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Harnack estimates for weak supersolutions
to nonlinear degenerate parabolic equations

TUOMO KUUSI

Abstract. In this work we prove both local and global Harnack estimates for
weak supersolutions to second order nonlinear degenerate parabolic partial dif-
ferential equations in divergence form. We reduce the proof to an analysis of
so-called hot and cold alternatives, and use the expansion of positivity together
with a parabolic type of covering argument. Our proof uses only the properties of
weak supersolutions. In particular, no comparison to weak solutions is needed.
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1. Introduction

Harnack estimates play a central role in the regularity theory of partial differential
equations. In this work we prove the parabolic weak Harnack estimate for weak
supersolutions of the equation

∂u

∂t
− div

(
A(x, t, u, ∇u)

) = 0 (1.1)

in Rn × R, where the function A has a growth of order p, p > 2, with respect to
the norm of the gradient. In addition, it is assumed to be a Caratheodory function.
These conditions and the definition of weak supersolutions are described in detail in
Section 2. Our proof uses only measure theoretical arguments and no comparison
to weak solutions is needed.

The problem has a long history in the field of nonlinear degenerate diffusion
equations. The celebrated result of Moser in [24], see also [25] and [26], was the
Harnack inequality for weak solutions to linear parabolic equations with bounded
measurable coefficients. Later Aronson and Serrin [3], Ivanov [18], Kurihara [21]
and Trudinger [27] generalized independently Moser’s result for the quasilinear
case. Trudinger explicitly pointed out that the Harnack inequality for weak solu-
tions is a consequence of the weak Harnack estimate for weak supersolutions and
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reverse Hölder’s inequality for weak subsolutions. He also stated that it is an open
problem what are the suitable generalizations of Harnack estimates for equations
with growth of order p instead of quadratic growth [27, page 206].

Recently DiBenedetto, Gianazza and Vespri made a breakthrough by proving
the intrinsic Harnack inequality for weak solutions to the equation with growth of
order p and bounded measurable coefficients, see [9, 10]. In their proof they use
neither Hölder continuity of solutions nor comparison to any fundamental solution.
They also pay attention to the stability of constants as p → 2. This generalizes
Moser’s result. Their proof uses extensively De Giorgi’s estimates [7].

In this work we prove the weak Harnack estimate. As a consequence we also
obtain the Harnack inequality. Since we operate with weak supersolutions, our
technique differs from the one in [9]. Our emphasis is on the different roles of super-
and subsolutions, which resembles the original approach of Moser and Trudinger.
We show that for the equations with growth of order p, the local weak Harnack
estimate takes the following form.

Theorem 1.1. Let u be a non-negative weak supersolution in B(x0, 8R0) ×(t0, t0+
T0). Then there exist constants Ci = Ci (n, p, structure of A), i = 1, 2, such that
for almost every t0 < t1 < t0 + T0, we have

∫
B(x0,R0)

u(x, t1) dx ≤
(

C1 R p
0

T0 + t0 − t1

)1/(p−2)

+ C2 ess inf
Q

u,

where Q = B(x0, 4R0) × (t1 + T/2, t1 + T ) and

T = min

{
T0 + t0 − t1, C1 R p

0

(∫
B(x0,R0)

u(x, t1) dx

)2−p
}

.

Note that the estimate is intrinsic in sense that the waiting time to take the essential
infimum on the right hand side depends on the solution itself. In the global case a
stronger result holds.

Theorem 1.2. Let u be a non-negative weak supersolution to (1.1) in Rn × (0, T0).
Then there exists a constant C = C(n, p, structure of A) such that for almost every
0 < t0 < T0, every x0 ∈ Rn, R > 0 and 0 < T < T0 − t0 we have∫

B(x0,R)

u(x, t0) dx ≤
(

C R p

T

)1/(p−2)

+ C

(
T

R p

)n/p

ess inf
Q

uλ/p,

where λ = n(p − 2) + p and Q = B(x0, 2R) × (t0 + T/2, t0 + T ).

We begin our proof of the local weak Harnack estimate by showing a Cacciop-
poli type estimate. For transparency of the work, we present all the needed results
arising from the structure of the equation while showing this estimate.
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Next we show that supersolutions have a property called expansion of positiv-
ity. Although our method to show this differs from the one used in [9], the main
point is similar. The contribution here is that we show how to establish the esti-
mate using only the explicit properties of weak supersolutions. A byproduct of our
method is that the stability of the constants as p → 2 follows directly. By stability
we mean that if 2 < p < p0, then the constants may be chosen so that they depend
only on p0.

The core of our proof consists of two lemmas considering so-called hot and
cold alternatives. We study non-negative weak supersolutions to (1.1) in the space-
time cylinder B × (0, T ), where B is a ball. We denote the positive initial mass in
a ball B ′ ⊂ B by M . We show that for instants before T , the values of the super-
solutions are essentially bounded below by a positive uniform constant depending
only on the structure of the equation and M . This, however, realizes after a certain
waiting time. The first case is that the domain is hot. By this we mean that the
supersolution attains large values compared to M in a relatively large set. This can
happen, for instance, if the lateral boundary values are large. The high oscillation
of the supersolution then hides the information about the initial mass. We overcome
the difficulty with a refined Krylov-Safonov covering argument [20] together with
the expansion of positivity. The version of the covering argument we prove here
may be interesting as such. The argument is a parabolic counterpart of the argu-
ment of DiBenedetto and Trudinger in [13] for quasiminimizers. The presence of
the waiting time makes the generalization rather delicate.

The second alternative is that the domain is cold. This means that the essential
supremum of spatial integrals over the larger ball of a small power of the superso-
lution is bounded by a constant independent of M . This leads to a uniform estimate
on the Lq -norm of the supersolution for some large q. This we establish by using
Moser’s iteration technique. The uniform estimate for the L p−1-norm of the gradi-
ent then follows. These estimates, together with the expansion of positivity, imply
the desired result provided that the initial mass M is large enough.

As far as we know, the principal idea of the hot and cold alternatives is new.
One of the main technical challenges of the work arises from the fact that the mea-
sure estimates obtained from the Krylov-Safonov covering argument are realized
after a certain waiting time.

Theorems 1.1 and 1.2 are consequences of lemmas on the hot and cold alter-
natives, and a scaling argument. The constants C1 and C2 in Theorem 1.1 and C in
Theorem 1.2 are stable as p → 2.

The global Harnack estimate, Theorem 1.2, is of the same type that Aronson
and Caffarelli [2] proved for weak solutions to the porous medium equation. The
corresponding result for a more general class of porous medium equations is due
to Dahlberg and Kenig [5]. A good overview of techniques in [5] can be found
in recent monograph [6] by Daskalopoulos and Kenig. See also monographs [29]
and [30] by Vazquez.
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For weak solutions to the evolutionary p–Laplace equation

∂u

∂t
− div

(|∇u|p−2∇u
) = 0,

Theorem 1.2 was proved by DiBenedetto and Herrero [11]. Choe and Lee [4] gen-
eralized it to an equation with a bounded measurable symmetric coefficient matrix
depending only on the spatial variables by applying the method developed in [5].
The methods used in both [2] and [11] rely on the existence of a self similar so-
lution, and, the techniques in [5] and [4] use the special symmetry of the weak
solution. It is not clear how to generalize such methods to more general equations.

Our results apply to the equation

∂u

∂t
−

n∑
i=1

∂

∂xi

(
n∑

j=1

ai j (x, t, u, ∇u)

∣∣∣∣ ∂u

∂x j

∣∣∣∣p−2
∂u

∂x j

)
= 0, (1.2)

where p > 2, ai j (·, ·, u, ξ) is a bounded measurable function for every (u, ξ),
continuous with respect to u and ξ for almost every (x, t) and

A0|ξ |2 ≤
n∑

i, j=1

ai j (x, t, u, ξ)ξiξ j ≤ A1|ξ |2, 0 < A0 < A1 < ∞,

for almost every (x, t) in Rn × R and every (u, ξ) in R × Rn . The particular case
with the identity matrix (ai j ) was studied by Lions in [22].

Weak supersolutions form an important class of functions, especially, in the
analysis of the potential theoretical aspects of nonlinear partial differential equa-
tions in divergence form. Weak supersolutions relate in a natural way to weak
solutions of the equation involving finite non-negative Radon measures on the right
hand side of (1.1). For further discussion in this field, see the work of Acerbi
and Mingione [1], and the references therein. In the elliptic theory, the weak Har-
nack estimate is one of the fundamental estimates – especially in the analysis of
the equation with a non-negative measure on the right hand side. It is likely that
the parabolic version of it will have a similar role. For further discussion on the
potential theoretical aspects, see [17] by Heinonen, Kilpeläinen and Martio.

1.1. Notation

Our notation is standard. We denote the ball in Rn with the radius R and center x as
B(x, R). A space-time cylinder �× (t1, t2) in Rn ×R we call �t1,t2 . The Lebesgue
measure of the set � will be denoted by

∣∣�∣∣. By the notation �′ � � we mean that
�′ belongs to � compactly. By the parabolic boundary of the set �t1,t2 we mean

∂p�t1,t2 = (
∂�t1,t2

) ∪ (
�̄ × {t1}

)
.

We use the symbol C to denote a constant and C = C(·) to describe the arguments
of the constant. The constant may vary from line to line but the arguments are as
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in the statement of the theorem. For the sake of clarity, we enumerate different
constants in some proofs.

We denote the standard mollification in the time direction of the function f :
Rn × R 	→ R as

fh(x, t) =
∫

R

f (x, s)ζ(h, t − s) ds,

where ζ(h, s) is a standard mollifier, whose support is contained in (−h, h), h > 0.
If we have

lim
h↓0

∫
�

(
fh(x, t) − f (x, t)

)2
dx = 0

for some t ∈ R and � open in Rn , we call t as �-Lebesgue instant of u, or simply
Lebesgue instant.

We denote by f+ and f− the non-negative and non-positive part of f , respec-
tively. We use the abbreviation∫

�

f dν = 1

ν(�)

∫
�

f dν

for the averaged integral with respect to the measure ν.

ACKNOWLEDGEMENTS. The author would like to thank Professor Juha Kinnunen
for his many valuable comments and Juhana Siljander for his careful reading of the
earlier version of the manuscript.

2. Weak supersolutions

We are now going to state our assumptions on A and define weak super- and subso-
lutions. Let �T be a domain in Rn × R. We assume that A : �T × R × Rn 	→ Rn

is a Caratheodory function, that is, (x, t) 	→ A(x, t, u, F) is measurable for ev-
ery (u, F) in R × Rn and (u, F) 	→ A(x, t, u, F) is continuous for almost every
(x, t) ∈ �T . We assume that the growth conditions

A(x, t, u, F) · F ≥ A0|F |p, and |A(x, t, u, F)| ≤ A1|F |p−1, (2.1)

p > 2, hold for every (u, F) ∈ R × Rn and for almost every (x, t) ∈ �T . Note
that in our case the assumptions on the growth conditions are slightly less general
than in [9], but this keeps the presentation more transparent. Positive constants A0,
and A1 are called structural, or growth constants of A. If A and Ã are both as
above with the same growth constants, we say that the corresponding equations are
structurally similar.

We assume that the supersolutions belong to the parabolic Sobolev space. Sup-
pose that � is a domain in Rn . The Sobolev space W 1,p(�) is defined to be the
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space of real-valued functions f such that f ∈ L p(�) and the distributional first
partial derivatives ∂ f/∂xi , i = 1, 2, . . . , n, exist in � and belong to L p(�). We
equip the Sobolev space with the norm

‖ f ‖1,p,� =
(∫

�

| f |p dx

)1/p

+
(∫

�

|∇ f |p dx

)1/p

.

The Sobolev space with zero boundary values W 1,p
0 (�) is the closure of C∞

0 (�)

with respect to the Sobolev norm. We denote by L p(t1, t2; W 1,p(�)), t1 < t2,
the parabolic Sobolev space, which contains functions such that for almost every t ,
t1 < t < t2, the function x 	→ u(x, t) belongs to W 1,p(�) and

‖u‖L p(t1,t2;W 1,p(�)) =
(∫ t2

t1

∫
�

(|u(x, t)|p + |∇u(x, t)|p) dx dt

)1/p

< ∞.

