0)u2(τ )]dτ.

Finally, let λ ∈ [ 2(n−1)2(p+1)

(p+3)2 ,
(n−1)2

4

]
, n ≥ 3. Thus G ′ > 0, and Ev̂(0) = 0. So

Ev̂(T ) − γ 2(T )Eû(T ) = 1

2

∫ T

0
G ′(τ )[v̂2(τ ) − γ 2(T )û2(τ )]dτ ∀ T > 0 (4.14)

where the right hand side is negative and decreasing in T ; but this is impossible
because

Ev̂(T ) − γ 2(T )Eû(T ) →T →+∞ 0. (4.15)

Proof of (4.15). Notice first that (4.5) and
∣∣ v′

v

∣∣ bounded give

Ev̂(T ) = sinhα(p+1) T

2
v2(T )

[
α2+2α

v′

v
+

(
v′

v

)2

+ O(e−2T ) + 2v p−1(T )

p + 1
+ A

]

= sinhα(p+1) T

2
v2(T )

[
α2+ A + 2α

v′

v
+

(
v′

v

)2
]

+ ◦(1) as T → +∞.

because α(p + 1)− (n − 1) < 2 and v p+1(T ) ≤ cεe−[( (p+1)(n−1)
2 )−ε]T and α < n−1

2 .
Similarly for Eû(T ). From this, Lemma 3.4 and Lemma 3.6 we derive

Ev̂(T ) − γ 2(T )Eû(T ) = sinhα(p+1) T

2

v(T )

u(T )
(uv′ − vu′)

[
2α + (

v′(T )

v(T )
+ u′(T )

u(T )
)

]

= O
(

e( ε
2 +α(p+1))T

)
(uv′ − vu′)(T )

[
2α − (n − 1 +

√
(n − 1)2 − 4λ) + ◦(1)

]

Now, (4.15) follows from 0 < u2(T )γ ′(T ) = (uv′ − vu′)(T ) ≤ cεe−[ (n−1)(p+1)
2 −ε]t

and q(uv′ − vu′)(T ) = ∫ ∞
T quv(v p−1 − u p−1) ≤ ∫ ∞

T e−[ (n−1)(p−1)
2 −ε]T for T

large.



ON A SEMILINEAR ELLIPTIC EQUATION IN H
n 657

5. Existence and nonexistence

We start proving the non existence results stated in the Introduction.

Proof of Theorems 1.1 and 1.6. First, let λ >
(n−1)2

4 and assume, by contradiction,
that (Eqλ) has a positive solution. Recall that if � ⊂ H is a smooth bounded
domain, then λ1(�), the first Dirichlet eigenvalue of −�H in �, has the property
(see [4])

λ1(�) = sup{λ : �Hφ + λφ ≤ 0 for some φ > 0 in �}.
Therefore λ1(�) ≥ λ for any smooth and bounded � and in particular for any
geodesic ball. This is a contradiction because the first eigenvalue of the geodesic

ball converges to (n−1)2

4 as the radius goes to infinity (see [10, Chapter II, Section

5, Theorem 5]). Non existence of H1(H) positive solutions in case λ = (n−1)2

4 has
been discussed in Remark 3.7.

Next, let n ≥ 3, p = 2∗ − 1 and λ <
n(n−2)

4 and assume, by contradiction, that
(Eqλ) has a positive entire solution. From Theorem 2.1 we know that the solution
has hyperbolic symmetry and hence (3.4) has a solution. Let û and Eû be as in
Section 4. Then it follows from Lemma 4.2 and Lemma 4.3 that d

dt Êû(t) < 0 and

Êû(0) = 0 = Êû(∞) which is a contradiction.
Finally, when n ≥ 3, p = 2∗ − 1 and λ = n(n−2)

4 , non existence of positive
entire solutions was derived in Remark 4.5

Proof of Theorem 1.7. Assume by contradiction that u > 0 is a solution of

u′′ + 2

tanh t
u′ + λu + u5 = 0, u > 0, u′(0) = 0 (5.1)

satisfying the estimates in Lemma 3.4 and 3.6 when λ < 1 and λ = 1 respectively.
In view of Theorems 1.1 and 1.6 we can assume that 3

4 < λ ≤ 1.
We will arrive at a contradiction by means of a Pohozaev type identity (cf. [26]

and [27]).
Let f : [0, ∞) → [0, ∞) be smooth, with f (0) = 0. Multipling (5.1) by

