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Bernstein and De Giorgi type problems:
new results via a geometric approach

ALBERTO FARINA, BERARDINO SCIUNZI AND ENRICO VALDINOCI

Abstract. We use a Poincaré type formula and level set analysis to detect one-
dimensional symmetry of stable solutions of possibly degenerate or singular el-
liptic equations of the form

div
(

a(|∇u(x)|)∇u(x)
)

+ f (u(x)) = 0.

Our setting is very general and, as particular cases, we obtain new proofs of a
conjecture of De Giorgi for phase transitions in R

2 and R
3 and of the Bernstein

problem on the flatness of minimal area graphs in R
3. A one-dimensional sym-

metry result in the half-space is also obtained as a byproduct of our analysis. Our
approach is also flexible to very degenerate operators: as an application, we prove
one-dimensional symmetry for 1-Laplacian type operators.

Mathematics Subject Classification (2000): 32H02 (primary); 30C45 (sec-
ondary).

1. Introduction

Of concern is a class of quasilinear (possibly singular or degenerate) elliptic equa-
tions in R

N with N = 2, 3. We prove one-dimensional symmetry of the solutions,
thus showing that the important results of [1–3,7,17] hold in a more general setting.
The results we present are new even in the semilinear case, when the differential op-
erator reduces to the standard Laplacian, since the nonlinearity we deal with may
be less regular than what the previous literature requires.

The techniques used are novel and they are mainly based on a geometric for-
mula, inspired by the work of [26, 27], which bounds tangential gradients and cur-
vatures of level sets of stable solutions in terms of suitable energy, or area, integrals.

As a by-product, we obtain a new result on mean curvature type operators
which extends the Bernstein Theorem in [4] to a more general setting and to possi-
bly non-homogeneous equations.
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In further detail, the topic of this paper is the following. We consider weak
solutions u ∈ C1(RN ) ∩ C2({∇u �= 0}) of equations of the form

div
(

a(|∇u(x)|)∇u(x)
)

+ f (u(x)) = 0. (1.1)

We suppose that f is a locally Lipschitz function and that a ∈ C1((0, +∞)) satis-
fies the following structural conditions:

a(t) > 0 for any t ∈ (0, +∞), (1.2)

a(t) + a′(t)t > 0 for any t ∈ (0, +∞). (1.3)

The general form of (1.1) encompasses, as particular cases, many elliptic singular
and degenerate operators such as the p-Laplacian, for a(t) = t p−2, and the mean
curvature, for a(t) = 1/

√
1 + t2.

We define A : R
N \ {0} → Mat(N × N ) by

Ahk(ξ) := a′(|ξ |)
|ξ | ξhξk + a(|ξ |)δhk (1.4)

for any 1 ≤ h, k ≤ N .
We now introduce1 the following notation:

λ1(t) := a(t) + a′(t)t, λ2(t) = · · · = λN (t) := a(t), (1.5)

for any t > 0.
It is also convenient to define

�i (t) :=
∫ t

0
λi (|τ |) τ dτ (1.6)

for i = 1, 2 and t ∈ R and

F(t) :=
∫ t

0
f (τ ) dτ.

1 In the literature, it is often assumed that ta(t) → 0+ as t → 0+ since in this case equation (1.1)
is well-defined and many regularity results follow. In our case, this condition will be automatically
fulfilled when condition (1.9), (B1) or (B2) are assumed. In such cases, the map t 
→ ta(t) is
implicitly assumed to be extended at t = 0 by continuity.
Analogously, when (B1) or (B2) are assumed, A(ξ)ξ → 0 as ξ → 0, hence the map ξ 
→ ξ A(ξ)
is assumed to be extended at ξ = 0 by continuity, even when A(0) is not defined.
Note that ta(t) > 0 for any t > 0, due to (1.2), and the map t 
→ ta(t) is increasing, due to (1.3).
As a consequence, ta(t) ∈ L∞

loc([0, +∞)) and so t2a(t) → 0+ as t → 0+, and �2 in (1.6) is
well-defined.
On the other hand, in principle, �1 in (1.6) may diverge. In our setting, conditions (A2), (B1)
and (B2) will exclude this possibility. When condition (A1) is in force, we never use �1.
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It is easily seen that (1.1) is equivalent to critical points of the formal variational
principle ∫

�2(|∇u|) − F(u) dx . (1.7)

Theorem 1.1 below holds under very general assumptions on the differential oper-
ator. Namely, we will require in Theorem 1.1 that a satisfies either (A1) or (A2),
where:

(A1) {∇u = 0} = ∅ and
t2λ1(t) ∈ L∞

loc([0, +∞)). (1.8)

(A2) We have that
a ∈ C([0, +∞)) (1.9)

and
the map t 
→ ta(t) belongs to C1([0, +∞)). (1.10)

In this case, we define Ahk(0) := a(0)δhk .
It is customary to say (see, e.g., [1, 16, 21]) that a solution u is stable if∫

RN

(
A(∇u(x))∇φ(x)

)
· ∇φ(x) − f ′(u(x)) φ2(x) dx ≥ 0 (1.11)

for any smooth, compactly supported function φ : R
N → R, as long as2 the above

integral is defined.
Of course, from the functional analysis point of view, the stability condition

in (1.11) translates into the fact that the second variation of the functional in (1.7)
is non-negative. Thence, in particular, such a condition is fulfilled by the minima of
the functional.

We remark that in case f is constant every solution is stable, since the matrix A
is positive definite (see Lemma 2.1 below).

In our very general framework, however, it is convenient to relax the definition
of stability given in (1.11), since f may not be everywhere differentiable.

2 We point out that, in general, the integral in (1.11) may be not well-defined for some test
functions in case the gradient of u vanishes, since A may diverge there. In our setting, however,
such integral will be always well-defined, due to (A1) and (A2).
We also note that, under condition (A2), A ∈ C(RN ), since, for any t > 0,

a(t) − 1

t

∫ t

0
(τa(τ ))′ dτ = 0

and so
0 = a(0) − lim

t→0+(ta(t))′ = lim
t→0+ ta′(t).

Conditions (A1) and (A2) are indeed quite different in spirit, as the example in Proposition 7.2
below will also show.
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For this, we consider the sets

G := {t ∈ R such that f ′(t) exists}
and

N := R \ G.

We recall that

N is Borel (see [10, page 82])

and with zero Lebesgue measure (see [10, page 81]).
(1.12)

We consider the sets

Nu := u−1(N ) = {x ∈ R
N such that u(x) ∈ N }

and
Gu := R

N \ Nu .

We thus replace the definition of stability in (1.11) with∫
RN

(
A(∇u(x))∇φ(x)

)
· ∇φ(x) −

∫
Gu

f ′(u(x)) φ2(x) dx ≥ 0. (1.13)

Notice that (1.13) makes sense3 when f is just locally Lipschitz and it agrees
with (1.11) when f admits derivatives everywhere.

Then, our symmetry result in R
2 is the following:

Theorem 1.1. Let N = 2. Let u ∈ C1(R2)∩C2({∇u �= 0}), with ∇u ∈ L∞(R2)∩
W 1,2

loc (R2), a and f be as in (1.1), (1.2) and (1.3).
Assume that either (A1) or (A2) holds.
Suppose that u is stable.
Then, u has one-dimensional symmetry, in the sense that there exists ū : R →

R and ω ∈ S1 in such a way that u(x) = ū(ω · x), for any x ∈ R
2.