The definition of the space L p(t1, t2; W 1,p
0 (�)) is analogous.

Definition 2.1. Let � be an open set in Rn × R. We say that a function u is a weak
solution to (1.1) in �, if for all open �t1,t2 � �, we have u ∈ L p(t1, t2 ; W 1,p(�))

and

−
∫ t2

t1

∫
�

u
∂η

∂t
dx dt +

∫ t2

t1

∫
�

A(x, t, u, ∇u) · ∇η dx dt = 0 (2.2)

for every test function η ∈ C∞
0 (�t1,t2).

A function u is a weak supersolution (subsolution) to (1.1) in �, if for all open
�t1,t2 � �, we have u ∈ L p(t1, t2 ; W 1,p(�)), and the left hand side of (2.2) is
non-negative (non-positive) for all non-negative test functions η ∈ C∞

0 (�t1,t2).

If u is a sub- or supersolution in an open set � which compactly contains
� × (t0, t0 + T0), then almost every t0 < t < t0 + T0 is an �-Lebesgue instant of
u. This is because u belongs to L2(t0, t0 + T0; L2(�)).

Weak sub- and supersolutions admit a scaling property. Let u be a weak super-
solution (subsolution) to (1.1) in

B(x0, R0) × (t0, t0 + T0),

where x0 ∈ Rn , t0 ∈ R and T0, R0 > 0. Then it is an easy calculation to show that
the scaled function

v(ξ, τ ) = 1

γ
u(x1 + Rξ, t1 + T τ), γ =

(
R p

T

)1/(p−2)

,

is a weak supersolution (subsolution) in

B

(
x0 − x1

R
,

R0

R

)
×

(
t0 − t1

T
,

t0 − t1
T

+ T0

T

)
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for every R > 0, T > 0, x1 ∈ Rn and t1 ∈ R, to the structurally similar equation
with

Ã(ξ, τ, v, ∇v) =
(

R

γ

)p−1

A
(

x1 + Rξ, t1 + T τ, γ v,
γ

R
∇v

)
.

2.1. Caccioppoli estimate

In this section we extract all the needed information from the fact that the function
u is a weak supersolution. The obtained result is a consequence of a substitution of
a suitable test function in (2.2). More precisely, the choice depends on u itself. It
is clear that the test function chosen this way is not necessarily smooth, or not even
a Sobolev function. The time derivative of u is, in general, merely a generalized
function. Nevertheless, we may regularize the weak supersolution by using either
Friedrich’s mollifiers, Steklov averages or some other suitable method. Together
with the truncation and approximation argument this justifies the choice of such a
test function.

The following Caccioppoli estimate is one of the key estimates of this work.
Also the byproduct (2.3) will be used in future.

Lemma 2.2. Let ε ∈ R\{−1, 0} and δ > 0. Suppose that u ≥ δ is a weak subsolu-
tion (if ε > 0) or a weak supersolution (if ε < 0) in �τ1,τ2 . Then we have∫ τ2

τ1

∫
�

|∇u|pu−1+εϕ p dx dt + p

A0|ε(1 + ε)| ess sup
τ1<t<τ2

∫
�

u1+εϕ p dx

≤
( A1 p

A0 min{1, |ε|}
)p ∫ τ2

τ1

∫
�

u p−1+ε|∇ϕ|p dx dt

+ p

A0

∫ τ2

τ1

∫
�

u1+ε

(
1

min{1, ε}(1+ε)

∂ϕ p

∂t

)
+

dx dt

for every non-negative ϕ ∈ C∞
0 (�τ1,τ2).

Proof. We first fix ϕ ∈ C∞
0 (�τ1,τ2) and choose h to be small enough so that the

support of ϕh does not intersect the Euclidean boundary of �τ1,τ2 . Here the sub-
script h refers to the standard mollification, see Section 1.1. We formally choose
the test function η = (ψθ j )h , where

ψ = min
{

u−1+ε
h , k|−1+ε|} uhϕ p, k|−1+ε| > δ−1+ε,

and θ j ∈ C∞
0 (τ1, τ2), j = 1, 2, . . ., converges to the characteristic function of the

interval (t1, t2), τ1 < t1 < t2 < τ2, in L p as j → ∞. The test function η is ad-
missible due to the approximation in L p(τ1, τ2; W 1,p

0 (�)) by compactly supported
smooth functions, and, the fact that we may temporarily redefine uh to be zero out-
side the support of ϕ. Note that if ε ≤ 1, then ψ = uε

hϕ p. We substitute the test
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function η into (2.2), change variables, apply Fubini’s theorem, integrate by parts
and let j → ∞. We obtain the following regularized integral inequality∫ t2

t1

∫
�

∂uh

∂t
ψ dx dt +

∫ t2

t1

∫
�

(
A(x, t, u, ∇u)

)
h · ∇ψ dx dt ≥ (≤) 0

for every τ1 < t1 < t2 < τ2. It follows by the properties of standard mollifiers that(
A(x, t, u, ∇u)

)
h · ∇ψ → A(x, t, u, ∇u) · ∇

(
min{u−1+ε, k|−1+ε|}uϕ p

)
in L1(�t1,t2) as h → 0. When ε ≤ 1, or ε > 1 and u < k, the growth condi-
tions (2.1) imply that for almost every (x, t) in the support of ϕ, we have

uε−1ϕ pA(x, t, u, ∇u) · ∇u ≥ A0|∇u|puε−1ϕ p

and

p

ε
uεϕ p−1A(x, t, u, ∇u) · ∇ϕ ≥ −A1 p

|ε| |∇u|p−1ϕ p−1|∇ϕ|uε

= −A0

(
|∇u|u(−1+ε)/pϕ

)p−1
( A1 p

A0|ε|u(p−1+ε)/p|∇ϕ|
)

≥ − (p − 1)

p
A0|∇u|pu−1+εϕ p − A0

p

( A1 p

A0|ε|
)p

u p−1+ε|∇ϕ|p.

Here we have also applied Young’s inequality. Therefore,

p

A0ε
A(x, t, u, ∇u) · ∇(uεϕ p) ≥ |∇u|pu−1+εϕ p −

( A1 p

A0|ε|
)p

u p−1+ε|∇ϕ|p

for almost every (x, t) in the support of ϕ. Similarly, when ε > 1 and u ≥ k, we
have

p

A0
A(x, t, u, ∇u) · ∇(k−1+εuϕ p) ≥ |∇u|pk−1+εϕ p −

(A1 p

A0

)p

u pk−1+ε|∇ϕ|p

for almost every (x, t) in the support of ϕ.
Furthermore, we set

g(s) =
∫ s

δ

min
{

r−1+ε, k|−1+ε|} r dr.

We integrate by parts and obtain∫ t2

t1

∫
�

∂uh

∂t
ψ dx dt =

∫ t2

t1

∫
�

∂g(uh)

∂t
ϕ p dx dt

= −
∫ t2

t1

∫
�

g(uh)
∂ϕ p

∂t
dx dt+

∫
�

g(uh(x, t))ϕ p(x, t) dx
∣∣∣t2

t=t1
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for every τ1 < t1 < t2 < τ2. Let then t be a Lebesgue instant. We have∫
�

g(uh(x, t))ϕ p(x, t) dx

= δ1+ε

1 + ε

∫
�

ϕ p(x, t) dx +
∫

{x∈�:usgn(−1+ε)

h (x,t)≤k}
u1+ε

h (x, t)

1 + ε
ϕ p(x, t) dx

+
∫

{x∈�:usgn(−1+ε)

h (x,t)>k}
k−1+ε

(
k2

1 + ε
+ u2

h(x, t) − k2

2

)
ϕ p(x, t) dx .

Since t is a Lebesgue instant, uh(x, t) → u(x, t) for almost every x in the support
of ϕ(·, t) as h → 0. On the one hand, we obtain by the dominated convergence
theorem that ∫

{x∈�:usgn(−1+ε)

h (x,t)≤k}
u1+ε

h (x, t)

1 + ε
ϕ p(x, t) dx

→
∫

{x∈�:usgn(−1+ε)(x,t)≤k}
u1+ε(x, t)

1 + ε
ϕ p(x, t) dx

as h → 0. On the other hand,∫
{x∈�:usgn(−1+ε)

h (x,t)>k}
(uh − u)2(x, t)ϕ p(x, t) dx

≤ ‖ϕ‖p∞
∫

�

(uh − u)2(x, t) dx → 0

as h → 0 by the definition of Lebesgue instant. We conclude that∫ t2

t1

∫
�

∂uh

∂t
ψ dx dt

→ −
∫ t2

t1

∫
�

g(u)
∂ϕ p

∂t
dx dt +

∫
�

g(u(x, t))ϕ p(x, t) dx
∣∣∣t2

t=t1

as h → 0 for all Lebesgue instants τ1 < t1 < t2 < τ2.
We combine the obtained estimates and divide the result by A0ε/p. As k →

∞, the monotone convergence theorem implies

0 ≥
∫ t2

t1

∫
�

|∇u|pu−1+εϕ p dx dt

−
( A1 p

A0 min{1, |ε|}
)p ∫ t2

t1

∫
�

u p−1+ε|∇ϕ|p dx dt

− p

A0

∫ t2

t1

∫
�

u1+ε

(
1

min{1, ε}(1 + ε)

∂ϕ p

∂t

)
+

dx dt

+ p

A0 min{1, ε}(1 + ε)

∫
�

u1+ε(x, t)ϕ p(x, t) dx
∣∣∣t2

t=t1

(2.3)
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for all Lebesgue instants τ1 < t1 < t2 < τ2.
Let then ρ > 0. We may choose τ1 < ti < τ2, i = 1, 2, such that∫

�

u1+ε(x, ti )ϕ
p(x, ti ) dx ≥ ess sup

τ1<t<τ2

∫
�

u1+εϕ pdx − ρ,

i = 1, 2. If ε(1 + ε) > 0, we choose t2 and let t1 → τ1, and, if ε(1 + ε) < 0, we
choose t1 and let t2 → τ2. This concludes the proof, since ρ is arbitrary.

Remark 2.3. If u is a weak supersolution, then (u−k)− = max{k−u, 0}, k ∈ R, is
a non-negative weak subsolution to an equation which is structurally similar to the
equation of u. Thus we may first apply the previous result for the weak subsolution
v = (u − k)− + δ, δ > 0, and then use the dominated convergence theorem and
let δ → 0. This implies that u may be replaced by (u − k)− in the statement of
the lemma and in (2.3). Indeed, by choosing ε = 1, we obtain the classical energy
estimate for weak supersolutions.

Remark 2.4. If u is a non-negative weak supersolution in an open set which com-
pactly contains �t1,t2 , where t1 and t2 are Lebesgue instants, then there is τ > 0
such that u is a weak supersolution also in � × (t1 − τ, t2 + τ). We choose the test
function η = (ϕθ j )h , h < τ/2, where ϕ ∈ C∞

0 (�) and θ j ∈ C∞
0 (t1 − τ + h, t2 +

τ − h), j = 1, 2, . . ., converges to the characteristic function of the interval (t1, t2)
in L p as j → ∞. We may then proceed as in the proof of Lemma 2.2 and obtain∫

�

u(x, t2)ϕ(x) dx ≥
∫

�

u(x, t1)ϕ(x) dx

+
∫ t2

t1

∫
�

A(x, t, u, ∇u) · ∇ϕ dx dt.
(2.4)

3. Expansion of positivity

A fundamental property of a supersolution to a diffusion equation is that the pos-
itivity expands as the time evolve. The following proposition describes the phe-
nomenon.