(sinh2 t) f u′ and integrating on [0, T ], T > 0, we get

sinh2 T f (T )

[
(u′(T ))2

2
+ λu2(T )

2
+ u6(T )

6

]

=
∫ T

0

[
h(t)(u′(t))2 + g(t)

(
λu2(t)

2
+ u6(t)

6

)] (5.2)

where g and h are given by

g(t) = f sinh 2t + f ′ sinh2 t, and h(t) = 1

2

[
f ′ sinh2 t − f sinh 2t

]
. (5.3)
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Multiplying (5.1) by hu and integrating by parts, we get

∫ T

0

[
h′′

2
− h′

tanh t
+ h

sinh2 t
+ λh

]
u2 +

∫ T

0
hu6 −

∫ T

0
h(u′)2

= h′(T )u2(T )

2
− h(T )u(T )u′(T ) − h(T )u2(T )

tanh T
.

(5.4)

By substituting (5.4) in (5.2) we get

sinh2 T f (T )

[
(u′(T ))2

2
+ λu2(T )

2
+ u6(T )

6

]

+
[

h′(T )

2
− h(T )

tanh T
− h(T )u′(T )

u(T )

]
u2(T ) =

∫ T

0

[
A(t)u2 + B(t)u6

] (5.5)

where A and B are as follows

A(t) = h′′

2
− h′

tanh t
+ h

sinh2 t
+ λh + λ

2
( f sinh 2t + f ′ sinh2 t) (5.6)

B(t) = 1

6

(
f sinh 2t + f ′ sinh2 t + 6h

)
. (5.7)

Let us consider the two cases:

Case 1. λ = 1. In this case we choose f (t) = t. Then

h(t) = 1

2

(
sinh2 t − t sinh 2t

)
, A(t) ≡ 0

B(t) = −2 sinh t

3
[t cosh t − sinh t] < 0, ∀ t > 0.

Now let us consider the left hand side of (5.5). We know from (3.25) that u′(T ) =
−u(T ) + ◦(1). In fact from the proof of (3.25) we observe that

u′(T ) = −u(T ) + O(e−αt ), α > 1 as T → ∞.

Using this fact and (3.25), the left hand side of (5.5) reduces to

[
T sinh2 T − T

2
cosh 2T

]
u2(T ) + ◦(1) = ◦(1) as T → ∞.

Thus taking T → ∞ in (5.5) we get the left hand side to be zero while the right
hand side is negative, a contradiction. This complets the proof when λ = 1.

Case 2. 3
4 < λ < 1. Choose f (t) = sinh ωt where ω = 2

√
1 − λ.
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Then we have f ′(t) = ω cosh ωt, f ′′(t) = ω2 f and f ′′′(t) = ω3 cosh ωt =
ω2 f ′. Direct calculation gives

h(t) = 1

2

(
f ′ sinh2 t − f sinh 2t

)
, A(t) ≡ 0

B(t) = −2 sinh t

3
[(sinh ωt) cosh t − ω(cosh ωt) sinh t] < 0.

Now we will estimate the left hand side of (5.5). Using Lemma 3.4 we can estimate

sinh2 T f (T )

[
(u′(T ))2

2
+ λu2(T )

2
+ u6(T )

6

]

= 1

8

[
1 + √

1 − λ + ◦(1)
]

u2(T )e2(1+√
1−λ)T + ◦(1).

and [
h′(T )

2
− h(T )

tanh T
− h(T )u′(T )

u(T )

]
u2(T )

= 1

8

[
1 − 2λ − √

1 − λ + ◦(1)
]

u2(T )e2(1+√
1−λ)T + ◦(1).

Thus the left hand side of (5.5) becomes 1
4 [1 − λ + ◦(1)]u2(T )e2(1+√

1−λ)T + ◦(1).
Taking T → ∞ in (5.5) we get the left hand side to be nonnegative while the right
hand side is negative, contradiction. This complets the proof.

We end this section by proving the existence results.
We will prove in fact existence of ground state solutions. To this extent, given

λ ≤ (n−1)2

4 , let Hλ denote the completion of C∞
c (Hn) with respect to the norm

||u||2λ = ∫
H

[|∇Hu|2 − λu2
]

dVH (see Section 1). Denoted by || · ||λ and 〈, 〉λ the
norm and, respectively, the inner product in Hλ, let us define

I (u) = ||u||2λ(∫
H

|u|p+1dVH

) 2
p+1

, u ∈ Hλ, u �= 0, Sλ,p = inf
u∈Hλ

I (u). (5.8)

From (1.2) we have Sλ,p > 0 for 1 < p ≤ 2∗ − 1 if n ≥ 3 and 1 < p < ∞ when
n = 2. If Sλ,p is achieved at some u ∈ Hλ, then, up to a constant multiple, u will
solve (Eqλ).