We observe that, as paradigmatic examples satisfying the assumptions of The-
orem 1.1, one may take the p-Laplacian, with any p ∈ (1, +∞) if {∇u = 0} = ∅
and any p ∈ [2, +∞) if {∇u = 0} �= ∅, or the mean curvature operator.

3 Another way to make sense of (1.11) when f does not admit derivatives everywhere is to ask
that (1.11) holds for any φ := |∇u|ϕ, for any test function ϕ.
This is a good definition, since the map x 
→ f (u(x)) is locally Lipschitz and so

∇(
f (u)) · ∇uϕ2 = f ′(u)|∇u|2ϕ2 = f ′(u)φ2

almost everywhere, giving sense to the last integrand in (1.11).
The only use of test functions of the type |∇u|ϕ in (1.11) would be, in fact, enough for our
purposes: see the choice performed on page 754 below.
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We also remark that the assumption that ∇u ∈ W 1,2
loc (RN ) is always verified

in the p-Laplacian case if either {∇u = 0} = ∅ or if 1 < p < 3 (see, e.g. (2.2.2)
in [28] for the case 1 < p ≤ 2, and [6, Theorem 1.1 and Proposition 2.2] for the
case 2 ≤ p < 3).

As is well-known, the assumption that u ∈ C1(RN ) ∩ C2({∇u �= 0}) is also
fulfilled in the p-Laplacian case (see, e.g. [9, 28, 29]).

The assumption that |∇u| is bounded cannot be removed, as we will show by
explicit counterexamples in Proposition 3.1.

In the following Theorem 1.2, some further structural assumptions on a will
be required. These assumptions, which will use the notation introduced here above,
are still quite general, and make it possible to use some results of [5, 7].

Following [5, 7], we list these further assumptions by asking that a satisfies
either (B1) or (B2), where:

(B1) There exist p > 1, ε ≥ 0, and c
 ∈ (0, 1) such that for every ξ , ζ ∈ R
N \ {0},

one has:

c
(ε + |ξ |)p−2|ζ |2 ≤ Ahk(ξ)ζhζk ≤ 1

c

(ε + |ξ |)p−2|ζ |2.

(B2) There exist c
 ∈ (0, 1) such that for every ξ , ζ ∈ R
N \ {0}, one has:

c


(1 + |ξ |) ≤ a(|ξ |) ≤ 1

c
 (1 + |ξ |) , (1.14)

c
 |ζ |2 + (ζ · ξ)2

1 + |ξ | ≤ Ahk(ξ)ζhζk ≤ 1

c


|ζ |2 + (ζ · ξ)2

1 + |ξ | . (1.15)

Conditions (B1) and (B2) are fulfilled, for instance, by p-Laplacian type and mean
curvature type4 operators (see, e.g. (1.4) and (1.5) of [5] or (2.12) and (2.13) of [7]).

In this framework, the following result holds:

Theorem 1.2. Let N = 3, u ∈ C1(R3) ∩ W 1,∞(R3), and a and f as in (1.1).
Assume that either (B1) or (B2) holds. Suppose also that

a ∈ C1,1
loc (0, +∞). (1.16)

and that ∂x3u > 0.
Then, u has one-dimensional symmetry, in the sense that there exists ū : R →

R and ω ∈ S2 in such a way that u(x) = ū(ω · x), for any x ∈ R
3.

4 We kept the distinction between (B1) and (B2) mainly to be uniform with the existing literature.
In fact, in our setting, condition (B2) can be seen as a particular case of (B1) with p = 2, because
in Theorem 1.2 all the considered solutions have bounded gradient.
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We remark that we will prove a stronger version of Theorem 1.2. Namely,
we prove that Theorem 1.2 holds by replacing the assumption ∂x3u > 0 with the
following, a priori5 weaker, ones: ∂x3u ≥ 0, {∇u = 0} = ∅ and u stable.

Let us make some comments on the above assumptions. First of all, the hy-
potheses of Theorem 1.2 are obviously stronger than the ones of Theorem 1.1 and,
in particular, (B1) or (B2) imply (1.2) and (1.3). Moreover, (B1) or (1.15) bound the
eigenvalues of A(ξ) from above by (ε +|ξ |)p−2 and 1+|ξ |2, respectively. Since λ1
is an eigenvalue (see Lemma 2.1 below), we also have that (B1) or (B2) imply (1.8).

Furthermore, the stability condition in (1.13) is implied by the assumption
∂xN u > 0 (this is a standard fact for phase transitions and details fitting our set-
ting are given in Lemma 7.1 below).

We also note that (B1) or (B2) give a regularity theory for u, namely u ∈
C1,α

loc (R3) and so, since {∇u = 0} = ∅, we have that u ∈ C2(R3) (see footnote 4
here and [7, page 459] and references therein).

We remark again that paradigmatic examples satisfying the hypotheses of The-
orem 1.2 are the p-Laplacian operator, for any p ∈ (1, +∞), and the mean curva-
ture operator.

Theorems 1.1 and 1.2 reduce, in the particular case of a(t) = 1 and f (t) =
t − t3, to a famous problem posed by De Giorgi on [8, page 175].

In this respect, Theorems 1.1 and 1.2 are extensions of the celebrated results
in [3, 17] for N = 2 and [1, 2] for N = 3 to more general, possibly degener-
ate, operators and to less regular nonlinearities – to the best of our knowledge,
for instance, f is needed to be at least C1 in the literature, and such condition is
crucial in [1, 2] to pass to the limit in the linearized equation and in the stability
condition.

One-dimensional symmetry for solutions of non-uniformly elliptic operators
has also been dealt with in [5, 7, 12, 30]. Theorems 1.1 and 1.2 strengthen these
results: for instance, the monotonicity assumption in [7, Theorem 7.1 ] is weakened
in favor of the stability assumption of Theorem 1.1 here, and no additional limit
requirement is needed in our Theorem 1.2, in contrast with [7, Theorem 8.1] and
[30, Theorem 1.4] (on the other hand, the latter result holds for N ≤ 8).

Results and techniques developed here are also the keystone of the forthcoming
papers [15] and [25], in which higher dimensional problems and fractional operators
will be considered.

We remark that Theorems 1.1 and 1.2 are somehow bias, in the sense that the
proof of Theorem 1.2 does not rely on Theorem 1.1 but directly on the geometric
level sets estimates, because some of the hypotheses of Theorem 1.2, such as the
strict monotonicity and the stability conditions, would be lost in the limit (that is,
limits of strictly monotone functions may be not stricly monotone, and (1.13) does
not pass to the limit if f ′ is not continuous).

5 A posteriori, Theorem 1.2 under the weaker assumptions implies that the solution is one-
dimensional, thence, since {∇u = 0} = ∅, we have that u is strictly monotone in some di-
rection ω, which is not necessarily e3.
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As a consequence of Theorem 1.2, we obtain the following result about sym-
metry in the half space.