Proposition 3.1 (Expansion of positivity). Let u be a non-negative weak superso-
lution in an open set which compactly contains B(x0, 4R0)× (t0, t0 + T0). Suppose
that t0 is a Lebesgue instant and∣∣{x ∈ B(x0, R) : u(x, t0) > N }∣∣ ≥ δ

∣∣B(x0, R)
∣∣

for some 0 < R < R0, N > 0 and 0 < δ < 1. Then there are positive constants
T = T (n, p,A0,A1, δ) and θ = θ(n, p,A0,A1, δ) such that if

T = T
(
N (R/R0)

θ
)2−p

R p
0
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does not exceed T0, then
ess inf

Q
u ≥ N (R/R0)

θ ,

where Q = B(x0, 2R0) × (t0 + T/2, t0 + T ).

The idea of the proof is the following. We first carry the assumed positivity
further in time. We show that for some Lebesgue instant, the spatial level set of the
supersolution has positive Lebesgue measure and a finite capacity type constraint
with respect to a larger level set. Next, positive values of the supersolution may
decay in time. We cancel the decay by simply multiplying the supersolution by the
inverse of the decay factor. It follows from the change of the time variable that
the new function is a supersolution to an equation which is structurally similar to
the equation of the original supersolution. It is then a fairly standard argument to
show that the positivity expands in time. The main real analytical tools for the proof
can be found from [8], see also [12] or [28]. Note that the stability of constants as
p → 2 is inbuilt to our approach. In particular, there is no need to separate the
cases p close to 2 and p away from 2.

We prove Proposition 3.1 by using a scaling argument. This leads us to study
a supersolution u in an open set which compactly contains B(0, 4) × (0, Tpos) such
that 0 is a Lebesgue instant and∣∣{x ∈ B(0, 1) : u(x, 0) > N }∣∣ ≥ δ

∣∣B(0, 1)
∣∣

for some N > 0 and 0 < δ < 1.
The first lemma yields that the assumed positivity at the instant 0 can be trans-

ferred to later times.

Lemma 3.2. Let k >0 and 0<γ <1. Then there is a constant C =C(n, p,A0,A1)

such that if u is a non-negative weak supersolution in an open set which compactly
contains B(x0, 2R)×(t0, t0 +k2−pγ p+1 R p/C), where t0 is a Lebesgue instant and∣∣{x ∈ B(x0, R) : u(x, t0) > k}∣∣ ≥ γ

∣∣B(x0, R)
∣∣,

then ∣∣∣{x ∈ B(x0, R) : u(x, t) >
γ

8
k
}∣∣∣ ≥ γ

8

∣∣B(x0, R)
∣∣

holds for all Lebesgue instants t0 < t < t0 + k2−pγ p+1 R p/C.

Proof. Let ε = γ /(5n) and T = k2−pγ p+1 R p/C . Let ϕ be a cut-off function
in C∞

0 (B(x0, (1 + ε)R)) such that ϕ = 1 in B(x0, R), 0 ≤ ϕ ≤ 1 and |∇ϕ| ≤
C1/(εR). By Remark 2.3 and the facts that u is a supersolution in an open set which
compactly contains B(x0, 2R) × (t0, t0 + T ) and that t0 is a Lebesgue instant, we
may insert ϕ and (u − k)− into (2.3). We obtain∫

B(x0,R)

(u(x, τ ) − k)2− dx ≤
∫

B(x0,(1+ε)R)

(u(x, t0) − k)2− dx

+ C2

∫ T

0

∫
B(x0,(1+ε)R)

(u − k)
p
−|∇ϕ|p dx dt
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for all Lebesgue instants t0 < τ < t0 + T . Using the assumption, we estimate the
first term on the right hand side as∫

B(x0,(1+ε)R)

(u(x, t0) − k)2−ϕ p dx

≤ k2
∣∣B(x0, (1 + ε)R) \ B(x0, R)

∣∣ +
∫

B(x0,R)

(u(x, t0) − k)2−ϕ p dx

≤ (
((1 + ε)n − 1)k2 + (1 − γ )k2)∣∣B(x0, R)

∣∣
≤ (1 − 3γ /4)k2

∣∣B(x0, R)
∣∣,

because (1 + ε)n − 1 ≤ nε/(1 − nε) ≤ γ /4. The second term we estimate as

C2

∫ T

0

∫
B(x0,(1+ε)R)

(u − k)
p
−|∇ϕ|p dx dt ≤ C3k pT

(εR)p
|B(x0, R)

∣∣.
For the left hand side we have∫

B(x0,R)

(u(x, τ ) − k)2− dx ≥ (1 − γ /8)2k2
∣∣∣{x ∈ B(x0, R) : u(x, τ ) ≤ γ

8
k
}∣∣∣

for every Lebesgue instant t0 < τ < t0 + T . We then choose the constant C in the
statement to be large enough so that

C3k pT

(εR)p
= C3k pk2−p R pγ p+1/C

γ p/(5n)p R p
= (5n)pC3γ k2

C
≤ γ

4
k2.

We conclude that∣∣∣{x ∈ B(x0, R) : u(x, τ ) ≤ γ

8
k
}∣∣∣ ≤ 1 − γ /2

1 − γ /4

∣∣B(x0, R)
∣∣

for all Lebesgue instants t0 < τ < t0 + T . This proves the result.

Next, we show that from the obtained time range, we find a Lebesgue instant
such that we have the control of the capacity type of constraint between two level
sets.

Lemma 3.3. Let u be a non-negative weak supersolution in an open set which com-
pactly contains B(0, 4) × (0, Tpos) and suppose that 0 is a Lebesgue instant. There
are constants Ci = Ci (n, p,A0,A1, δ), i = 1, 2, such that if Tpos > 1/(C1 N p−2)

and ∣∣{x ∈ B(0, 1) : u(x, 0) > N }∣∣ ≥ δ
∣∣B(0, 1)

∣∣, N > 0, 0 < δ < 1,

then there are a Lebesgue instant 0 < t∗ < 1/(C1 N p−2) and a Sobolev function

ψ ∈ W 1,p
0 (B(0, 2)), 0 ≤ ψ ≤ 1,
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such that the positivity is carried up to t∗, i.e.∣∣∣∣{x ∈ B(0, 1) : u(x, t∗) >
δ

8
N

}∣∣∣∣ ≥ δ

8

∣∣B(0, 1)
∣∣,

and the function ψ measures capacity type of constraint between two level sets of
u(·, t∗), i.e.

ψ = 1 almost everywhere in

{
x ∈ B(0, 1) : u(x, t∗) >

δ

8
N

}
,

ψ = 0 almost everywhere in

{
x ∈ B(0, 2) : u(x, t∗) ≤ δ

16
N

}
and ∫

B(0,2)

|∇ψ |p dx ≤ C2.

Proof. Let k = Nδ/8. We choose T = 1/(2C1 N p−2) and assume that T < Tpos/2.
Let then ϕ ∈ C∞

0 (B(0, 2) × (0, 2T )), 0 ≤ ϕ ≤ 1, be a cut-off function such that
ϕ = 1 in B(0, 1) × (T, 2T ) and |∇ϕ|, (∂ϕ/∂t)+ ≤ C/T . By Remark 2.3 we may
apply Lemma 2.2 for v = (2k − u)+ and ε = 1, and obtain that there is a constant
C = C(n, p,A0,A1) such that∫ T

T/2

∫
B(0,2)

|∇(vϕ)|p dx dt ≤ C
(
k pT + k2).

Furthermore, the function

w = 1

k
(k − v)+ = 1

k
(k − (2k − u)+)+

vanishes in {u ≤ k} and w = 1 in {u ≥ 2k}. Moreover, we have∫ T

T/2

∫
B(0,2)

|∇(wϕ)|p dx dt ≤ 1

k p

∫ T

T/2

∫
B(0,2)

|∇(vϕ)|p dx dt ≤ C
(
T + k2−p).

Therefore, there exists a Lebesgue instant T/2 < t∗ < T such that∫
B(0,2)

|∇(wϕ)(x, t∗)|p dx ≤ C

(
1 + 1

T k p−2

)
≤ C.

Thus we may choose ψ = w(·, t∗)ϕ(·, t∗).
The first part concerning the measure estimate follows immediately from

Lemma 3.2, if C1 is chosen to be large enough.
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The next lemma is a straightforward consequence of a choice of a proper test
function. Note that when p = 2, the choice is u−1 and it leads to the logarithmic
estimate, which is the cornerstone of the proof of the Main Lemma in [24].

Lemma 3.4. Let u and t∗ be as in Lemma 3.3. Then there exist constants κ =
κ(n, p,A0,A1, δ) and ν = ν(n, δ) such that for

g(t) = κ

N
(1 + κ(p − 2)N p−2t)1/(p−2),

we have
|{x ∈ B(0, 3) : u(x, t)g(t) > 1}| ≥ ν

∣∣B(0, 3)
∣∣

for all Lebesgue instants t∗ < t < Tpos.

Proof. First, we define the supersolution v = u+ρ, ρ > 0. Let ψ ∈ W 1,p
0 (B(0, 2))

be as in Lemma 3.3. We substitute ε = 1 − p and ϕ = ψ into (2.3) and obtain

1

p − 2

∫
B(0,2)

v2−p(x, t)ψ p dx ≤ 1

p − 2

∫
B(0,2)

v2−p(x, t∗)ψ p dx

+ Ct
∫

B(0,2)

|∇ψ |p dx

for all Lebesgue instants t∗ < t < Tpos. The substitution is possible due to the
approximation of ψ in C∞

0 (B(0, 2)) and the fact that t∗ is a Lebesgue instant. Since
v(·, t∗) ≥ Nδ/16 + ρ almost everywhere in the support of ψ , we get∫

B(0,2)

v2−p(x, t∗)ψ p(x) dx ≤
∫

B(0,2)

(Nδ/16)2−pψ p(x) dx .

By the monotone convergence theorem and the L p-bound for ∇ψ , we may send ρ

to zero, and conclude∫
B(0,2)

u2−p(x, t) − (Nδ/16)2−p

p − 2
ψ p(x) dx ≤ Ct

for all Lebesgue instants t∗ < t < Tpos.
Next, we denote

U =
{

x ∈ B(0, 1) : u(x, t∗) ≥ δ

8
N

}
.

In U we have ψ = 1 almost everywhere. This implies that for every γ > 0 and for
every Lebesgue instant t∗ < t < Tpos, we have

∣∣{x ∈ U : u(x, t) ≤ γ }∣∣γ 2−p − (Nδ/16)2−p

p − 2

≤
∫

B(0,2)

u2−p(x, t) − (Nδ/16)2−p

p − 2
ψ p(x) dx ≤ Ct.
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We then choose

γ = γ (t) = Nδ

16

(
1 + 2C(p − 2)

(
Nδ

16

)p−2 t∣∣U ∣∣
)−1/(p−2)

,

and obtain ∣∣{x ∈ U : u(x, t) ≤ γ (t)}∣∣ ≤ 1

2

∣∣U ∣∣.
This together with the measure estimate in Lemma 3.3 implies∣∣{x ∈ B(0, 3) : u(x, t) > γ (t)}∣∣ ≥ 1

2

∣∣U ∣∣ ≥ δ

16

∣∣B(0, 1)
∣∣.

The result now follows with constants κ = C/δ and ν = δ/3n+3. Note that they
stay bounded as p → 2.

A crucial step in the proof of Proposition 3.1 is that the function g(t)u(x, t) is,
after a proper change of the time variable, a supersolution.

Lemma 3.5. Suppose that u is as in Lemma 3.3 and let

�(t) = 1

κ(p − 2)
log

(
1 + κ(p − 2)N p−2t

)
, (3.1)

where κ, N > 0. Then

v(x, t) = exp(κt)

N
u(x, �−1(t))

is a weak supersolution in B(0, 4) × (0, �(Tpos)) to an equation, which is struc-
turally similar to the equation of u.

Proof. Let ϕ ∈ C∞
0 (B(0, 4)×(0, �(Tpos)) be a non-negative test function. We first

define

g(t) = 1

N
(1 + κ(p − 2)N p−2t)1/(p−2)

and set

η(x, t) = g(t)ϕ(x, �(t)), v(x, t) = g(�−1(t))u(x, �−1(t))

for all (x, t) ∈ B(0, 4) × (0, Tpos). Here

�−1(t) = exp(κ(p − 2)t) − 1

κ(p − 2)N p−2
.