We now restate and then prove Theorem 1.4 and Theorem 1.5.

Theorem 5.1. Let λ ≤ (n−1)2

4 . Let p > 1 if n = 2 and 1 < p < 2∗ − 1 if n ≥ 3.
Then Sλ,p is achieved in Hλ and hence (Eqλ) has a positive finite energy solution.

Theorem 5.2. Let n ≥ 4, p = 2∗ − 1 and n(n−2)
4 < λ ≤ (n−1)2

4 . Then Sλ,p is
achieved in Hλ and hence (Eqλ) has a positive finite energy solution.
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Proofs of Theorem 5.1 and T heorem5.2. Let

N :=
{

u ∈ Hλ : u �= 0, ||u||2λ =
∫

H

|u|p+1dVH

}

be the Nehari manifold. We notice that Sλ,p = infu∈N I (u) and I (u) = ||u||
2(p−1)

p+1
λ =[∫

H
|u|p+1dVH

] p−1
p+1 , ∀ u ∈ N .

In order to show that Sλ,p is achieved, it is enough to exhibit a minimizing
sequence un ∈ N such that un(x) → u(x) for a.e. x for some u ∈ N because

then
[∫

H
|u|p+1dVH

] p−1
p+1 ≤ Sλ,p by Fatou’s lemma while the opposite inequality

follows from the definition of Sλ,p and the fact that u ∈ N .

So, let un ∈ N be a minimizing sequence. Clearly, un is bounded in Hλ. We
will show that, up to dilations and translations, un converges weakly, and pointwise,
to some u ∈ N . To begin with, given z0 ∈ Rn−1 and R > 0 let B(z0, R) :=
{(r, z) ∈ H : r2 + |z − z0|2 < R}. Let 0 < δ < (Sλ,p)

p+1
p−1 . Using the concentration

function Qn(R) = supz0∈Rn−1

∫
B(z0,R)

|un|p+1 dVH, we can find zn ∈ Rn−1 and
Rn > 0 such that

δ =
∫

B(zn,Rn)

|un|p+1dVH = sup
z0∈Rn−1

∫
B(z0,Rn)

|un|p+1dVH.

Define vn(r, z) = un((0, zn) + Rn(r, z)). Then vn ∈ N and is again minimizing,

i.e. ||vn||2λ = ∫
H

|vn|p+1dVH → (Sc,p)
p+1
p−1 , and, moreover,

δ =
∫

B(0,1)

|vn|p+1dVH = sup
z0∈Rn−1

∫
B(z0,1)

|vn|p+1dVH. (5.9)

By Ekeland principle we may assume vn is a Palais-Smale sequence, i.e.

〈vn, u〉λ =
∫

H

|vn|p−1vnu dVH + o(1) (5.10)

uniformly for u in bounded sets of Hλ. We can also assume vn ⇀ v for some
v ∈ Hλ, pointwise and in Lq

loc(H
n) for every q < 2∗. Choosing u = v in (5.10),

we get, passing to the limit, ||v||2λ = ∫
H

|v|p+1 dVH.
Thus, in order to prove that v ∈ N , it remains to show that v �= 0.

Assume, by contradiction, that v = 0. We claim that v = 0 implies that for
every z0 ∈ Rn−1 and every φ ∈ C∞

c (B(z0, 1)), 0 ≤ φ ≤ 1 it results∫
H

|φvn|p+1dVH → 0 as n → ∞ (5.11)

(note that φ need not vanish on {(0, z) : z ∈ Rn−1}).
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Let us prove this claim. Using φ2vn as test function in (5.10) we get

〈vn, φ
2vn〉λ =

∫
H

|vn|p−1(φvn)
2 + o(1). (5.12)

Now, if λ <
(n−1)2

4 , then 〈vn, φ
2vn〉λ = ∫

H

[〈∇Hvn, ∇H(φ2vn)〉 − λ(φvn)
2
]

dVH =∫
H

|∇H(φvn)|2dVH − ∫
H

r2|∇φ|2v2
ndVH + ◦(1) = ∫

H
|∇H(φvn)|2dVH + ◦(1), i.e.