Corollary 1.3. Let g be locally Lipschitz continuous in [0, +∞), with g(0) = 0.
Let u ∈ C2(R2 × [0, +∞)) ∩ L∞(R2 × [0, +∞)) be such that

�u(x) + g(u(x)) = 0

u(x) > for any x ∈ R
2 × (0, +∞),

and u(x ′, 0) = 0 for any x ′ ∈ R
2.

Then, u has one-dimensional symmetry, in the sense that there exists ū : R → R in
such a way that u(x ′, x3) = ū(x3), for any (x ′, x3) ∈ R

2 × [0, +∞).

Corollary 1.3 is an extension of [3, Theorem 1.5]. In fact, the results of Corol-
lary 1.3 here and of [3, Theorem 1.5] hold under different hypotheses: Theorem 1.5
for N = 3 in [3] is valid assuming only that g(0) ≥ 0, but requiring g to be C1,
while here we need g(0) = 0 but we may allow less regularity (once more, the
condition that g′ is continuous was not merely technical in [3], since it was needed
for taking limits: see, in particular, [3, Lemma 3.1 on page 84]).

We now state a Bernstein type result:

Theorem 1.4. Let N = 2. Let u ∈ C2(R2), a and f be as in (1.1), (1.2) and (1.3).
Suppose also that f has a sign (meaning that either f ≥ 0 or f ≤ 0), that

|a(t) t | ≤ C (1.17)

for any t ≥ C, and that
t2λ1(t) ≤ C a(t) (1.18)

for any t ≥ C, for a suitable C ≥ 1.
Suppose that either (A1) or (A2) holds, and that u is stable.
Then, u possesses one-dimensional symmetry.

As a particular case, one may take f := 0 and a(t) := 1/
√

1 + t2 in The-
orem 1.4: in such a case, our result reduces to the very famous fact that minimal
surfaces which are graphs in R

3 are one-dimensional and, as a consequence, affine
(see [4]): this classical result is therefore extended here to more general types of
equations, thanks to our different approach.

We recall also that, in the minimal surface case, where f := 0 and a(t) :=
1/

√
1 + t2, any solution of (1.1) is automatically stable, since f ′ vanishes identi-

cally.
The main novelty with respect to the techniques already available in the lit-

erature for dealing with one-dimensional symmetries is here the use of a Poincaré
type formula (given in Theorem 2.5), which extends a similar one of [26,27]. Such
a formula is geometric in spirit, since it involves the curvature and the tangential
gradients of level sets.
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In some sense, this approach makes it possible to deal with the problems of
Bernstein and De Giorgi, which have a geometric flavor, in a more geometric
way. Such a geometric answer to problems that are of geometric nature has also
some technical advantages. For instance, it will give us the possibility of prov-
ing Theorems 1.1 and 1.2 without any assumptions at infinity (which are needed
in [7, 22, 30]). It also allows us to deal with a less regular f with respect to [1, 2]
and, differently from [22, 30], no growth assumptions from the minima of F are
needed here.

This generality is accomplished thanks to the geometry encoded in the Poincaré
type formula of Theorem 2.5: indeed, while it is not possible to “push” the stability
in (1.13) towards infinity (unless f ′ is continuous), the information on the level sets
will remain at infinity.

In this sense, Theorem 2.5 will allow us to obtain first some geometric infor-
mation and then to push it to infinity.

We also mention that, differently from [2, 22, 30], we do not need here to as-
sume the existence of a monotone one-dimensional profile. The monotone one-
dimensional profile was important in [2] for bounding the energy and in [22, 30] to
build suitable barriers, which are not needed in our construction. In fact, our limit-
ing profile may have somewhat wild behaviors (see Lemma 4.14 and the examples
in Section 7.2).

For a survey of geometric problems related to the one considered here, in con-
nection with Liouville type results, see also [13].

We finish with an application to very degenerate operators of 1-Laplacian type.
For this, we consider the following weakened version of (1.3):

a(t) + a′(t)t ≥ 0 for any t ∈ (0, +∞). (1.19)

We prove that

Theorem 1.5. Suppose that f is locally Lipschitz, that a ∈ C1((0, +∞)) satis-
fies (1.2), (1.19) and that (A1) holds.

Let u ∈ C2(R2) be a stable solution of (1.1) in R
2, with |∇u| ∈ L∞(R2).

Then, u has one-dimensional symmetry.

The easiest case of operators fulfilling the assumptions of Theorem 1.5 is given
by a(t) = 1/t for all (or for some) t > 0, that are 1-Laplacian type operators. We
remark that the assumption that ∇u does not vanish, which is contained in (A1), is
needed to make sense of (1.1).

The organization of the paper is the following. In Section 2, we prove Theo-
rem 1.1. Section 3 contains examples showing the optimality of the assumptions
of Theorem 1.1. We then provide two proofs of Theorem 1.2. Namely, Section 4
contains some general preliminaries, needed for both the proofs of Theorem 1.2,
Section 5 gives the details of the first proof, based on a capacity argument, and Sec-
tion 6 presents the second proof, which exploits a Liouville type result (the end of
the latter proof is closely related to similar arguments in [1, 2, 7]).
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In the semilinear model, monotone solutions are known to be stable: modifi-
cations of standard arguments are given in Section 7 to show that the same holds in
our setting.

The proof of Corollary 1.3 and Theorem 1.4 are then given in Sections 8 and 9,
respectively.

Theorem 1.5 is proven in Section 10.

2. Proof of Theorem 1.1

We borrow a large number of ideas from [11] and exploit some techniques of [26,
27].

2.1. Algebraic manipulations

In the sequel, we implicitly assume N ≥ 2.

Lemma 2.1. For any ξ ∈ R
N \ {0}, the matrix A(ξ) is symmetric and positive

definite and its eigenvalues are λ1(|ξ |), . . . , λN (|ξ |).
Moreover,

A(ξ)ξ · ξ = |ξ |2 λ1(|ξ |). (2.1)

Proof. The formula in (2.1) is straightforward.
Fixed ξ ∈ R

N \ {0}, the matrix A(ξ) is obviously symmetric. What is more,
A(ξ)ξ = λ1(|ξ |)ξ and A(ξ)v = λ2(|ξ |)v for any v ∈ R

N such that v · ξ = 0. This
says that the eigenvalues of A(ξ) are as in (1.5). Such eigenvalues are positive, due
to (1.2) and (1.3), and so A(ξ) is positive definite.

Consequences of Lemma 2.1 are that

�i (−t) = �i (t) > 0

for any t ∈ R \ {0}, and that

0 ≤ A(ξ) (V − W ) · (V − W ) = A(ξ) V · V + A(ξ) W · W − 2AV · W, (2.2)

for any V , W ∈ R
N and any ξ ∈ R

N \ {0}.
Lemma 2.2. Let u ∈ C1(RN ) ∩ C2({∇u �= 0}), with ∇u ∈ W 1,2

loc (RN ) be a weak
solution of (1.1). Suppose that either (A2) holds or that {∇u = 0} = ∅.