We denote

ϕ̃(x, t) = ϕ(x, �(t)) = η(x, t)/g(t), ṽ(x, t) = v(x, �(t)) = g(t)u(x, t)
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for all (x, t) ∈ B(0, 4) × (0, Tpos). The definitions imply that

∇u = 1

g
∇ṽ, u

∂η

∂t
= κ N p−2

1 + κ(p − 2)N p−2t
ṽϕ̃ + ṽ

∂ϕ̃

∂t
.

Furthermore, we set

Ã(x, t, ṽ, ∇ṽ) = g p−1A
(
x, t, ṽ/g, ∇ṽ/g

)
,

and obtain

Ã(x, t, ṽ, ∇ṽ) · ∇ṽ ≥ A0|∇ṽ|p, |Ã(x, t, ṽ, ∇ṽ)| ≤ A1|∇ṽ|p−1

and

A(x, t, u, ∇u) · ∇η = N p−2

1 + κ(p − 2)N p−2t
Ã(x, t, ṽ, ∇ṽ) · ∇ϕ̃.

According to the formula t = �−1(τ ), we have

dτ = N p−2

1 + κ(p − 2)N p−2t
dt.

We substitute the calculations into (2.2) and arrive at

0 ≤
∫ �(Tpos)

0

∫
B(0,4)

Ã
(
x, �−1(τ ), v, ∇v

) · ∇ϕ dx dτ

−
∫ �(Tpos)

0

∫
B(0,4)

v
∂ϕ

∂τ
dx dτ − κ

∫ �(Tpos)

0

∫
B(0,4)

vϕ dx dτ.

It follows by the non-negativity of u, and hence also v, that v is a weak supersolu-
tion.

We have an immediate corollary of Lemma 3.4 and Lemma 3.5.

Corollary 3.6. Let u be as in Lemma 3.3, κ and ν as in Lemma 3.4 and � as
in (3.1). Then there is a constant 0 < τ ∗ < 1 such that the weak supersolution

v(x, t) = exp(κt)

N
u(x, �−1(t))

in B(0, 4) × (0, �(Tpos)) satisfies∣∣{x ∈ B(0, 3) : v(x, t) > 1}∣∣ ≥ ν
∣∣B(0, 3)

∣∣
for almost every τ ∗ < t < �(Tpos).
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Proof. We define τ ∗ = �(t∗), where t∗ is as in Lemma 3.3. The upper bound
1/(C1 N p−2) for t∗ implies τ ∗ ≤ 1/C1 < 1. The result now follows by Lemma 3.4
and Lemma 3.5.

We use the corollary above to show that for later times, the small values of u
lie in a set which has as small a measure as we please. This type of argument has
been used in ‘Second Alternative’ in the proof of the Hölder continuity of weak
solutions, see [8].

Lemma 3.7. Let v be as in Corollary 3.6. Then, for every 0 < ν∗ < 1, there exists
a constant M = M(n, p,A0,A1, ν

∗) such that if T = 21+M(p−2) < �(Tpos)/4,
where � is as in (3.1), then∣∣{(x, t) ∈ B(0, 3) × (T, 4T ) : v(x, t) ≤ 2−M}∣∣ ≤ ν∗∣∣B(0, 3) × (T, 4T )

∣∣.
Proof. We define k j = 2− j , j = 0, 1, 2, . . . , M , and T = 2k2−p

M < �(Tpos)/4,
where M is going to be fixed. Let ϕ be a test function vanishing on the parabolic
boundary of B(0, 4)× (τ ∗, 4T ), where τ ∗ is as in Corollary 3.6, ϕ = 1 in B(0, 3)×
(T, 4T ) and |∇ϕ|, (∂ϕ/∂t)+ ≤ C . Note that T > 2τ ∗. We estimate∫ 4T

τ∗

∫
B(0,4)

(v − k j )
2−

(
∂ϕ p

∂t

)
+

dx dt

≤ Ck2
j

T

∣∣B(0, 3) × (T, 4T )
∣∣ ≤ Ck p

j

∣∣B(0, 3) × (T, 4T )
∣∣

and ∫ 4T

τ∗

∫
B(0,4)

(v − k j )
p
−|∇ϕ|p dx dt ≤ Ck p

j

∣∣B(0, 3) × (T, 4T )
∣∣.

It then follows from the energy estimate, see Remark 2.3, that∫ 4T

T

∫
B(0,3)

|∇(v − k j )−|p dx dt ≤ Ck p
j

∣∣B(0, 3) × (T, 4T )
∣∣.

A standard De Giorgi type of Sobolev’s imbedding (see [8, Lemma 2.2, page 5])
together with Corollary 3.6 yields

k j+1
∣∣{x ∈ B(0, 3) : v(x, t) ≤ k j+1

}∣∣
≤ C

∣∣{x ∈ B(0, 3) : v(x, t) ≥ k j
}∣∣−1

∫
{k j+1<v(x,t)<k j }

|∇v|(x, t) dx

≤ C
∫

{k j+1<v(x,t)<k j }
|∇v|(x, t) dx
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for almost every τ ∗ < t < �(Tpos) and j = 0, 1, . . . , M − 1. We integrate these in
time from T to 4T . The left hand side is bounded below by k j+1

∣∣{v ≤ kM
}∣∣. Thus

Hölder’s inequality gives∣∣{(x, t) ∈ B(0, 3) × (T, 4T ) : v(x, t) ≤ kM
}∣∣

≤ C

k j+1

(∫ 4T

T

∫
B(0,3)

|∇(v − k j )−|p dx dt

)1/p

×
(∫ 4T

T

∫
B(0,3)

χ{k j+1<v<k j } dx dt

)(p−1)/p

≤ C
(∣∣B(0, 3) × (T, 4T )

∣∣)1/p
(∫ 4T

T

∫
B(0,3)

χ{k j+1<v<k j } dx dt

)(p−1)/p

.

We take the power p/(p − 1) on both sides and sum up from j = 0 to M − 1. Note
that the sets {k j+1 < v < k j } are disjoint for different j’s. This implies∣∣{(x, t) ∈ B(0, 3) × (T, 4T ) : v(x, t) ≤ kM

}∣∣ ≤ C

M (p−1)/p

∣∣B(0, 3) × (T, 4T )
∣∣.

Therefore, by taking M so large that

M−(p−1)/p ≤ ν∗

C
,

we obtain the result.

We are ready to proceed to prove the preliminary version of Proposition 3.1.
The proof is similar to the one of [8, Lemma 4.1, page 49].

Lemma 3.8. Let u be as in Lemma 3.3. Then there exist constants T ∗ and µ∗
depending only on n, p, A0, A1, and δ such that if N 2−pT ∗ < Tpos, then

ess inf
Q

u ≥ Nµ∗,

where Q = B(0, 2) × (N 2−pT ∗/2, N 2−pT ∗). Moreover, constants T ∗ and µ∗ are
stable as p → 2.

Proof. Let v be as in Corollary 3.6. By Lemma 3.7, we find for every ν∗ a constant
M such that∣∣{(x, t) ∈ B(0, 3) × (T, 4T ) : v(x, t) ≤ 2−M}∣∣ ≤ ν∗∣∣B(0, 3) × (T, 4T )

∣∣,
where T = 21+M(p−2). We define

k j = 2−M−1(1 + 2− j ), r j = 2 + 2− j , Tj = 2T
(
1 − 2− j−1)
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for j = 0, 1, 2, . . . . We then have

k j − k j+1 = 2−M− j−2 and 2−M−1 ≤ k j ≤ 2−M .

We also denote
Q j = B j × � j = B(r j , 0) × (Tj , 4T ).

Furthermore, let ϕ j ∈ C∞
0 (B(0, 4) × (0, �(Tpos))) be a test function such that it

vanishes on the parabolic boundary of Q j and ϕ j = 1 in Q j+1. We may choose it
so that

|∇ϕ j | ≤ C2 j ,

(
∂ϕ j

∂t

)
+

≤ C2 j

T
≤ C2 j k p−2

j .

We have the estimate

(v − k j )
2− ≥ (v − k j )

p
−

k p−2
j

≥ T

2
(v − k j )

p
−.

We obtain by Remark 2.3 that

1

T

∫
Q j

|∇((v − k j )−ϕ j )|p dx dt + ess sup
� j

∫
B j

(v − k j )
p
−ϕ

p
j dx

≤ C

T

∫
Q j

(v − k j )
p
−|∇ϕ j |p dx dt + C

T

∫
Q j

(v − k j )
2−

(
∂ϕ

p
j

∂t

)
+

dx dt

≤ C2pj

T

∫
Q j

(v − k j )
p
− + (v − k j )

2−k p−2
j dx dt.

A change of variables z = t/T gives now∫ 4

Tj /T

∫
B j

|∇((w − k j )−ψ j )|p dx dz + ess sup
Tj /T <t<4

∫
B j

(w − k j )
p
−ψ

p
j dx

≤ C2pj
∫ 4

Tj /T

∫
B j

(w − k j )
p
− + (w − k j )

2−k p−2
j dx dz,

(3.2)

where w(x, t) = v(x, T t) and ψ j (x, t) = ϕ j (x, T t). Let now

A j =
∫ 4

Tj /T

∫
B j

χ{w<k j } dx dz = 1

T

∫ 4T

Tj

∫
B j

χ{v<k j } dx dt.

Note that by Lemma 3.7 we have the estimate A0 ≤ 3ν∗∣∣B(0, 3)
∣∣ for the first level

set. From the parabolic Sobolev’s imbedding (see [8, Corollary 3.1, page 9]) and
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inequality (3.2), we get∫ 4

Tj /T

∫
B j

(w − k j )
p
−ψ

p
j dx dz

≤ C Ap/(n+p)
j

( ∫ 4

Tj /T

∫
B j

|∇((w − k j )−ψ j )|p dx dz

+ ess sup
Tj /T <t<4

∫
B j

(w − k j )
p
−ψ

p
j dx

)
≤ C2pj A1+p/(n+p)

j k p
j .

Finally, we have∫ 4

Tj /T

∫
B j

(w − k j )
p
−ψ

p
j dx dz ≥

∫ 4

Tj+1/T

∫
B j+1

(w − k j )
p
− dx dz

≥(k j − k j+1)
p A j+1 ≥ k p

j

C2pj
A j+1.

This yields an iteration inequality

A j+1 ≤ C4pj A1+p/(n+p)
j .

By a standard argument (see [8, Lemma 4.1, page 12]) we have

A j → 0, if A0 ≤ C−(n+p)/p4−(n+p)2/p.

By taking

ν∗ = C−(n+p)/p4−(n+p)2/p(3
∣∣B(0, 3)

∣∣)−1
,

we indeed have that
v(x, t) ≥ 2−M−1

for almost every (x, t) ∈ B(0, 4)×(2T, 4T ), T = 21+M(p−2). Note that ν∗ depends
only on the structural constants. That is why also M depends only on the structural
constants. The result follows with

T ∗ = �−1(4T ) = exp(κ(p − 2)2M(p−2)+3) − 1

κ(p − 2)

and
µ∗ = 2−M−1 exp(−κ2M(p−2)+3).

Both constants are stable as p → 2.

We are ready to prove the proposition on the expansion of positivity.
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Proof of Proposition 3.1. We introduce the scaled function

v(x, t) = u(x0 + Rx, t0 + R pt).

It is a weak supersolution in a neighborhood of B(0, 4R0/R)× (0, R−pT0). For the
Lebesgue instant 0, we have∣∣{x ∈ B(0, 1) : v(x, 0) > N }∣∣ ≥ δ

∣∣B(0, 1)
∣∣.