〈vn, φ
2vn〉λ = ||φvn||2λ + o(1). (5.13)

The same holds true if λ= (n−1)2

4 , because, if T vn is as in Lemma 2.2,〈vn, φ
2vn〉H=

1
2π

∫
Rn+1 ∇T vn∇(T (φ2vn)) dx = 1

2π

∫
Rn+1 |∇(T (φvn))|2 dx + o(1) = ||φvn||2λ +

o(1).

Equations (5.13) and (5.12) give ||φvn||2λ = ∫
H

|vn|p−1(φvn)
2dVH + o(1)

which in turn implies, by Cauchy Schwartz and S
1
2
λ,p||φvn||p+1 ≤ ||φvn||λ,

Sλ,p

(∫
H

|φvn|p+1
) 2

p+1 ≤
(∫

H

|φvn|p+1
) 2

p+1
(∫

B(z0,1)

|vn|p+1
) p−1

p+1 + o(1)

and (5.11) follows, in view of the choice of δ.
Now, denoted by B((1, 0), R) the Euclidean ball of radius R and centre at

(1, 0) ∈ R × Rn−1, equations (5.9) and (5.11) clearly imply that

lim inf
n→∞

∫
B((1,0),R)

|vn|p+1dVH > 0 ∀ R > 0. (5.14)

This is impossible if p + 1 < 2∗, because we assumed v = 0 and then Theorem 5.1
is proved.

We are left with the critical case p + 1 = 2∗.
To rule out (5.14) also in the critical case we need to study the sequence inside

H. To do this, let 0 < R < 1 and ψ ∈ C∞
c (B((1, 0), R)) be such that ψ = 1 on

B
(
(1, 0), R

2

)
and 0 ≤ ψ ≤ 1. Proceeding as before we will get

Sλ,p

(∫
H

|ψvn|p+1
) 2

p+1 ≤
(∫

H

|ψvn|p+1
) 2

p+1
(∫

B((1,0),R)

|vn|p+1
) p−1

p+1 + o(1).

In view of (5.14), this implies

lim inf
n→∞

∫
B((1,0),R)

|vn|p+1dVH ≥ (Sλ,p)
p+1
p−1 ∀ R > 0
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and hence
∫

H\B((1,0),R)
|vn|p+1 → 0 for any R > 0. In turn, this implies, in view

of (5.10),

∫
H

[
|∇H(ψvn)|2 − λ(ψvn)

2
]

dVH =
∫

H

|vn|p−1(ψvn)
2dVH + o(1)

=
∫

H

|ψvn|p+1dVH + o(1)

where ψ is as above. Therefore I (ψvn) → Sλ,p, ψvn has compact support in Hn

and hence ψvn ∈ H1(Hn) (see Lemma 2.3) and ||ψvn||2 → 0.

Let us observe that if w ∈ C∞
c (Rn+) and we define w̃(r, z) = r

n−2
2 w(r, z) ,

then

I (w̃) =

∫
R

n+

[
|∇w|2 −

(
λ − n(n − 2)

4

)
w2

r2

]
drdz

(∫
R

n+
|w|2∗

drdz

) 2
2∗

.

Since λ >
n(n−2)

4 , we obtain from [5]

Sλ,p = inf
w∈C∞

c (Rn+)
I (w̃) < S

where S is the best constant in the Euclidean Sobolev inequality in Rn . But we have

Sλ,p = lim
n→∞ I (ψvn) = lim

n→∞

∫
R

n+

[
|∇wn|2 −

(
λ − n(n − 2)

4

)
w2

n

r2

]
drdz

(∫
R

n+
|wn|2∗

drdz

) 2
2∗

where wn(r, z) = r− n−2
2 (ψvn)(r, z). Since ||ψvn||2 → 0, ||ψvn||22 = ∫

R
n+

w2
n

r2 drdz

and
∫

R
n+ |wn|2∗

drdz → (Sλ,p)
p+1
p−1 , we get

Sλ,p = lim
n→∞

(∫
R

n+
|∇wn|2 drdz

) (∫
R

n+
|wn|2∗

drdz

)− 2
2∗

≥ S

which is a contradiction. This proves Theorem 5.2.
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6. Some related problems

As mentioned in the Introduction, (Eq)λ appears while dealing with critical elliptic
PDE with cylindrical symmetry. We start considering the Euler-Lagrange equation
associated to Hardy-Sobolev-Maz’ya inequalities (B.5):

�u(x) + µ
u(x)

|y|2 + |u(x)|p−2u(x)

|y|t = 0 x = (y, z) ∈ R
k × R

h (6.1)

where p > 2 and p ≤ 2N
N−2 , N := k + h, if N ≥ 3 and t := N − N−2

2 p, µ ∈ R. In
case k = 1 we also require u(0, z) ≡ 0.