Then, u j is a weak solution of

div
(

A(∇u(x))∇u j (x)
)

+ f ′(u(x))u j (x) = 0, (2.3)

for any j = 1, . . . , N.
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Proof. First of all, we observe that

the map x 
→ W (x) := a(|∇u(x)|)∇u(x) belongs to W 1,1
loc (RN , R

N ). (2.4)

Indeed, this is obvious if {∇u = 0} = ∅, while, if (A2) holds, we see that the map

R
N 
 ξ 
→ �(ξ) := a(|ξ |)ξ

belongs to W 1,∞
loc (RN , R

N ), and so (2.4) follows by writing W (x) = �(∇u(x)).
From (2.4), we have that

−
∫

RN
∂ j

(
a(|∇u|)∇u

)
· ψ dx =

∫
RN

a(|∇u|)∇u · ∂ jψ dx,

for any ψ ∈ C∞
0 (RN , R

N ).
Also, by (2.4) and Stampacchia’s theorem (see, for instance, [19, Theorem

6.19]), we get that ∂ j W (x) = 0 for almost any x ∈ {W = 0}, that is

∂ j

(
a(|∇u(x)|)∇u(x)

)
= 0

for almost any x ∈ {∇u = 0}.
Analogously, making use again of Stampacchia’s theorem and (A2), we see

that ∇u j (x) = 0, and so A(∇u(x))∇u j (x) = 0, for almost any x ∈ {∇u = 0}.
A direct computation also shows that

∂ j

(
a(|∇u|)∇u

)
= A(∇u)∇u j

on {∇u �= 0}.
As a consequence,

∂ j

(
a(|∇u|)∇u

)
= A(∇u)∇u j

almost everywhere.
Let now φ ∈ C∞

0 (RN ). We use the above observations to obtain that

−
∫

RN
A(∇u)∇u j · ∇φ + f ′(u)u jφ dx

= −
∫

RN
∂ j

(
a(|∇u|)∇u

)
· ∇φ + ∂ j

(
f (u)

)
φ dx

=
∫

RN
a(|∇u|)∇u · ∇φ j + f (u)φ j dx,

which vanishes due to (1.1).
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The careful reader may easily convince herself or himself that the proof of
Lemma 2.2 holds, in fact, assuming ∇u ∈ W 1,1

loc (RN ): since such a generality is not

needed here, we assumed, for simplicity, ∇u ∈ W 1,2
loc (RN ) in order to use the above

result in Lemma 2.4.
We will now consider the tangential gradient with respect to a regular level

set. That is given v ∈ C1(RN ), we define the level set of v at x as

Lv,x := {y ∈ R
N such that v(y) = v(x)}. (2.5)

If ∇v(x) �= 0, Lv,x is a hypersurface near x and one can consider the projection of
any vector onto the tangent plane: in particular, the tangential gradient, which will
be denoted as ∇Lv,x , is the projection of the gradient. That is, given f ∈ C1(Bρ(x)),
for ρ > 0, we set

∇Lv,x f (x) := ∇ f (x) −
(

∇ f (x) · ∇v(x)

|∇v(x)|
) ∇v(x)

|∇v(x)| . (2.6)

Lemma 2.3. Let U ⊆ R
N be an open set, v ∈ C2(U ) and x ∈ U be such

that ∇v(x) �= 0. Then,

a(|∇v(x)|)
[∣∣∣∇|∇v|(x)

∣∣∣2−
N∑

j=1

|∇v j (x)|2
]

−a′(|∇v(x)|) |∇v(x)|
∣∣∣∇Lv,x |∇v|(x)

∣∣∣2

=
(

A(∇v(x))
(
∇|∇v|(x)

))
·
(
∇|∇v|(x)

)
−

(
A(∇v(x)) ∇v j (x)

)
· ∇v j (x).

Proof. We use ∇L , a and A as a short-hand notation for ∇Lv,x , a(|∇v(x)|) and
A(∇v(x)) respectively. We observe that, from (2.6),

|∇Lv,x f |2 = |∇ f |2 −
(

∇ f · ∇v

|∇v|
)2

for any smooth function f .
It is also straightforward that

∂ j |∇ f | = ∇ f · ∇ f j

|∇ f | , (2.7)

at points where ∇ f �= 0.
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We exploit these observations and (1.4) to make the following computation:

(A(∇|∇v|)) · (∇(|∇v|)) − (A∇v j ) · ∇v j

− a|∇|∇v||2 + a|∇v j ||∇v j | + a′|∇v||∇L |∇v||2

= a′

|∇v|vhvk∂h |∇v| ∂k |∇v|

− a′

|∇v|vhvkv jhv jk + a′|∇v|
[
|∇|∇v||2 −

(
∇|∇v| · ∇v

|∇v|
)2

]

= − a′

|∇v| (∇v · ∇v j )(∇v · ∇v j ) + a′|∇v||∇|∇v||2

= 0,

where the index summation convention is understood.

2.2. An elementary density argument

In Theorem 2.5 below, we will need to use the stability condition (1.13) for a less
regular test function. To this extent, we need the following observation:

Lemma 2.4. Suppose that either (A2) holds or that {∇u = 0} = ∅. Let u ∈
C1(RN ) be a stable weak solution of (1.1). Then, (1.13) holds for any φ ∈ W 1,2

0 (B)

and any ball B ⊂ R
N .

Also, under the assumptions of Lemma 2.2,∫
RN

A(∇u)∇u j · ∇φ − f ′(u)u jφ dx = 0 (2.8)

for any j = 1, . . . , N, any φ ∈ W 1,2
0 (B) and any ball B ⊂ R

N .

We omit the standard proof of such result (for full details see [14]).

2.3. Extension of a Poincaré type formula by Sternberg and Zumbrun

Given y ∈ Lu,x ∩ {∇u �= 0}, let κ1,u(y), . . . , κ(N−1),u(y) denote the principal
curvatures of Lu,x at y. In the sequel, we will often use κ� as a short-hand notation
for κ�,u , when no ambiguity is possible.

Tangential gradients and curvatures may be conveniently related: indeed, ac-
cording to formula (2.1) of [26],∑

j

|∇v j |2 − |∇L |∇v||2 − |∇|∇v||2 = |∇v|2
∑

�

κ2
�,v, (2.9)

on {∇v �= 0}, for any v ∈ C2({∇v �= 0}).
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In the subsequent Theorem 2.5, we give an extension of a formula obtained
in [26, 27]. This formula relates the stability of the equation with the principal
curvatures of the corresponding level set and with the tangential gradient of the
solution. Since this formula bounds a weighted L2-norm of any test function by a
weighted L2-norm of its gradient, we may see this formula as a weighted Poincaré
type inequality.

The proof we present is a variation of the one given in [26, 27]: the main
difference is that we exploit here the results of Section 2.1 in order to go back to
the usual notion of curvatures and tangents instead of the one in the metric structure
induced by A.

Theorem 2.5. Let � ⊆ R
N be open (not necessarily bounded). Let u ∈ C1(�) ∩

C2(� ∩ {∇u �= 0}) with ∇u ∈ W 1,2
loc (�) be a stable weak solution of (1.1) in �.