We may replace δ by 2−nδ, if necessary, and assume that R0/R = 2I for some
I ∈ N. Let µ∗ and T ∗ be as in Lemma 3.8 corresponding δ. It follows that

ess inf
Q

v ≥ µ∗,

where Q = B(0, 2) × (N 2−pT ∗/2, N 2−pT ∗), provided that N 2−pT ∗ ≤ R−pT0.
Let then q ≤ I , q ∈ N. We define Nq = (µ∗)q N and Rq = 2q R. Suppose now
that for some Lebesgue instant Tq we have

u(x, N 2−pTq) ≥ Nµq , x ∈ B(x0, 2q R).

We scale this supersolution as

vq(x, t) = u(x0 + 2q Rx, t0 + Tq + 2pq R pt).

Then also vq is a supersolution in an open set which compactly contains the set
B(0, 2−q+2 R0/R)×(0, 2−pq R−pT0 −Tq), provided that 2−pq R−pT0 > Tq , More-
over, vq(x, 0) ≥ Nq for x ∈ B(0, 1). Since 0 is a Lebesgue instant for vq , Lemma
3.8 implies

ess inf
Qq

vq ≥ Nqµ∗ = Nq+1,

where Qq = B(0, 2)×(N 2−p
q T ∗/2, N 2−p

q T ∗). We may pick Tq+1 from the interval

(N 2−p
q T ∗/2, N 2−p

q T ∗) such that

Tq+1 = Tq + T ∗

2

(
N 2−p

q 2pq R p + N 2−p R p

2p(µ∗)2−p − 1

)
,

and, without losing the generality, we may assume that Tq+1 is a Lebesgue instant.
We obtain the formula

Tq = t0 + C N 2−p
q 2pq R p.

An induction argument implies that for θ̃ = − log2 µ∗ > 0 there is a Lebesgue
instant

T̃ = C
(
N (R/R0)

θ̃
)2−p

R p
0

such that
ess inf

x∈B(x0,R0)
u(x, T̃ ) ≥ N (R/R0)

θ̃ .

Finally, we scale
v(x, t) = u(x0 + R0x, t0 + T̃ + R p

0 t),

and apply once more Lemma 3.8, which completes the proof.
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4. The hot alternative

We now proceed to the analysis of the hot alternative. The main result of the section
is the following lemma.

Lemma 4.1. There are positive constants σ , Th and ϑh, all depending only on n,
p, A0, and A1, such that if u is a supersolution in B(0, 8) × (0, 2Th) and∣∣{x ∈ B(0, 2) : u(x, t0) > 8k1+σ }∣∣ > 8k−σ

∣∣B(0, 2)
∣∣ (4.1)

for some k > 81/σ and some Lebesgue instant 0 < t0 < 2p, then

ess inf
B(0,2)×(Th ,2Th)

u ≥ ϑh .

We first explain the strategy of the proof. The assumed positivity (4.1) can be
carried further in time with the aid of Lemma 3.2. We then cover the obtained pos-
itivity set using a refined Krylov-Safonov covering argument. It takes into account
two different possibilities: either the level set is porous or it is concentrated. In both
cases, an application of Proposition 3.1 leads to the quantitative increment of the
level set, but with a smaller level. By porous we mean that we can cover the level
set with small space-time cylinders such that by multiplying the radii of them by
three, the measure of the union of expanded cylinders is, say four times, larger than
the measure of the original level set. An iteration argument then implies the result
of Lemma 4.1. The dominant phenomenon is that the expansion of positivity occurs
only after a waiting time which depends on the spatial scale. The covering argument
gives different scales and a delicate part of the proof is to glue these together.

We define the following scaled space-time cylinder

U ζ ((x, t), R) = B(x, R) × (t − ζ 2−p R p, t + ζ 2−p R p)

where ζ > 0, and the metric

dU
(
(x, t), (y, s)

) = max
{
|x − y|, ζ (p−2)/p|t − s|1/p

}
.

We note that U ζ is a ball with respect to this metric, i.e.

U ζ (z, R) = {
y ∈ R

n × R : dU (z, y) < R
}
.

For the brevity, we denote 5U = U ζ (z, 5R). The doubling property allows us to
use the countable version of Vitali’s covering theorem, which states that if E is a
bounded set in Rn+1 and F is a collection of space-time cylinders U ζ intersecting
and covering E , then there is a countable and pairwise disjoint subcollection G of F
such that

E ⊂
⋃

U∈G
5U.

For the proof, see for example [16].
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Let now E be a measurable subset of F in Rn × R. We define the set

�
ρ,ζ
δ (E, F) =

⋃
0<r<ρ

{
U ζ (z, 3r) ∩ F : z ∈ F,

∣∣U ζ (z, 3r) ∩ E
∣∣ > δ

∣∣U ζ (z, r)
∣∣},

where ρ > 0 and 0 < δ < 1. The parameter ρ is a threshold radius for the size of
the space-time cylinders. It measures the before described porosity of the level set
and it will be used to control the waiting time in the iteration scheme.

The standard version of the following refined Krylov-Safonov covering argu-
ment is without any threshold radius ρ. The proof follows [19].

Lemma 4.2. Let E be a measurable subset of Q0 = B(x0, R0)×(t0, t0 +T0). Then
at least one of the following three cases holds:
(1)

∣∣E∣∣ ≤ δ2n+p
∣∣�ρ,ζ

δ (E, Q0)
∣∣,

(2) there is z ∈ Q0 such that
∣∣U ζ (z, ρ) ∩ E

∣∣ > 60−n−pδ
∣∣U ζ (z, ρ)

∣∣,
(3) �

ρ,ζ
δ (E, Q0) = Q0 and

∣∣E∣∣ > 15−n−pδ
∣∣Q0

∣∣.
Proof. In the proof we use the abbreviation

U (z, r) = U ζ (z, r) and �δ = �
ρ,ζ
δ (E, Q0).

We first define the maximal operator M : Rn × R 	→ R as

M(z) = sup

∣∣E ∩ U (y, 3r)
∣∣∣∣U (y, r)

∣∣ ,

where the supremum is taken over all space-time cylinders U (y, 3r), such that y ∈
Q0, 0 < r < ρ and z ∈ U (y, 3r). We claim that

�δ = {z ∈ Q0 : M(z) > δ}.
Let first z ∈ Q0 be such that M(z) > δ. Then there is a cylinder U (y, 3r), such that
y ∈ Q0, 0 < r < ρ,

∣∣E ∩ U (y, 3r)
∣∣ > δ

∣∣U (y, r)
∣∣ and z ∈ U (y, 3r). This means

that z ∈ �δ . For the converse inclusion, if z ∈ �δ , then there is a cylinder U (y, 3r),
y ∈ Q0 and 0 < r < ρ, such that

∣∣E ∩ U (y, 3r)
∣∣ > δ

∣∣U (y, r)
∣∣ and z ∈ U (y, 3r).

This implies that M(z) > δ.
Suppose that Q0 \�δ �= ∅. The set �δ is open by definition and, consequently,

we have for every z ∈ �δ that

rz = 1

2
sup{r > 0 : z ∈ U (y, r) ⊂ �δ, U (y, 2r) ∩ (Q0 \ �δ) = ∅}

is a positive number. Let us first assume that every rz < ρ/4. For each z ∈ �δ we
find yz such that z ∈ U (yz, rz) ⊂ �δ and U (yz, 5rz) ∩ (Q0 \ �δ) �= ∅. Clearly
the union of U (yz, rz) covers �δ . By Vitali’s covering theorem, there are countably
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many pairwise disjoint space-time cylinders U (yi , ri ), where yi = yzi and ri = rzi ,
i = 1, 2, . . ., such that

�δ ⊂
⋃

U (yi , 5ri ).

By the construction we have U (yi , 5ri )∩ (Q0 \�δ) �= ∅ for every i = 1, 2, . . ., and
there is a point ηi ∈ U (yi , 5ri ) ∩ (Q0 \ �δ). In particular, M(ηi ) ≤ δ, i = 1, 2, . . ..
Since ηi ∈ U (yi , 5ri ) and 5ri/3 < ρ, we conclude that∣∣E ∩ U (yi , 5ri )

∣∣ ≤ δ

∣∣∣∣U (
yi ,

5ri

3

)∣∣∣∣ ≤ 2n+pδ
∣∣U (yi , ri )

∣∣.
Furthermore, if z is a density point of E , then

lim inf
r→0

∣∣E ∩ U (z, 3r)
∣∣∣∣U (z, r)

∣∣ ≥ lim inf
r→0

∣∣E ∩ U (z, r)
∣∣∣∣U (z, r)

∣∣ = 1 > δ.

Almost every point of E is a density point. Hence we obtain that almost every point
of E belongs to �δ . From this it follows that∣∣E∣∣ = ∣∣E ∩ �δ

∣∣ ≤
∑ ∣∣E ∩ U (yi , 5ri )

∣∣ ≤ 2n+pδ
∑ ∣∣U (yi , ri )

∣∣ ≤ 2n+pδ
∣∣�δ

∣∣.
We are left with the cases that �δ contains a space-time cylinder U (y, ρ/4) or
�δ = Q0. If U (y, ρ/4) ⊂ �δ , then the definition of �δ implies that for all η ∈
U (y, ρ/4), we find zη ∈ Q0 and 0 < rη < ρ such that∣∣U (zη, 3rη) ∩ E

∣∣ > δ
∣∣U (zη, rη)

∣∣
and U (y, ρ/4) ∩ U (zη, 3rη) �= ∅. We first suppose that rη̃ ≥ ρ/8 for some η̃. We
cover U (zη̃, 3rη̃) with 5n+p space-time cylinders, all with radius ρ. Then, by the
pigeonhole principle, for at least one of these cylinders, say U (z, ρ), must hold∣∣U (z, ρ) ∩ E

∣∣ > 5−n−pδ
∣∣U (z, ρ/8)

∣∣,
and the result follows in this case. Suppose then that for all η we have rη < ρ/8.
Then ∪ηU (zη, 3rη) ⊂ U (y, ρ). By Vitali’s covering theorem we find a set A ⊂
U (y, ρ/4) such that the collection of space-time cylinders {U (zη, 3rη)} are pairwise
disjoint for all η ∈ A and

U (y, ρ/4) ⊂
⋃
η∈A

U (zη, 15rη).

Thus we obtain ∣∣U (y, ρ) ∩ E
∣∣ ≥

∑
η∈A

∣∣U (zη, 3rη) ∩ E
∣∣

> δ
∑
η∈A

∣∣U (zη, rη)
∣∣

= 15−n−pδ
∑
η∈A

∣∣U (zη, 15rη)
∣∣

≥ 15−n−pδ
∣∣U (y, ρ/4)

∣∣
= 60−n−pδ

∣∣U (y, ρ)
∣∣.
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This is the second case of the lemma.
If �δ = Q0, then by Vitali’s covering theorem we have countable subset (zi )

of Q0 such that the family {U (zi , 3ri )} is pairwise disjoint, Q0 ⊂ ∪U (zi , 15ri ) and∣∣U (zi , 3ri ) ∩ E
∣∣ > δ

∣∣U (zi , ri )
∣∣.

Therefore, we conclude ∣∣E∣∣ ≥
∑ ∣∣U (zi , 3ri ) ∩ E

∣∣
> δ

∑ ∣∣U (zi , ri )
∣∣

= 15−n−pδ
∑ ∣∣U (zi , 15ri )

∣∣
≥ 15−n−pδ

∣∣Q0
∣∣.

This completes the proof.

We now analyze the different cases emerging from Lemma 4.2. The first case
gives the following result.

Proposition 4.3. Let N > 0, Q0 = B(x0, R0) × (t0, t0 + T0), 0 < ρ < R0 and
0 < δ < 1. There are constants Ci = Ci (n, p,A0,A1, δ) ≥ 2, i = 1, 2, such that
if u is a weak supersolution in B(x0, 12R0) × (t0, t0 + T1), T1 = T0 + C2 N 2−pρ p,
and for E = {(x, t) ∈ Q0 : u(x, t) > N } we have∣∣�ρ,N

δ (E, Q0)
∣∣ ≥ 4

∣∣E∣∣,
then ∣∣∣∣{(x, t) ∈ Q : u(x, t) ≥ 1

C1
N

}∣∣∣∣ ≥ 2
∣∣E∣∣,

where Q = B(x0, R0) × (t0, t0 + T1).