Existence of entire positive solutions is proved in [21] for µ < ( k−2
2 )2 if p ∈

(2, 2∗) and for µ ∈ (0, ( k−2
2 )2) and N ≥ 4 if p = 2∗. An existence result in case

0 < µ := ( k−2
2 )2 and p = 2∗ was established in [28]. These results extend (in case

k �= 2) a result in [6], where k > 1 and µ = 0.
Equation (6.1) does not carry radial symmetry in general, but has indeed cylin-

drical symmetry; this might imply cylindrical symmetry of solutions (actually, ac-
cording to [16], ground state solutions are not cylindrically symmetric if µ � 0).
This was in fact proved in case µ = 0: existence of cylindrically symmetric min-
imizers was obtained in [6] and [25] by means of rearrengement techniques and
cylindrical symmetry of any minimizer was proved in [24]; finally, using moving
plane techniques, cylindrical symmetry of any positive entire solution of (6.1) was
proved in [13], as a first step towards the identification of positive entire solutions
in the special case t = 1.

Now, if w(y, z) = w(|y|, z) is a cylindrically symmetric solution of (6.1), then

the transformation u(r, z) := r
N−2

2 w(r, z) (an isometry between Sobolev spaces,
see Appendix B below) gives a solution of (Eqλ) (in Rn+) with

n = h + 1, λ = µ + h2 − (k − 2)2

4

and viceversa. So, we can derive from Theorems 1.4 and 1.5 existence of cylindri-
cally symmetric positive entire solutions for (6.1):

• for every µ ≤ ( k−2
2

)2 if k ≥ 2 and p ≤ 2N
N−2 or k = 1 and p < 2N

N−2

• for every µ ∈ (
0, 1

4

]
if k = 1, p = 2N

N−2 and h ≥ 3.

Our uniqueness/nonexistence results translate into uniqueness/nonexistence of
cylindrically symmetric positive entire solutions. In particular, in case k = 1,
there are no symmetric solutions if h ≥ 3, p = 2N

N−2 and µ /∈ (0, 1
4 ] or h = 2,

p = 5 whatever is µ. However, in case µ = 0, where we know positive entire
solutions are symmetric, we can conclude that (6.1) has exactly one (up to dilations
and translations) positive entire solution, and this solution has cylindrical symmetry.
This uniqueness result was already proved in [13], but with a completely different
method.
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In some special cases we know explicit solutions for (Eqλ) (see Remark 3.8)
and hence for (6.1). We thus obtain in some cases a complete classification of
(cylindrically symmetric) positive entire solutions. More precisely, given µ ≤
(k−2)2

4 , let p = 2 + 2
h+

√
(k−2)2−4µ

. We have the solution

u(y, z) = c(µ, h, k)
|y|

√
(k−2)2−4µ−(k−2)

2[
(1 + |y|)2 + |z|2] 1

p−2

.

If µ = 0 and k ≥ 2, then p = 2 N−1
N−2 and u is as in [13]: we recover the classification

result therein (in fact extended to the case k = 1).

If µ = (k−2)2

4 , k ≥ 3 and h = k − 2 then p = 2 + 2
h = 2N

N−2 ; in this case

u(y, z) =
[

c(µ, N )

|y| [(1 + |y|)2 + |z|2]
] N−2

4

is the extremal for a sharp Hardy-Sobolev-Maz’ya inequality (cf. [28]).
Another class of equations is given by critical Grushin-type equations

�yϕ + (1 + α)2|y|2α�zϕ + ϕ
Q+2
Q−2 = 0 (y, z) ∈ R

k × R
h (6.2)

where α > 0, Q = k + h(1 + α), k, h ≥ 1 (see [23]). Solutions of (6.2) are
extremals of the weighted Sobolev inequality

S̃

(∫
RN

|u| 2Q
Q−2 dydz

) Q−2
Q ≤

∫
RN

(
|∇yu|2 + (α + 1)2|y|2α|∇zu|2

)
dydz. (6.3)

A cylindrically symmetric solution ϕ of (6.2) gives, via the change of variables

�(r, z) = r
Q−2

2(1+α) ϕ(r
1

1+α , z), r = |y|, a solution of (Eqλ) (see [9]), with

n = h + 1, λ = 1

4

[
h2 −

(
k − 2

α + 1

)2
]

, p = Q + 2

Q − 2
< 2∗ − 1.