Suppose that either (A2) holds or that {∇u = 0} = ∅.
For any x ∈ � ∩ {∇u �= 0} let Lu,x denote the level set of u at x, according

to (2.5).
Let also λ1(|ξ |) and λ2(|ξ |) be as in (1.5).
Then,∫

�∩{∇u �=0}

[
λ1(|∇u(x)|)

∣∣∣∇Lu,x |∇u|(x)

∣∣∣2

+ λ2(|∇u(x)|) |∇u(x)|2
N−1∑
�=1

κ2
� (x)

]
ϕ2(x) dx

≤
∫

�

|∇u(x)|2
(

A(∇u(x))∇ϕ(x)
)

· ∇ϕ(x) dx

(2.10)

for any locally Lipschitz, function ϕ : � → R whose support is compact and
contained in �.

Proof. We make use of λi , κi , ∇L , a and A as a short-hand notation for λi (|∇u(x)|),
κi (x), ∇Lu,x , a(|∇u(x)|) and A(∇u(x)) respectively.

Since the maps x 
→ u j (x) and x 
→ |∇u(x)| belong to W 1,2
loc (�), Stampac-

chia’s theorem (see, e.g., [19, Theorem 6.19]) yields that

∇|∇u| = 0 almost everywhere on {|∇u| = 0}
and

∇u j = 0 almost everywhere on {|∇u| = 0} ⊆ {u j = 0},
for any j = 1, . . . , N .

We take now φ := u jϕ
2 in (2.8) and we sum over j to see that∫

(A∇u j ) · ∇(u jϕ
2) − f ′(u)|∇u|2ϕ2 dx = 0. (2.11)
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Notice also that (1.12) and of [19, Theorem 6.19] give that

∇u = 0 almost everywhere on Nu (2.12)

and therefore ∫
Gu

f ′(u)|∇u|2ϕ2 =
∫

�

f ′(u)|∇u|2ϕ2.

We thus exploit (1.13) with φ := |∇u|ϕ. Note that this choice is possible, thanks to
Lemma 2.4. The use of (2.11) and Lemma 2.3 then implies

0 ≤
∫

|∇u|2(A∇ϕ) · ∇ϕ + ϕ2(A∇|∇u|) · ∇|∇u|
+ 2ϕ|∇u|(A∇ϕ) · ∇|∇u| − f ′(u)|∇u|2ϕ2 dx

=
∫

|∇u|2(A∇ϕ) · ∇ϕ dx

+
∫

{∇u �=0}
2ϕ|∇u|(A∇ϕ) · ∇|∇u| − (A∇u j ) · ∇(u jϕ

2)

+ ϕ2(A∇|∇u|) · ∇|∇u| dx

=
∫

|∇u|2(A∇ϕ) · ∇ϕ dx +
∫

{∇u �=0}
aϕ2

(
|∇|∇u||2 −

∑
j

|∇u j |2
)

− a′ϕ2|∇u| |∇L |∇u||2 dx .

That is, using (1.5),∫
|∇u|2(A∇ϕ) · ∇ϕ dx

≥
∫

{∇u �=0}
ϕ2

[
λ1|∇L |∇u||2

+λ2

(∑
j

|∇u j |2 − |∇L |∇u||2 − |∇|∇u||2
)]

dx .

This and (2.9) imply the desired result.

Corollary 2.6. Let N = 2 and u ∈ C1(R2) ∩ C2({∇u �= 0}). Suppose that∫
{∇u �=0}

[
λ1(|∇u(x)|)

∣∣∣∇Lu,x |∇u|(x)

∣∣∣2

+ λ2(|∇u(x)|) |∇u(x)|2 κ2
1 (x)

]
ϕ2(x) dx

≤ K
∫

R2
|∇ϕ(x)|2 dx

(2.13)

for some K ≥ 0.
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Then,
κ1(x) = 0 (2.14)

and
∇Lu,x |∇u(x)| = 0 (2.15)

for any x ∈ {∇u �= 0}.
In particular, if u fulfills the assumptions of Theorem 1.1, then (2.14) and (2.15)

hold.

Proof. First, we observe that (2.13) implies (2.14) and (2.15): this follows by fix-
ing R > 0, choosing

ϕ := max

{
0, min

{
1,

ln(R2/|x |)
ln R

}}

as test function in (2.13) and then sending R → +∞ (full details of this standard
capacity argument are in [14]).

We now show that (2.14) and (2.15) hold under the assumptions of Theo-
rem 1.1. Indeed, since |∇u| is taken to be bounded in Theorem 1.1 and the map

t 
→ t2λ1(t) + t2λ2(t)

belongs to L∞
loc([0, +∞)), thanks to either (A1) or (A2), we have that

|∇u|2
(

A(∇u)∇ϕ
)

· ∇ϕ ≤ K |∇ϕ|2

for any Lipschitz compactly supported ϕ, for a suitable K > 0.
This and Theorem 2.5 yield that (2.13) is satisfied, thence (2.14) and (2.15)

hold by what we have already proved.

2.4. Level set analysis

In what follows, we will consider connected components of the level sets (in the
inherited topology).

Lemma 2.7. Let v ∈ C1(RN ) ∩ C2({∇v �= 0}). Fix x̄ ∈ R
N .

Suppose that for any x ∈ Lv,x̄ ∩ {∇v �= 0}, we have that ∇Lv,x |∇v(x)| = 0.
Then, |∇v| is constant on every connected component of Lv,x̄ ∩ {∇v �= 0}.

Proof. Since any connected component of Lv,x̄ ∩ {∇v �= 0} is a regular hypersur-
face, any two points in it may be joined by a C1 path.

Let L := Lv,x̄ for short. We notice that, if t1 > t0 ∈ R and γ ∈ C1([t0, t1], L ∩
{∇v �= 0}), then

d

dt
|∇v(γ (t))| = ∇|∇v(γ (t))| · γ̇ (t) = ∇L |∇v(γ (t))| · γ̇ (t) = 0,
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thanks to (2.6). As a consequence,

if γ ∈ C1([t0, t1], L ∩ {∇v �= 0}), then

|∇v(γ (t))| is constant for t ∈ [t0, t1].
(2.16)

Now, we take a and b in L ∩ {∇v �= 0} and γ ∈ C1([0, 1], L) such that γ (0) = a
and γ (1) = b. Then |∇v(a)| = |∇v(b)|, by (2.16).

Corollary 2.8. Under the assumptions of Lemma 2.7, every connected component
of Lv,x ∩ {∇v �= 0} is closed in R

N .

Proof. Let M be any connected component of Lv,x ∩ {∇v �= 0}.
With no loss of generality, we suppose that M �= ∅ and take z ∈ M .
Let y ∈ ∂ M . Then there is a sequence xn ∈ M approaching y, thus

v(y) = lim
n→+∞ v(xn) = v(z). (2.17)

Then, by Lemma 2.7, we have that |∇v(xn)| = |∇v(z)|. So, since z ∈ M ,

|∇v(y)| = lim
n→+∞ |∇v(xn)| = |∇v(z)| �= 0. (2.18)

By (2.17) and (2.18), we have that y ∈ M .

Corollary 2.9. Let the assumptions of Lemma 2.7 hold. Let M be a connected
component of Lv,x ∩ {∇v �= 0}. Suppose that M �= ∅ and M is contained in a
hyperplane π . Then, M = π .