The goal is to reduce the proof of Proposition 4.3 to the following elementary
one dimensional argument with the aid of Fubini’s theorem.

Proposition 4.4. Let {I j }, I j = (α j , β j ), be a finite family of intervals in R, j =
1, 2, . . . , J , and let f0 = 0. Let f j : R 	→ {−1, 0, 1} be

f j (x) =


−1, x ∈ I j ,

1, x ∈ (β j + M(β j − α j ), β j + 3M(β j − α j )),

0 otherwise,

where M ≥ 1, j = 1, 2, . . . , J . Then∣∣{x ∈ R : sup j f j (x) = 1}∣∣ ≥ 2M

3M + 1

∣∣{x ∈ R : inf j f j (x) = −1}∣∣.
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Proof. We first collect maximal intervals, say J+
i = (ai , bi ), from the set

D+ = {x ∈ R : sup j f j (x) = 1}.
By the maximal we mean that for any ε > 0 neither (ai − ε, bi ) nor (ai , bi + ε)

belongs to D+. Assume then that for some i the set {x ∈ R : fi (x) = 1} intersects
J+

j . The maximality of J+
j implies that the whole set {x ∈ R : fi (x) = 1}

belongs to J+
j and, hence, the support of fi belongs to J−

j = (c j , b j ), where
c j = a j − (b j − a j )(M + 1)/(2M).

Next we define the function

f (x) = sup f j (x) + inf f j (x)

and claim that ∫
R

f (x) dx ≥ − M + 1

2M

∣∣{x ∈ R : sup f j (x) = 1}∣∣.
This will prove the result since∫

R

f (x) dx = ∣∣{x ∈ R : sup f j (x) = 1}∣∣ − ∣∣{x ∈ R : inf f j (x) = −1}∣∣.
To prove the claim, we first assume that ai+1 < bi+1 < ai < bi . Let i = 1 and set
J̃+

1 = J+
1 . We define the sets

�1
i = {k : bk < ãi , J+

k ⊂ J̃−
i , ck ≥ c̃i },

�2
i = {k : bk < ãi , J+

k ⊂ J̃−
i , ck < c̃i },

�3
i = {k : ak < c̃i < bk},

�4
i = {k : bk < c̃i }

and choose
k = min{�2

i ∪ �3
i ∪ �4

i },
provided that the set on the right-hand side is non-empty. We define ãi+1 = ak ,
b̃i+1 = bk , c̃i+1 = ck and denote J̃+

i+1 = J+
k , J̃+

i+1 = (̃ai+1, b̃i+1). Note that
we ignore all the intervals J+

k , k ∈ �1
i . By doing so we estimate the integral of

f below. We repeat the reasoning above for i = 1, 2, . . ., and stop when the set
�2

i ∪ �3
i ∪ �4

i is empty for the first time. Say that this happens when i = I . We
rewrite ∫

R

f (x) dx =
∫ b̃I

c̃I

f (x) dx +
I−1∑
i=1

∫ b̃i

b̃i+1

f (x) dx .

First, since sup j f j (x) = 1 in (̃aI , b̃I ), we have∫ b̃I

c̃I

f (x) dx ≥
∫ ãI

c̃I

f (x) dx ≥ −(̃aI − c̃I ).
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Next, if the index k corresponding to the set J̃+
i+1 belongs to �2

i or �3
i , then we

have ∫ b̃i

b̃i+1

f (x) dx ≥
∫ ãi

b̃i+1

f (x) dx ≥ −(̃ai − b̃i+1) ≥ −(̃ai − c̃i ).

If k is in �4
i , then f (x) = 0 in (̃bi+1, c̃i ). Indeed, if f (x) = −1 for some x in

(̃bi+1, c̃i ), then there would be j < k such that b̃i+1 < c j < c̃i , and, consequently,
j would belong to �2

i or �3
i . This contradicts the choice of k. Therefore, we have

∫ b̃i

b̃i+1

f (x) dx ≥
∫ ãi

c̃i

f (x) dx ≥ −(̃ai − c̃i ).

We conclude that∫
R

f (x) dx ≥ −
∑

(̃ai − c̃i ) = − M + 1

2M

∑
(̃bi − ãi ) ≥ − M + 1

2M

∣∣D+∣∣,
which proves the claim.

As was noted before, the positivity expands after a certain waiting time. There-
fore, even the space-time cylinders in �δ would not overlap, the expanded cylinders
might very well do so. The previous proposition then gives the control on the over-
lap.

Proof of Proposition 4.3. Let ε > 0. We take a finite collection of cylinders
U N (z j , r j ), z j = (x j , t j ) ∈ Q0 and r j < ρ/3 such that(

U N (z j , r j ) ∩ Q0

)
⊂ �

ρ,N
δ (E, Q0), i = 1, 2, . . . , J,

and ∣∣∣(∪ jU
N
j (z j , r j )

)
∩ Q0

∣∣∣ ≥
∣∣∣�ρ,N

δ (E, Q0)

∣∣∣ − ε.

By the definition of �
ρ,N
δ , we have∣∣∣E ∩ U N (z j , r j )

∣∣∣ > δ3−n−p
∣∣∣U N (z j , r j )

∣∣∣ .
It follows that there is a Lebesgue instant t j − N 2−pr p

j < t j < t j + N 2−pr p
j such

that ∣∣{x ∈ B(x j , r j ) : u(x, t j ) > N }∣∣ > δ3−n−p
∣∣B(x j , r j )

∣∣.
We then apply Proposition 3.1 and obtain that there are constants as in the statement
such that

ess inf
Q j

u ≥ 1

C1
N ,
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where Q j = B(x j , 3r j ) × (t j + C2 N 2−pr p
j , t j + 3C2 N 2−pr p

j ). Note that we have

t0 < t j + C2 N 2−pr p
j < t j + 3C2 N 2−pr p

j < t0 + T0 + C2 N 2−pρ p.

Furthermore, we define functions f j : Rn × R 	→ {−1, 0, 1} as

f j (x, t) =


−1, (x, t) ∈ U N (z j , r j ) ∩ Q0,

1, (x, t) ∈ Q j ,

0, otherwise,

i = 1, 2, . . . , J , and f0 = 0. It readily follows from Proposition 4.4 that we have∣∣{t ∈ R : sup j f j (x, t) = 1}∣∣ ≥ 1

2

∣∣{t ∈ R : inf j f j (x, t) = −1}∣∣
for every x ∈ B(x0, R0). By integrating both sides over the ball B(x0, R0), we
conclude ∣∣∣∣{(x, t) ∈ Q : u(x, t) ≥ 1

C1
N

}∣∣∣∣ ≥ 1

2

∣∣∣(∪U N
j (z j , r j )) ∩ Q0

∣∣∣ ,
where

Q = B(x0, R0) × (
t0, t0 + T0 + C2 N 2−pρ p).

Since ε is arbitrary, the result follows.

To prove Lemma 4.1, we use refined Krylov-Safonov covering Lemma 4.2
together with the expansion of positivity, Proposition 3.1. The idea is to use sub-
sequently Lemma 4.2. At each step, by decreasing the level N of the level set, we
obtain an increment in the measure of the new level set. It is evident by Proposition
4.3 that when N is small, we need to choose the threshold radius ρ small in order
to control the stretching of the space-time cylinders in the time direction. However,
we may end up to the second case in Lemma 4.2, which states that the level set in-
tersects a large proportion of a space-time cylinder with the side length comparable
to the small threshold radius. Nevertheless, we may tailor the choice of σ in Lemma
4.1 so that the desired result follows directly from the expansion of positivity in this
case.

Proof of Lemma 4.1. Let C1 and C2 be as in Proposition 4.3 with δ = 2−n−p−2. To
begin with, we take an initial step by using Lemma 3.2 and obtain that∣∣{x ∈ B(0, 2) : u(x, t) > k}∣∣ ≥ k−σ

∣∣B(0, 2)
∣∣ (4.2)

for almost every

t0 < t < t0 + 1

C3
k−σ(p+1)k(2−p)(1+σ) = t0 + 1

C3
k2−pk(1−2p)σ .
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Let treshold radii in Lemma 4.2 be

ρ1 =
(

1

C2C3
k(1−2p)σ

)1/p

, ρi = ρ1

(
2C p−2

1

)(1−i)/p
, i = 2, 3, . . .

We define

Q1 = B(0, 2) ×
(

t1, t1 + C2

2
k2−pρ

p
1

)
, t1 = t0 + C2

2
k2−pρ

p
1 .

This is the initial set for the iteration scheme. Integrating (4.2) over the interval
(t1, t1 + C2k2−pρ

p
1 /2) gives us∣∣{(x, t) ∈ Q1 : u(x, t) > k}∣∣ ≥ k−σ

∣∣Q1
∣∣. (4.3)

Furthermore, we set

ki = kC1−i
1 and ti+1 = ti + C2k2−p

i ρ
p
i = ti + C2k2−pρ

p
1 21−i ,

i = 1, 2, . . ., and define

Qi = B(0, 2) × (t1, ti ), i = 2, 3, . . .

A straightforward calculation gives

ti − t1 = C2k2−pρ
p
1

i−2∑
j=0

2− j = C2k2−pρ
p
1

1 − 21−i

1 − 2−1
, i = 2, 3, . . . ,

and, hence,
lim

i→∞
∣∣Qi

∣∣ = 4
∣∣Q1

∣∣. (4.4)

We denote
Ei = {(x, t) ∈ Qi : u(x, t) > ki }.

An application of Lemma 4.2 with the set Ei and δ = 2−n−p−2 gives that at least
one of the following holds ∣∣�ρi ,ki

δ (Ei , Qi )
∣∣ ≥ 4

∣∣Ei
∣∣, (4.5)

∣∣U ki (z, ρi ) ∩ Ei
∣∣ > 120−n−p−2

∣∣U ki (z, ρi )
∣∣, z ∈ Qi , (4.6)

∣∣Ei
∣∣ > 30−n−p−2

∣∣Qi
∣∣. (4.7)

From (4.5) it follows by the definitions of ki+1 and ti+1, and Proposition 4.3 that∣∣{(x, t) ∈ Qi+1 : u(x, t) > ki+1
}∣∣ ≥ 2

∣∣{(x, t) ∈ Qi : u(x, t) > ki
}∣∣.
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If this happens for j times, then∣∣{(x, t) ∈ Q j+1 : u(x, t) > k j+1
}∣∣ ≥ 2 j

∣∣{(x, t) ∈ Q1 : u(x, t) > k
}∣∣.

Therefore, we find the integer I such that

2I−1 ≤ kσ ≤ 2I .

The number I defines the stopping time for our iteration argument. If we end up to
(4.5) successively I − 1 times, then by (4.3) and (4.4), we obtain∣∣{(x, t) ∈ QI : u(x, t) > kI

}∣∣ ≥ 2I−1
∣∣{(x, t) ∈ Q1 : u(x, t) > k

}∣∣
≥ 2I−1k−σ

∣∣Q1
∣∣

≥ 1

8

∣∣QI
∣∣. (4.8)

Thus we find a Lebesgue instant t1 < t I < tI such that∣∣{x ∈ B(0, 2) : u(x, t I ) > kI }
∣∣ ≥ 1

8

∣∣B(0, 2)
∣∣.

We assume that σ ≤ 1/ log2 C1 and, hence,

kI = kC1−I
1 = kC12−I log2 C1 ≥ 1

C4
k1−σ log2 C1 ≥ 1

C4
.

Proposition 3.1 yields the result in this case.
Suppose then that (4.6) realizes for some j ≤ I . Then there is z = (x, t) ∈ Q j

such that∣∣{(x, t) ∈ U ζ j (z, ρ j ) : u(x, t) > k j }
∣∣ > 120−n−p−2

∣∣U ζ j (z, ρ j )
∣∣.