Notice that, when k = 2, solutions of (6.2) correspond to solutions of (Eqλ) with

λ = (n−1)2

4 (and similarly for (6.1)).
Again, if k �= 2, extremals for (6.3) are in H1(H). This follows by

‖|u‖|2 :=
∫

RN

(
|∇yu|2 + (α + 1)2|y|2α|∇zu|2

)
dydz ≥

(
k − 2

2

)2 ∫
RN

u2

|y|2
(a Hardy type inequality, see [12]) and the easy-to-check identity

ωk(α + 1)

∫
H

|∇Hû|2 +
(

k − 2

2(α + 1)

)2

û2dVH = ‖|u‖| +
(

h(α + 1)

2

)2 ∫
RN

u2

|y|2 .
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In particular, Theorem 1.3, with n ≥ 3, yields uniqueness of cylindrically symmet-
ric positive entire solutions of (6.2) if k ≥ 1 and h ≥ 2. In case h = 1, it results
2(p+1)

(p+3)2 = 1
4

(
1 − 1

(Q−1
)2 ) ≥ 1

4

[
1 − ( k−2

α+1

)2] unless k = 2, where λ = 1
4 (a case

which is not covered by Theorem 1.3) and we get uniqueness also in case h = 1,
k �= 2, thus improving the uniqueness result in [23].

A. Appendix

For convenience of the reader, we recall some basic facts on the models for H used
in this paper.

The half space model Rn+

It is given by R+ × Rn−1 endowed with the Riemannian metric
δi j

r2 . The associated
distance is given by

dRn+((r, z), (r0, z0)) = 2 tanh−1

(
|z − z0|2 + (r − r0)

2

|z − z0|2 + (r + r0)2

) 1
2

, (r, z) ∈ R
+×R

n−1.

Easily, the hyperbolic sphere SR(r0, z0) centered in (r0, z0) and of radius R is the
euclidean sphere centered at (r0 cosh R, z0) and radius r0 sinh R. Also, it is given
by r0SR + (0, z0), a dilation and translation of the hyperbolic sphere of radius R

and center at (1, 0), which writes as (1+r)2+|z|2
2r = 1 + cosh R.

A function u on Rn+ has hyperbolic symmetry if its level sets are hyperbolic
spheres centered at some (r0, z0), or, equivalently, if up to dilations and translations
in z it is constant on hyperbolic spheres centered at (1, 0).

The hyperbolic gradient ∇H and the hyperbolic laplacian �H write, in Rn+, as

∇H = r∇, �H = r2� − (n − 2)r∂r .

In particular, since the volume form is given by dVH = drdz
rn , the H1(H) norm

writes as

‖u‖2
H

=
∫

R+×Rn−1

[
|∇u|2
rn−2

+ u2

rn

]
drdz.

Let us now write some explicit (hyperbolically symmetric) solutions of (Eqλ).

Given λ ≤ (n−1)2

4 , let p = 1 + 2

n−1+
√

(n−1)2−4λ
. By direct computations, one

can see that for some constant c = c(λ, n),

u(r, z) =
[

2cr

(1 + r)2 + |z|2
] n−1+

√
(n−1)2−4λ
2 =

[
c

1 + cosh R

] 1
p−1
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is an entire solution of (Eqλ), only depending on the hyperbolic distance R of (r, z)

from (1, 0). Notice that u ∈ H1(H) whenever λ <
(n−1)2

4 . By Theorem (1.3), it
is the unique entire solution, up to hyperbolic isometries. In the limiting case, i.e.

λ = (n−1)2

4 , u ∈ H but is not in H1(H).

If, instead, p = 1 + 4

n−1+
√

(n−1)2−4λ
, λ ≤ (n−1)2

4 , we have, for a suitable

constant c, the solution

ũ(r, z) =
[

2cr

1 + r2 + |z|2
] n−1+

√
(n−1)2−4λ
2 =

[
c

cosh2 R

] 1
p−1

.

As above, in case λ = (n−1)2

4 , u ∈ H but is not in H1(H).

The ball model Bn

It is given by Bn := {ξ ∈ Rn : |ξ | < 1} endowed with the Riemannian metric
4δi j

(1−|ξ |2)2 . The associated distance is given by

dBn (ξ, ξ0) = 2 tanh−1

(
|ξ − ξ0|√

1 − 2 < ξ, ξ0 > +|ξ |2 |ξ0|2

) 1
2

.