Proof. We show that

M is open in the topology of π . (2.19)

For this, let z ∈ M . Then there exists an open set O1 of R
N such that z ∈ O1 ⊂

{∇v �= 0}. Also, by the Implicit Function theorem, there exists an open set O2
in R

N for which z ∈ O2 and Lv,x ∩ O2 is a hypersurface. Since M ⊆ π , we have
that Lv,x ∩ O2 ⊆ π , hence Lv,x ∩ O2 is open in the topology of π .

Then, z ∈ Lv,x ∩ O1 ∩ O2, which is an open set in π .
This proves (2.19).
Also, M is closed in R

N and so M = M ∩ π is closed in π .
Hence, M is open and closed in π .

Lemma 2.10. Let v ∈ C1(RN ) ∩ C2({∇v �= 0}) be such that ∇Lv,x |∇v(x)| = 0
for every x ∈ {∇v �= 0}.

Let x̄ ∈ R
N .

Suppose that a non-empty connected component L̄ of Lv,x̄ ∩ {∇v �= 0} has
zero principal curvatures at all points.

Then, L̄ is a flat hyperplane.
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Proof. We use a standard differential geometry argument (see, for instance, [23,
page 311]). Since the principal curvatures vanish identically, the normal of L̄ is
constant, thence L̄ is contained in a hyperplane.

Then, the claim follows from Corollary 2.9.

Lemma 2.11. Let v ∈ C1(RN ) ∩ C2({∇v �= 0}). Suppose that

any connected component of Lv,x ∩ {∇v �= 0}
has zero principal curvatures at all points

(2.20)

and that
∇Lv,x |∇v(x)| = 0 (2.21)

for any x ∈ {∇v �= 0}. Then, v possesses one-dimensional symmetry, in the sense
that there exists v̄ : R → R and ω ∈ SN−1 in such a way that v(x) = v̄(ω · x), for
any x ∈ R

N .

Proof. If ∇v(x) = 0 for any x ∈ R
N , the one-dimensional symmetry is trivial.

If ∇v(x̄) �= 0, then the connected component of Lv,x̄ ∩ {∇v �= 0} passing
through x̄ is a hyperplane, due to Lemma 2.10.

We observe that all these hyperplanes are parallel, because connected compo-
nents cannot intersect.

Also, v is constant on these hyperplanes, since each of them lies on a level set.
On the other hand, v is also constant on any other possible hyperplane parallel

to the ones of the above family, because the gradient vanishes identically there.
From this, the one-dimensional symmetry of v follows by noticing that v only

depends on the orthogonal direction with respect to the above family of hyper-
planes.

2.5. Completion of the proof of Theorem 1.1

We observe that u satisfies (2.20) and (2.21), thanks to Corollary 2.6. Hence, the
use of Lemma 2.11 ends the proof of Theorem 1.1.

3. Optimality of the assumptions of Theorem 1.1

We note that the assumption that |∇u| ∈ L∞(RN ) cannot be removed from Theo-
rem 1.1, as the next observation points out:

Proposition 3.1. Let κ > 0 and ψ ∈ C1((κ, +∞)) be such that

ψ ′(t) > 0

for any t > κ , and
lim

t→+∞ ψ(t) = +∞.
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Then, there exists a ∈ C1(0, +∞) satisfying (1.2), (1.3) and (A2), and u ∈ C2(RN )

which is a stable solution of

div
(

a(|∇u(x)|)∇u(x)
)

− N = 0 (3.1)

and which satisfies
|∇u(x)| = ψ(|x |) (3.2)

for any |x | suitably large.
Also, u does not possess one-dimensional symmetry.

Proof. Let κ ′′ ≥ κ be such that κ ′ := ψ(κ ′′) > 0 and let ψ−1 be the inverse
function of ψ .

Let φ ∈ C1([0, +∞)) be such that φ(t) := κ ′′t/κ ′ if t ∈ [0, κ ′/2], φ(t) :=
ψ−1(t) if t ∈ [κ ′, +∞), and φ′(t) > 0 for any t > 0.

Let a(t) := φ(t)/t for any t > 0.
Then, a clearly satisfies (1.2). Also,

0 < φ′(t) = a(t) + a′(t)t,

thence (1.3) holds.
The fact that a(t) = κ ′′/κ ′ for t ∈ (0, κ ′/2) implies that (A2) is satisfied.
Let now

v(r) :=
∫ r

0
φ−1(s) ds

and u(x) := v(|x |).
Note that v ∈ C2(0, +∞), and, since φ−1(t) = κ ′t/κ ′′ for small t , we have

that v′(0+) = 0 and v′′(0+) = κ ′/κ ′′.
Accordingly, u ∈ C2(RN ), it satisfies (3.2) for |x | > κ ′ and it solves (3.1) by

a straightforward calculation.
Since, in this case, f ′ vanishes, the stability condition (1.13) is also obviously

satisfied.
Of course, u does not possess one-dimensional symmetry, because it is radial

and non-constant.

4. Preliminaries for the proof of Theorem 1.2

We take the assumptions of Theorem 1.2 and follow some ideas of [11]: namely, the
proof of Theorem 1.2 will exploit a careful analysis at infinity, which reduces one
dimension. Some ideas of [1, 2] will also be used for the energy estimates needed
below.

Given a function v : R
N → R, we set vt (x) = vt (x ′, xN ) := v(x ′, xN + t),

for any x = (x ′, xN ) ∈ R
N−1 × R and t ∈ R.



BERNSTEIN AND DE GIORGI TYPE PROBLEMS 759

4.1. Energy estimates

Given v : R
N → R, with |∇v| ∈ L∞(RN ), and R > 0, we deal with the energy

ER(v) :=
∫

BR

�2(|∇v(x)|) − F(v(x)) dx .

The next result points out that the energy of a solution v is controlled by the one
of vt , up to a term of order RN−1 (in the course of the proof, we will see that such
an additional term does not bother us, since N = 3 in our case, and for large t the
energy of vt will be computed on one-dimensional profiles).

Lemma 4.1. Let v ∈ C2(RN ) satisfy (1.1), with ∂xN v ≥ 0 and |v| + |∇v| ≤ M.
There exists C > 0, depending only on N, M and a, in such a way that

ER(v) ≤ ER(vt ) + C RN−1

for any t ∈ R.

Proof. The computations on [2, Section 2] may be easily adapted to our case, via
the argument below. First,

∂t ER(vt ) =
∫

BR

λ2(|∇vt |)∇vt · ∂t (∇vt ) − f (vt )∂tv
t dx

=
∫

∂ BR

a(|∇vt |)∂tv
t∇vt · ν dσ,

where ν is the exterior normal of BR , thanks to (1.1). Hence,

∂t ER(vt ) ≥ −M ′
∫

∂ BR

∂tv
t ,

where
M ′ := sup

0≤t≤M
|ta(|t |)|, (4.1)

which is finite, thanks to (B1) or (B2). Therefore, if, say T ≥ 0,

ER(vT ) − ER(v) =
∫ T

0
∂t ER(vt ) dt

≥ −M ′
∫ T

0

∫
∂ BR

∂tv
t dσ dt = −M ′

∫
∂ BR

∫ T

0
∂tv

t dt dσ

= −M ′
∫

∂ BR

(vT − v) dσ ≥ −2M M ′|∂ BR|,

as desired.
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4.2. Elementary linear algebra

Next is a straightforward consequence of (B1) or (B2) and Lemma 2.1:

Lemma 4.2. The maps ξ 
→ |A(ξ)ξ | and ξ 
→ |a(|ξ |)ξ | belong to L∞
loc(R

N \ {0})
and they are continuously extended at the origin by attaining value zero.