The inequality implies that there is a Lebesgue instant t1 < t̃ < t j such that∣∣{x ∈ B(x, ρ j ) : u(x, t̃) > k j }
∣∣ > 120−n−p−2

∣∣B(x, ρ j
∣∣.

Since both radii ρ j = ρ1C (1− j)(p−2)/p
1 2(1− j)/p and levels k j = C1− j

1 k are de-
creasing with respect to j , it is enough to check only the case j = I . We apply
Proposition 3.1 and obtain with some positive constants T = T (n, p,A0,A1) and
θ = θ(n, p,A0,A1) that

ess inf
U

u ≥ kI ρ
θ
I ,

where U = B(0, 2) × (t + T/2, t + T ) and T = T
(
kI ρ

θ
I

)2−p. Thus we have to
calculate ρI by means of k. Since

ρ1 =
(

1

C2C3
k(1−2p)σ

)1/p

,
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we arrive at

ρI = ρ1

(
2C p−2

1

)(1−I )/p = 1

C5
k(1−2p)σ/p−σ log2(2C p−2

1 )/p = 1

C5
k−σC6 .

We conclude that

ess inf
U

u ≥ 1

C7
k1−σ(log2 C1+θC6),

and T = C8k(2−p)(1−σ(log2 C1+θC6)). We set

σ = 1

log2 C1 + θC6
,

which leads to the claim, again by Proposition 3.1.
We are left with the case (4.7). A similar reasoning as in the case of (4.8)

implies the desired estimate and finishes the proof.

5. The cold alternative

The alternative to the hot domain is that the domain is cold. This means that (4.1)
does not occur for any Lebesgue instant and for any large k. We have the following
lemma.

Lemma 5.1. Let σ = σ(n, p,A0,A1) be as in Lemma 4.1. There are positive
constants Tc, Mc and ϑc, all depending only on n, p, A0, and A1, such that if u is
a weak supersolution in an open set which compactly contains B(0, 8) × (0, 2Tc),
0 is a Lebesgue instant, ∫

B(0,1)

u(x, 0) dx ≥ Mc,

and ∣∣{x ∈ B(0, 2) : u(x, t) > 8k1+σ }∣∣ ≤ 8k−σ
∣∣B(0, 2)

∣∣ (5.1)

for every k ≥ 81/σ and for almost every 0 < t < 2p, then

ess inf
B(0,2)×(Tc,2Tc)

u ≥ ϑc.

We begin the proof by showing the following reverse Hölder’s inequality. It is a
consequence of Caccioppoli estimate, Lemma 2.2, and a parabolic Sobolev’s esti-
mate. The technique is due to Moser and it was first time used in the elliptic case
in [23].

Lemma 5.2. Suppose that u ≥ 1 is a weak supersolution in an open set which
compactly contains B(0, 2) × (0, 2p). Then for every p − 2 < q < p − 1 + p/n,
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s = p − 2 + (1 + p/n)−M (q − (p − 2)), M = 1, 2, . . ., there is a constant
C = C(n, p,A0,A1, q, s) such that(∫ 2

0

∫
B(0,ρ)

uq dx dt

)1/(q−p+2)

≤
(

C

(2 − ρ)n+p

∫ 2p

0

∫
B(0,2)

us dx dt

)1/(s−p+2)

for all 1 < ρ < 2.

Proof. Let M ∈ N and set

R0 = 2, R j =
(

2 − (2 − ρ)
1 − 2− j

1 − 2−M

)
, j = 0, 1, . . . , M.

We also denote
U j = B(0, R j ) × (0, R p

j ).

We choose test functions ϕ j ∈ C∞(U j ) ∩ C(U j ), j = 0, 1, 2, . . . , M , such that
0 ≤ ϕ j ≤ 1, ϕ j = 1 in U j+1, and ϕ j = 0 on B j × {R p

j } and on ∂ B j × (0, R p
j ).

Moreover, there is a constant C such that

|∇ϕ j | ≤ C2 j

2 − ρ
,

∂ϕ
p
j

∂t
≥ − C2pj

(2 − ρ)p
,

j = 0, 1, 2, . . . , M . We then apply parabolic Sobolev’s inequality (see [8, Proposi-
tion 3.1, page 7]) and obtain∫

U j+1

uκα dx dt ≤ C
∫

U j

(
uα/pϕ

β/p
j

)κp
dx dt

≤
∫

U j

∣∣∣∇ (
uα/pϕ

β/p
j

)∣∣∣p
dx dt

ess sup
0<t<R p

j

∫
B j

(uα/pϕ
β/p
j )(κ−1)n dx

p/n (5.2)

for some α ∈ R, β ≥ p and κ > 1. The inequality above is formal in sense
that we first calculate (5.2) for min(u, k) instead of u. We then use the monotone
convergence theorem to pass to the limit as k → ∞. We choose

α = p − 1 + ε, κ = 1 + p(1 + ε)

n(p − 1 + ε)
, β = p(p − 1 + ε)

1 + ε
,

where −1 < ε < 0. We use Lemma 2.2 to estimate terms on the right hand side of
(5.2). First, we have

ess sup
0<t<R p

j

∫
B j

(
uα/pϕ

β/p
j

)(κ−1)n
dx = ess sup

0<t<R p
j

∫
B j

u1+εϕ
p
j dx

≤ C

|ε|p(1 + ε)

(∫
U j

u p−1+ε|∇ϕ j |p dx dt +
∫

U j

u1+ε

(
−∂ϕ

p
j

∂t

)
+

dx dt

)
.
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Also∫
U j

∣∣∣∇ (
uα/pϕ

β/p
j

)∣∣∣p
dx dt

≤ C

(∫
U j

|∇u|pu−1+εϕ
p
j dx dt + 1

1 + ε

∫
U j

|∇ϕ j |pu p−1+ε dx dt

)

≤ C

|ε|p(1 + ε)

(∫
U j

|∇ϕ j |pu p−1+ε dx dt +
∫

U j

u1+ε

(
−∂ϕ

p
j

∂t

)
+

dx dt

)

holds. Consequently, we obtain∫
U j+1

u p−1+p/n+γ ε dx dt

≤
(

C

|ε|p(1 + ε)

∫
U j

(
u p−1+ε|∇ϕ j |p + u1+ε

(
−∂ϕ

p
j

∂t

)
+

)
dx dt

)γ

,

where γ = 1 + p/n. Moreover, the assumption u ≥ 1 implies∫
U j+1

u p−1+p/n+γ ε dx dt ≤
(

C

|ε|p(1 + ε)

2 j p

(2 − ρ)p

∫
U j

u p−1+ε dx dt

)γ

.

We set
ε j = γ j (ε0 + 1) − 1, α j = p − 1 + ε j ,

where −1 < ε0 < −1 + γ −M , j = 0, 1, . . . M . This leads to the equality p − 1 +
p/n + γ ε j = p − 1 + ε j+1 and, hence, to the inequality∫

U j+1

uα j+1 dx dt ≤
(

1

|ε j |p(1 + ε j )

C2 j p

(2 − ρ)p

∫
U j

uα j dx dt

)γ

for j = 0, 1, . . . , M . We choose

ε0 = −1 + γ −1−M (q − (p − 2)), α0 = s, αM+1 = q.

The choice implies the estimate

1

|ε j |p(1 + ε j )
≤ 1

|εM |p(1 + ε0)
= γ p

(p − 1 + p/n − q)p

1

s − (p − 2)
.

We conclude that with the constant

C̃ = 1

(p − 1 + p/n − q)(s − (p − 2))1/p
,
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we have ∫
U j+1

uα j+1 dx dt ≤
(

CC̃ p2 j p

(2 − ρ)p

∫
U j

uα j dx dt

)γ

.

We iterate this and obtain

∫
UM

uq dx dt ≤
(

CC̃ p

(2 − ρ)p

)∑M+1
j=1 γ j

M−1∏
j=0

2p(M− j)γ j+1
(∫

U0

us dx dt

)γ M+1

.

Now, a direct calculation gives

p
M+1∑
j=1

γ j = pγ

γ − 1
(γ M+1 − 1) = (n + p)(γ M+1 − 1)

and
M−1∏
j=0

2p(M− j)γ j+1 =
(

M∏
j=1

2pjγ − j

)γ M+1

≤
(

2pγ /(γ−1)2
)γ M+1

.

Thus we arrive at(∫
UM

uq dx dt

)1/(q−(p−2))

≤
(

CC̃n+p

(2 − ρ)n+p

∫
U0

us dx dt

)1/(s−(p−2))

,

which finishes the proof.

Using the lemma, we can show that under the assumption (5.1), Lq -integrals
of supersolutions are uniformly bounded up to the critical exponent.

Lemma 5.3. Let u be a non-negative weak supersolution in an open set which com-
pactly contains B(0, 2) × (0, 2p) such that (5.1) holds. Then for all p − 2 < q <

p − 1 + p/n there exists a constant C = C(n, p,A0,A1, q) such that∫ 2

0

∫
B(0,3/2)

uq dx dt ≤ C.

Proof. We define the supersolution v = u + 1 and set

δ = σ

2 + 2σ
.

It follows from (5.1) that ∫
B(0,2)

vδ(x, t) dx ≤ C (5.3)
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for almost every 0 < t < 2p, where C = C(n, p,A0,A1). We set

U (s) = B(0, s) × (0, 2p).

Let ϕ ∈ C∞
0 (B(0, S)), 0 ≤ ϕ ≤ 1, ϕ = 1 in U (s) and |∇ϕ| ≤ C/(S − s), where

7/4 ≤ s < S ≤ 2. We apply (5.2) with

α = p − 2 + δ, κ = 1 + pδ

n(p − 2 + δ)
, β = p(p − 2 + δ)

δ

and arrive by (5.3) at∫
U (s)

v p−2+δ(1+p/n) dx dt

≤ C
∫

U (S)

∣∣∣∇ (
v(p−2+δ)/pϕ

)∣∣∣p
dx dt

(
ess sup
0<t<2p

∫
B(0,2)

vδ dx

)p/n

≤ C
∫

U (S)

∣∣∣∇ (
v(p−2+δ)/pϕ

)∣∣∣p
dx dt.

We use (2.3) with ε = −1 + δ and obtain again by (5.3) that∫
U (S)

∣∣∣∇ (
v(p−2+δ)/pϕ

)∣∣∣p
dx dt

≤ C
∫

U (S)

|∇ϕ|pv p−2+δ dx dt + C ess sup
0<t<2p

∫
B(0,S)

vδ dx

≤ C
∫

U (S)

|∇ϕ|pv p−2+δ dx dt + C.

We then apply Young’s inequality and get∫
U (S)

|∇ϕ|pv p−2+δ dx dt

≤ 1

2C

∫
U (S)

v p−2+δ(1+p/n) dx dt + C

(
1

S − s

)p+n(p−2+δ)/δ

.

Therefore, we have∫
U (s)

v p−2+δ(1+p/n) dx dt

≤ 1

2

∫
U (S)

v p−2+δ(1+p/n) dx dt + C

(
1

S − s

)p+n(p−2+δ)/δ

.

An iteration argument (see e.g. [15, Lemma 5.1]) shows that∫ 2p

0

∫
B(0,7/4)

v p−2+δ(1+p/n) dx dt ≤ C.

An application of Lemma 5.2 then completes the proof.
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Lemma 5.4. Let u be as in Lemma 5.3. Then there exists a constant C =
C(n, p,A0,A1) such that∫ 1

0

∫
B(0,5/4)

|∇u|p−1 dx dt ≤ C.

Proof. Let v = u + 1. We use Hölder’s inequality and obtain∫ 1

0

∫
B(0,5/4)

|∇u|p−1 dx dt

=
∫ 1

0

∫
B(0,5/4)

|∇v|p−1v−(1+ε)(p−1)/pv(1+ε)(p−1)/p dx dt

≤
(∫ 1

0

∫
B(0,5/4)

|∇v|pv−1−ε dx dt

)(p−1)/p

×
(∫ 1

0

∫
B(0,5/4)

v p−1+ε(p−1) dx dt

)1/p

,

where
ε = p

2n(p − 1)
< 1.