The hyperbolic gradient ∇H and the hyperbolic laplacian �H write as

∇H = 1 − |ξ |2
2

∇, �H =
(

1 − |ξ |2
2

)2

� + (n − 2)
1 − |ξ |2

2
< ξ, ∇ > .

The standard hyperbolic isometry M between the two models is given as follows.
If e0, e j , j = 1, . . . , n − 1 is the standard basis in R × Rn−1, then

M(r, z) :=
(

1 − r2 − |z|2
(1 + r)2 + |z|2 ,

2z

(1 + r)2 + |z|2
)

= 2
x + e0

|x + e0|2 − e0, x = (r, z).

M is a bijection of Rn \ {−e0} onto itself, M(R+ × Rn−1) = Bn and M = M−1.
Notice that, if ξ := M(r, z), it results

|ξ |2 = (1 − r)2 + |z|2
(1 + r)2 + |z|2 ,

1 − |ξ |2
2

= 2r

(1 + r)2 + |z|2 ,
1 − |ξ |2
1 + |ξ |2 = 2r

1 + r2 + |z|2 .

So, we see that M sends a hyperbolic sphere in Rn+ centered at (1, 0) into the
hyperbolic sphere in Bn centered at 0 with (of course) the same radius. In particular,
a function on Bn has hyperbolic symmetry iff, up to an hyperbolic isometry, is a
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radial function. Also, we see that the special solutions of (Eqλ) described above,
rewrite in the ball model as

u(ξ)=
[

c(λ, n)
1−|ξ |2

2

] n−1+
√

(n−1)2−4λ
2

, ũ(ξ)=
[√

c̃(λ, n)
1−|ξ |2
1+|ξ |2

] n−1+
√

(n−1)2−4λ
2

.

B. Appendix

We derive here Poincaré-Sobolev inequalities (1.2) from Hardy-Sobolev-Maz’ya
inequalities (B.5). We will use here Rn+, as a model for Hn , n ≥ 2.

B.1. Isometric Sobolev spaces and Poincaré inequality in Hn

Let u ∈ C∞
0 (Hn), k ∈ N and N := k + (n − 1). Define

v(y, z) = (Tku)(y, z) := |y|− N−2
2 u(|y|, z), y ∈ R

k, z ∈ R
n−1.

Thus Tku ∈ C∞
0 (RN ) , has cylindrical symmetry and is compactely supported by

Rk × Rn−1 \ Rn−1. Notice that, if k ≥ 2, Tk(C∞
0 (Hn)) is dense in D1

cyl(R
N ), the

closure in D1(RN ) of cylindrically symmetric C∞
0 (RN ) functions.

We want to shaw isometric properties of Tk .
Let p > 2. In addition, let p ≤ 2N

N−2 if N ≥ 3 and set t := N − N−2
2 p. Then

1

ωk

∫
RN

v p

|y|t dydz =
∫

Hn
u pdVHn (B.1)

1

ωk

∫
RN

|∇v|2 =
∫

Hn

[
|∇Hn u|2 − (n − 1)2 − (k − 2)2

4
u2

]
dVHn (B.2)

(ωk is the volume of the k dimensional unite sphere, ω1 := 2). From (B.1) (with
t = 2), (B.2) and Hardy inequality ( [20, 2.1.6 Corollary 3]) we derive

ωk

∫
Hn

[
|∇Hn u|2 − (n − 1)2

4
u2

]
dVHn

=
∫

Rk×Rn−1
|∇v|2dydz − (k − 2)2

4

∫
Rk×Rn−1

v2

|y|2 dydz ≥ 0

(B.3)

for all v ∈ C∞
0 (Rk × Rh), subject to the condition u(0, z) ≡ 0 in case k = 1.

In particular, we get the well known Poincaré inequality∫
Hn

|∇Hn u|2dVHn ≥ (n − 1)2

4

∫
Hn

u2dVHn ∀u ∈ H1(Hn). (B.4)



668 GIANNI MANCINI AND KUNNATH SANDEEP

Notice that (n−1)2

4 is the best constant in (B.4) (i.e. (1.1) holds true) because (k−2)2

4
is the best constant in the Hardy ineqaulity.