If (B1) holds, there exists c ∈ (0, 1) such that

c(ε + |ξ |)p−2 ≤ λ1(ξ), λ2(ξ) ≤ 1

c
(ε + |ξ |)p−2

for any ξ ∈ R
N \ {0}.

If (B2) holds, given any M > 0, there exists cM ∈ (0, 1) such that

cM ≤ λ1(ξ), λ2(ξ) ≤ 1

cM

for any ξ ∈ R
N \ {0} with |ξ | ≤ M.

Corollary 4.3. We have that

t2a(t) − �2(t) = �1(t) (4.2)

for any t > 0. Also, for any M > 0, there exits CM > 0 such that

t2 a(t) ≤ CM�2(t) (4.3)

for any t ∈ [0, M].

Proof. We observe that the function

t 
→ �1(t) + �2(t) − t2a(t)

is constant, due to (1.5) and (1.6), and

lim
t→0+ �i (t) = lim

t→0+ t2a(t) = 0,

thanks to Lemma 4.2.
This proves (4.2).
By Lemma 4.2, we know that λ1 and λ2 are of the same order of magnitude,

hence so are �1 and �2, by (1.6). This and (4.2) imply (4.3).
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4.3. An elementary integral estimate

For further reference, we point out the following simple observation:

Lemma 4.4. Let α ∈ R and β ∈ R. Suppose that h ∈ C1([α, β]) be such that 0 <

|h′| ≤ M. Then, there exists C > 0, depending only on M and a, in such a way that∫ β

α

�2(h
′(t)) dt ≤ C |h(β) − h(α)|.

Proof. By Lemma 4.2, if 0 < |t | ≤ M ,

�2(t)

|t | = 1

|t |
∫ |t |

0
a(τ ) τ dτ ≤ M ′,

for M ′ as in (4.1), and so∫ β

α

�2(h
′(t)) dt ≤ M ′

∫ β

α

|h′(t)| dt

from which the desired claim easily follows, since h is monotone.

4.4. An elementary continuity property

In our setting, a and A may not be well-defined at the origin and this may, in prin-
ciple, cause problems when passing to the limit. The next observation is needed to
avoid such complications:

Lemma 4.5. Suppose that v j ∈ C1(RN ) converges to some v in C1
loc(R

N ). Then,

lim
j→+∞

∫
RN

a(|∇v j |)∇v j · ∇φ =
∫

RN
a(|∇v|)∇v · ∇φ

and lim
j→+∞

∫
RN

A(∇v j )∇v j · ∇φ =
∫

RN
A(∇v)∇v · ∇φ,

for any φ ∈ C∞
0 (RN ).

Proof. For short, we use here

α j to denote either a(|∇v j (x)|)∇v j (x) or A(∇v j (x))∇v j (x),

and α to denote either a(|∇v(x)|)∇v(x) or A(∇v(x))∇v(x),

respectively.
By Lemma 4.2,

lim
j→+∞ α j = 0 = α

if x ∈ {∇v = 0}.
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Since a and A are continuous outside the origin, also

lim
j→+∞ α j = α

if x ∈ {∇v �= 0}.
Then, the Bounded Convergence theorem yields the desired result.

4.5. ODE analysis

We let h ∈ C1(R) ∩ W 1,∞(R) be a weak solution of(
a(|h′(t)|)h′(t)

)′ + f (h(t)) = 0 (4.4)

for any t ∈ R.
This section is devoted to the analysis of the ODE in (4.4). For this purpose,

it is enough to assume only that f is continuous (such further generality may be
useful in the applications, see, e.g. [15]).

First, we point out a regularity result. Namely, we estimate the Hölder expo-
nent of h′ (see Lemma 4.6), with the aim of proving that the map t → �1(h′(t))
is differentiable (see Corollary 4.7) and obtain a first integral of the motion (see
Corollary 4.8).

Lemma 4.6. If (B1) holds with ε = 0, we have that h ∈ C1,1/(p−1)

loc (R) ∩ C2({h′ �=
0}) if p ≥ 2 and h ∈ C2(R) if p < 2.

If either (B1) holds with ε > 0 or (B2) holds, we have that h ∈ C1,1
loc (R) ∩

C2({h′ �= 0}).
Proof. The most difficult case is when (B1) holds with ε = 0, which we consider
first.

To this end, we set �(t) := ta(|t |) and γ (t) := h′(t) a(|h′(t)|), for t ∈ R.
Of course,

�(h′(t)) = γ (t). (4.5)

We also observe that γ ∈ C(R) and, by (4.4), we have that γ ′(t) = − f (h(t)) ∈
C(R) in the distributional sense and, thence, as a function (see, e.g., [19, Theo-
rem 6.10]). Accordingly,

γ ∈ C1(R). (4.6)

Moreover, by Lemma 4.2,

c
t |t |p−2 ≤ �(t) ≤ 1

c

t |t |p−2 (4.7)

and, by Lemma 2.1,

�′(t) = a(t) + ta′(t) = λ1(t) > 0 (4.8)

for any t > 0.
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Since � is odd, (4.8) says that it is strictly increasing, hence invertible. There-
fore, if �−1 is its inverse function, it is also odd, and we infer from (4.7) that

c1t |t |(2−p)/(p−1) ≤ �−1(t) ≤ c2t |t |(2−p)/(p−1)

for any t > 0, where c2 > c1 > 0 are appropriate constants.
Since � ∈ C1(R\ {0}) by construction, thence �−1 ∈ C1(R\ {0}), we deduce

from the latter estimate that �−1 ∈ C1(R) if p < 2 and �−1 ∈ C0,1/(p−1)(R) ∩
C1(R \ {0}) if p ≥ 2. Thence, by (4.5) and (4.6), we have that h′ = �−1 ◦ γ . This
gives the desired regularity if (B1) holds with ε = 0.

In view of the fact that h′ ∈ L∞(R) and recalling footnote 4, we see that this
also gives the desired claim when (B2) holds.

Case (B1) with ε > 0 reduces to the case p = 2.
This concludes the proof of Lemma 4.6.

Corollary 4.7. Let L1(t) := �1(h′(t)). Then, we have that L1 ∈ C(R)∩C1({h′ �=
0}), that L1 is differentiable on R and that L ′

1(t

) = 0 if h′(t
) = 0.

Proof. We first consider the case in which (B1) holds with ε = 0. Then, exploiting
Lemmata 2.1 and 4.2, (1.5) and (1.6), we see that

|�1(t)| ≤
∫ |t |

0
|a(τ ) + a′(τ )τ | τ dτ

≤ const
∫ |t |

0
τ p−1 dτ

≤ const |t |p,

for |t | ≤ 1.
Consequently, for small s, if t
 ∈ {h′ = 0},∣∣∣∣ L1(t
 + s) − L1(t
)

s

∣∣∣∣ =
∣∣∣∣�1(h′(t
 + s))

s

∣∣∣∣
≤ const |h′(t
 + s)|p

|s|
= const |h′(t
 + s) − h′(t
)|p

|s| .