By Lemma 5.3, we obtain∫ 1

0

∫
B(0,1)

v p−1+ε(p−1) dx dt ≤ C.

Furthermore, we choose ϕ ∈ C∞(B(0, 3/2) × (0, 2)), 0 ≤ ϕ ≤ 1, such that

ϕ = 0 on ∂ B(0, 3/2) × (0, 2) ∪ B(0, 3/2) × {2}
and

ϕ = 1 in B(0, 5/4) × (0, 1), |∇ϕ| +
(

−∂ϕ

∂t

)
+

≤ C.

We obtain by Lemma 2.2 that∫ 1

0

∫
B(0,5/4)

|∇v|pv−1−ε dx dt ≤ C
∫ 2

0

∫
B(0,3/2)

v p−1−ε|∇ϕ|p dx dt

+ C
∫ 2

0

∫
B(0,3/2)

v1−ε

(
−∂ϕ p

∂t

)
+

dx dt.

The result now follows by Lemma 5.3 and Hölder’s inequality.
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Lemma 5.5. Under the hypothesis of Lemma 5.3 there is a constant C =
C(n, p,A0,A1) such that if ∫

B(0,1)

u(x, 0) dx ≥ 2C,

then

ess inf
0<t<1

∫
B(0,5/4)

u(x, t) dx ≥ C.

Proof. We take ϕ ∈ C∞
0 (B(0, 5/4)), 0 ≤ ϕ ≤ 1, ϕ = 1 in B(0, 1) and |∇ϕ| ≤

C . Since 0 is a Lebesgue instant and u is a supersolution in an open set which
compactly contains B(0, 2) × (0, 2), we may substitute ϕ in (2.4) and obtain∫

B(0,5/4)

u(x, T )ϕ(x) dx ≥
∫

B(0,5/4)

u(x, 0)ϕ(x) dx

− A1

∫ 1

0

∫
B(0,5/4)

|∇u|p−1|∇ϕ| dx dt

for almost every 0 < T < 1. The result then follows by Lemma 5.4.

We also need the following simple tool.

Lemma 5.6. Let � be a bounded domain in Rn. Suppose that f is a measurable
function in � satisfying ∫

�

f dx ≥ 2N

and (∫
�

f q dx

)1/q

≤ C N

for some 1 < q ≤ +∞ and C ≥ 2, then∣∣{x ∈ � : f (x) > N }∣∣ ≥ C−q/(q−1)
∣∣�∣∣.

Proof. By Hölder’s inequality we have

2N ≤
∫

�

f dx = 1∣∣�∣∣
(∫

{ f >N }
f dx +

∫
{ f ≤N }

f dx

)

≤ C N

(
1∣∣�∣∣ ∣∣{ f > N }∣∣)1−1/q

+ N ,

which implies the result.
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Proof of Lemma 5.1. We obtain from Lemmas 5.3, 5.5 and 5.6 that we find positive
constants Ci = Ci (n, p,A0,A1), i = 1, 2, such that∣∣∣∣{(x, t) ∈ Q : u(x, t) ≥ 1

C1

}∣∣∣∣ ≥ 1

C2

∣∣Q
∣∣,

where Q = B(0, 5/4) × (0, 1), provided that Mc is big enough. Note that Mc can
be chosen to depend only on n, p, A0, and A1. Consequently, there is a Lebesgue
instant 0 < t < 1 such that∣∣∣∣{x ∈ B(0, 5/4) : u(x, t) ≥ 1

C1

}∣∣∣∣ ≥ 1

C2

∣∣B(0, 5/4)
∣∣.

The assertion follows now by the expansion of positivity, Proposition 3.1.

6. Proofs of main results

We now proceed to the proofs of our main results.

Proof of Theorem 1.1. Let t0 < t1 < t0 + T0 be a Lebesgue instant of u. For the
brevity, we denote

N =
∫

B(x0,R0)

u(x, t1) dx

and assume that N > 0. We introduce a scaled function

v(x, t) = Mc

N
u
(
x0 + R0x, t1 + (Mc/N )p−2 R p

0 t
)
,

where Mc is as in Lemma 5.1. The function v is a supersolution in B(0, 8) ×
(0, (N/Mc)

p−2(T0 + t0 − t1)/R p
0 ) and∫

B(0,1)

v(x, 0) dx = Mc.

Let Th , ϑh and Tc, ϑc be as in Lemma 4.1 and 5.1, respectively. Suppose then that

(Mc/N )p−2(T0 + t0 − t1)/R p
0 ≤ 2T ∗,

for some T ∗ ≥ max{Th, Tc}, or equivalently,

N ≥
(

C1 R p
0

T0 + t0 − t1

)1/(p−2)

,

where C1 = 2T ∗M p−2
c . Then either Lemma 4.1 or Lemma 5.1 holds and, hence,

ess inf
B(0,2)×(Th ,2Th)

v ≥ ϑh or ess inf
B(0,2)×(Tc,2Tc)

v ≥ ϑc.
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In either case we may again apply Proposition 3.1 and obtain that there are constants
ϑ and T ∗ depending only on n, p, A0, and A1 such that

ess inf
B(0,2)×(T ∗,2T ∗)

v ≥ ϑ.

We then scale back and obtain the desired result.

We use the local Harnack estimate to prove the second main result, the global
Harnack estimate.

Proof of Theorem 1.2. First, we scale the supersolution as

v(x, t) = u(x0 + (R/M)x, (R/M)pt),

where 0 < M ≤ 1. Then v is a supersolution in

R
n × (0, T0(M/R)p).

We have∫
B(x0,R)

u(x, t0) dx =
∫

B(0,M)

v(x, t1) dx ≤ M−n
∫

B(0,1)

v(x, t1) dx, (6.1)

where t1 = (M/R)pt0. Let C1 and C2 be as in Theorem 1.1 and suppose that∫
B(0,1)

v(x, t1) dx > 2

(
C1

(T0 − t0)(M/R)p

)1/(p−2)

. (6.2)

We then apply Theorem 1.1 and obtain∫
B(0,1)

v(x, t1) dx ≤
(

C1

(T0 − t0)(M/R)p

)1/(p−2)

+ C2 ess inf
Q1

v,

where Q1 = B(0, 4) × (t1 + T1/2, t1 + T1) and

T1 = C1

(
1

2

∫
B(0,1)

v(x, t1) dx

)2−p

< (T0 − t0)(M/R)p

by the condition (6.2). It follows that∫
B(0,1)

v(x, t1) dx ≤ 2C2 ess inf
Q1

v. (6.3)

Furthermore, we choose

M p = C1 R p

T

(
1

2

∫
B(0,1)

v(x, t1) dx

)2−p

,
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so that

T = (R/M)pC1

(
1

2

∫
B(0,1)

v(x, t1) dx

)2−p

< T0 − t0.

The choice of M leads by (6.1) to the inequality

Mλ ≤ C1 R p

T

(
1

2

∫
B(x0,R)

u(x, t0) dx

)2−p

,

where λ = n(p − 2) + p. Thus the requirement M ≤ 1 is certainly fulfilled if

∫
B(x0,R)

u(x, t0) dx ≥
(

2p−2C1 R p

T

)1/(p−2)

.

For such initial masses we have by (6.3) that

Mn
∫

B(x0,R)

u(x, t0) dx ≤ 2C2 ess inf
Q2

u,

where Q2 = B(x0, 4R/M) × (t0 + T/2, t0 + T ). Note that

ess inf
Q1

v = ess inf
Q2

u

by the definition of M . Moreover, we obtain, again by (6.3), that

M−n = C

(
T

R p

)n/p (∫
B(0,1)

v(x, t1) dx

)n(p−2)/p

≤ C

(
T

R p

)n/p

ess inf
Q2

un(p−2)/p.

We combine the estimates and conclude that∫
B(x0,R)

u(x, t0) dx ≤ C

(
T

R p

)n/p

ess inf
Q2

uλ/p.

Recall that Q ⊂ Q2, where Q = B(x0, 4R) × (t0 + T/2, t0 + T ), since M ≤ 1.
This proves the result.

The local intrinsic Harnack inequality follows now for weak solutions. First,
similar arguments that were used to prove Lemma 5.2, can be applied for subsolu-
tions. As a result we have the following theorem. In [8, Theorem 4.1, page 122] the
same result is obtained by using De Giorgi’s iteration method.
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Theorem 6.1. Let u be a non-negative subsolution in an open set which compactly
contains B(x0, R)× (t0 −T, t0). Then there exists a constant C = C(n, p,A0,A1)

such that

ess sup
Q

u ≤ C

(
R p

T

)1/(p−2)

+ C
T

R p

(
ess sup

t0−T <t<t0

∫
B(x0,R)

u dx

)p−1

,

where Q = B(x0, R/2) × (t0 − T/2, t0).

The proof of intrinsic Harnack estimate is based on scaling and the following
result. We emphasize the different roles of weak sub- and supersolutions.

Lemma 6.2. There is a constants T ∗ and ϑ depending only on n, p, A0, and A1,
such that if u is a local non-negative weak solution to (2.2) in B(0, 4) × (−T ∗, T ∗)
and

ess sup
B(0,1/4)×(−1/4,0)

u ≥ 1,

then
ess inf

B(0,1)×(T ∗/2,T ∗)
u ≥ ϑ.

Moreover, the constants T ∗ and ϑ are stable as p → 2.

Proof. Basic ingredients of the proof are Theorem 1.1 and Theorem 6.1. We first
use Theorem 6.1 for subsolutions and get

1 ≤ C1

(
R p

1

T1

)1/(p−2)

+ C1
T1

R p
1

(
ess sup
−T1<t<0

∫
B(0,R1)

u dx

)p−1

with

R1 = 1

2
,

R p
1

T1
= (2C1)

2−p, 1 < T1 < T ∗/4.

We obtain for some Lebesgue instant −T1 < t1 < 0 such that∫
B(0,1/2)

u(x, t1) dx ≥ 2

C2
.

We then apply Theorem 1.1 for supersolutions with R0 = 1/2, t0 = t1 − T ∗/4, and
T0 = T ∗/4 and obtain∫

B(0,1/2)

u(x, t1) dx ≤
(

C3

2p(T ∗/4 − t1)

)1/(p−2)

+ C4 ess inf
Q

u,

where Q = B(0, 2) × (t1 + T/2, t1 + T ) and

T = min

{
T ∗/4 − t1, C32−p

(∫
B(0,1/2)

u(x, t1) dx

)2−p
}

.
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The choice T ∗ = 22−pC3C p−2
2 leads to

ess inf
Q

u ≥ 1

C5
.

We may now apply Proposition 3.1 on the expansion of positivity and find an instant
T ∗ and level ϑ as in the statement. This finishes the proof.

We now define the values of u pointwise via

u(x, t) = lim
R→0

ess sup
B(x,R)×(t,t−R p)

u.

We then obtain the local Harnack estimate.

Theorem 6.3. Suppose that u is a non-negative weak solution in Q1 = B(x1, R1)×
(t1, t1 + T1). Then there exist constants Ci = Ci (n, p,A0,A1), i = 1, 2, such that
if

Q0 = B(x0, 4R) × (
t0 − C1u(x0, t0)

2−p R p, t0 + C1u(x0, t0)
2−p R p)

belongs to Q1 for R > 0, then

u(x0, t0) ≤ C2 ess inf
Q

u,

where

Q = B(x0, R) × (
t0 + C1u(x0, t0)

2−p R p/2, t0 + C1u(x0, t0)
2−p R p).

The constants C1 and C2 are stable as p → 2.

Proof. We assume that u(x0, t0) > 0. Let C1 = T ∗, where T ∗ is as in Lemma 6.2.
Then the scaled solution

v(x, t) = 1

u(x0, t0)
u(x0 + x/R, t0 + u(x0, t0)

2−pt/R p)

satisfy the assumptions of Lemma 6.2, and by scaling back we get the result.
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