As a consequence of (B.4), the right hand side in (B.2) defines, for k �= 2, an
equivalent norm on H1(Hn). Thus Tk, k ≥ 3 extends to an isometric isomorphism
between H1(Hn) and D1

cyl(R
N ). Similarly if k = 1, provided D1

cyl(R
N ) is replaced

by the closure in D1(RN ) of C∞
0 (R+ × Rn−1). Case k = 2 was considered in

Lemma 2.2.

B.2. HSM inequality implies Poincaré-Sobolev inequality in Hn, n ≥ 2.

Let us first recall the HSM inequality.

Hardy-Sobolev-Maz’ya (HSM) inequality (cf. [20, 2.1.6 Corollary 3])

Let k, h ∈ N, N = k + h. Let p > 2 and p ≤ 2N
N−2 if N ≥ 3. Let t = N − N−2

2 p
Then there is c = c(N , p) such that

(∫
Rk×Rh

v p

|y|t dydz

) 2
p ≤ c

∫
Rk×Rh

[
|∇v|2 −

(
k − 2

2

)2
v2

|y|2
]

dydz (B.5)

for all u ∈ C∞
0 (Rk × Rh), subject to the condition u(0, z) ≡ 0 in case k = 1.

Using the equality in (B.3) with k = 1, (B.5) and then (B.1), we readily get

Sn,p

(∫
H

|u|pdVH

) 2
p ≤

∫
H

[
|∇Hu|2 − (n − 1)2

4
u2

]
dVH ∀ u ∈ C∞

0 (H)

(p as in (HSM) inequality). This is Poincaré-Sobolev inequality (1.2).
Since in [20] inequality (B.5) is stated only in case N > 2, we indicate here

the arguments to obtain (B.5). Actually, we follow closely [20].
Let us start with a basic inequality

Maz’ya inequality ([20, 2.1.6 Corollary 1])

Given h, k ∈ N, let N = k + h, α > 1 − k, 1 ≤ q ≤ N
N−1 , β = α − 1 + N q−1

q .
Then

(∫
Rk×Rh

|y|βq |u|qdydz

) 1
q ≤ c

∫
Rk×Rh

|y|α|∇u|dydz ∀ u ∈ C∞
0 (RN ).

A choice of α leads to the following inequality (cf. [20, 2.1.6 Corollary 2]):

(∫
Rk×Rh

|y| p−2
2 (N−k)−k |u|pdydz

) 2
p ≤ c

∫
Rk×Rh

|y|2−k |∇u|2dydz (B.6)
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for every p > 2 and u ∈ C∞
0 (RN ). In fact, let us choose in Maz’ya inequality

q = 2p

p + 2
, α = p − 2

4
(N − k) − (k − 1).

Notice that if N > 2 then 1 < q ≤ N
N−1 iff 2 < p ≤ 2N

N−2 while if N = 2 then

1 < q < N
N−1 for any p > 2. Correspondingly, let

β = p − 2

4
(N − k) − (k − 1) − 1 + N

p − 2

2p
= p + 2

2p

[
p − 2

2
(N − k) − k

]
.

With this choice, and writing Maz’ya inequality for u
p+2

2 , we get

(∫
Rk×Rh

|y| p−2
2 (N−k)−k |u|pdydz

) p+2
2p

≤ c
∫

Rk×Rh
|y| p−2

4 (N−k)− k
2 |u| p

2 |y|− k−2
2 |∇u|dydz

≤ c

(∫
Rk×Rh

|y| p−2
2 (N−k)−k |u|p

) 1
2
(∫

Rk×Rh
|y|2−k |∇u|2

) 1
2

and hence (B.6). Now, if u ∈ C∞
0 (RN ) and we plug |y| k−2

2 u in (B.6) we obtain

(∫
Rk×Rh

|y| p−2
2 (N−k)−k+p k−2

2 |u|pdydz

) 2
p

≤
∫

Rk×Rh
|y|2−k

[ (
k − 2

2

)2

|y|k−4u2 + |y|k−2|∇u|2.

+ (k − 2)|y|k−4u < y, ∇u >

]
dydz

=
∫

Rk×Rh

[
|∇u|2 +

(
k − 2

2

)2 |u|2
|y|2 + (k − 2) <

y

|y|2 , ∇u >

]
dydz

provided u(0, z) ≡ 0 in case k = 1. Since, integrating by parts,

2
k∑

j=1

∫
Rk×Rh

u
y j

|y|2
∂u

∂y j
= −(k − 2)

∫
Rk×Rh

|u|2
|y|2

while p−2
2 (N − k) − k + p k−2

2 = −N + p(N−2)
2 , (B.5) follows.
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