So, by Lemma 4.6,∣∣∣∣ L1(t
 + s) − L1(t
)

s

∣∣∣∣ ≤ const |s|p/(p−1)

|s| = const |s|1/(p−1),

if p ≥ 2, while∣∣∣∣ L1(t
 + s) − L1(t
)

s

∣∣∣∣ ≤ const |s|p

|s| = const |s|p−1,

if 1 < p < 2.
By sending s → 0, we see that L ′

1(t

) = 0.
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We now deal with the case in which either (B1) holds with ε > 0 or (B2)
holds. In these circumstances, the eigenvalues of A are locally bounded, due to
Lemma 4.2, and therefore, by Lemma 2.1, (1.5) and (1.6), we conclude that

|�1(t)| ≤
∫ |t |

0
|a(τ ) + a′(τ )τ | τ dτ

≤ const
∫ |t |

0
τ dτ

≤ const |t |2,
for |t | ≤ 1 and so, for small s,∣∣∣∣ L1(t
 + s) − L1(t
)

s

∣∣∣∣ =
∣∣∣∣�1(h′(t
 + s))

s

∣∣∣∣
≤ const |h′(t
 + s)|2

|s| = const |h′(t
 + s) − h′(t
)|2
|s|

≤ const |s|,
due to Lemma 4.6. By sending s → 0, we see that L ′

1(t

) = 0 in this case too.

Corollary 4.8. For any t, s ∈ R,

�1(h
′(t)) + F(h(t)) = �1(h

′(s)) + F(h(s)).

Proof. If h ∈ C2(t − b, t + b), with h′ �= 0 in (t − b, t + b), for some b > 0, we
have that

d

dt

(
�1(h

′(t)) + F(h(t))
)

=
(

a(|h′(t)|)h′(t) + a′(|h′(t)|) |h′(t)| h′(t)
)

h′′(t) + f (h(t))h′(t)

=
[(

a(|h′(t)|) + a′(|h′(t)|)|h′(t)|
)

h′′(t) + f (h(t))
]
h′(t)

=
[(

a(|h′(t)|)h′(t)
)′ + f (h(t))

]
h′(t) = 0,

due to (4.4).
On the other hand, if h′(t
) = 0, we deduce from Corollary 4.7 that

d

dt

(
�1(h

′(t)) + F(h(t))
)∣∣∣∣

t=t

= L ′

1(t

) + f (h(t
))h′(t
) = 0 + 0,

as desired.
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Corollary 4.9. For any t ∈ R,

�1(h
′(t)) + F(h(t)) = F(inf h) = F(sup h).

Proof. We only deal with inf h, since sup h may be dealt with analogously.
Let us first consider the case in which inf h is attained at some point t̄ ∈ R.

Then, from Corollary 4.8,

�1(h
′(t)) + F(h(t)) = �1(0) + F(h(t̄)) = 0 + F(inf h),

as desired.
Suppose now that inf h is not attained and take a sequence tn → +∞ such

that h(tn) → inf h. Let us consider hn(t) := h(t + tn). Since ‖h′‖C1,α(R) is finite
(see, e.g., formulas (4.1) and (4.2) in [7]), we have that hn , up to subsequence,
converges to a suitable h̃ in C1

loc(R) and therefore h̃ is also a weak solution of (4.4),
due to Lemma 4.5. Since

h̃(0) = lim
n→+∞ h(tn) = inf h ≤ lim

n→+∞ h(t + tn) = h̃(t),

we have that inf h̃ is attained and, in fact, it agrees with h̃(0) = inf h. So, for what
we have already proved and Corollary 4.8,

F(inf h) = F(inf h̃)

= �1(̃h
′(t)) + F (̃h(t))

= lim
n→+∞ �1(h

′(t + tn)) + F(h(t + tn))

= lim
n→+∞ �1(h

′(t)) + F(h(t))

= �1(h
′(t)) + F(h(t)),

as desired.

We remark that, as a consequence of Corollary 4.9,

F(inf h) = F(sup h) = F(h(t
)) (4.9)

for any t
 ∈ {h′ = 0}.
We now classify the solution of the ODE in (4.4):

Lemma 4.10. One of the following possibilities holds:

I. h is constant,
II. {h′ = 0} = ∅,

III. h′(t) �= 0 for any t in a bounded interval of the form (β1, β2) with h′(β1) =
h′(β2) = 0 and

F(h(β1)) = F(h(β2)) = F(inf h) = F(sup h). (4.10)



766 ALBERTO FARINA, BERARDINO SCIUNZI AND ENRICO VALDINOCI

IV. h′(t) �= 0 for any t in an unbounded interval either of the form (β, +∞)

or (−∞, β), with β ∈ R, h′(β) = 0 and

F(h(β)) = F(inf h) = F(sup h). (4.11)

Proof. Suppose that I does not hold. Then there exists some t
 in such a way
that h′(t
) �= 0. Take an interval I around t
, as large as possible, in such a way
that h′(t) �= 0 for t ∈ I . If I = R, we are in case II. If I is bounded, say with
extrema β1 < β2, we have that h′(β1) = h′(β2) = 0 and so we are in case III
and (4.10) follows from (4.9).

The latter case is that I is unbounded in one direction, meaning that I is ei-
ther (β, +∞) or (−∞, β). Then, h′(β) = 0 and we are in case IV: thus, (4.11)
follows again from (4.9).

4.6. A pointwise energy estimate

We now recall a pointwise energy estimate for weak solutions of (1.1). The first
estimate of this type was given in [20] for the standard phase transition model and
extensions to more general cases are in [5] and [7]. In our setting, such a result
translates into:

Lemma 4.11. Suppose that u ∈ C1(RN ) ∩ W 1,∞(RN ) is a weak solution of (1.1).
Let

cu := sup
t∈[inf u,sup u]

F(t).

Then,
�1(|∇u(x)|) ≤ cu − F(u(x))

for any x ∈ R
N .

Proof. We will make use6 of [5]. The quantities called f , �(s) and F in [5] corre-
spond here to − f , 2�2(

√
s) and cu − F , respectively. Accordingly, the quantity ai j

of [5] agrees with the one denoted here by Ai j and the function

P(u; x) = 2�′(|∇u(x)|2) |∇u(x)|2 − �(|∇u(x)|2) − 2F(u(x))

introduced in (2.1) of [5] becomes here

2a(|∇u(x)|) |∇u(x)|2 − 2�2(|∇u(x)|) + 2(F(u(x)) − cu)

= 2
(
�1(|∇u(x)|) + F(u(x)) − cu

)
.

thanks to (4.2).

6 It would also be possible to use here [7, Corollary 4.9]. To compare notations, what in [7] is
called �(ξ, σ ) reduces here to �2(|σ |) − F(ξ). Accordingly, the quantity G(ξ, s) given in (1.5)
of [7] is here 2�2(

√
s) − 2F(ξ) for any s > 0, and so Gs(ξ, s) agrees here with a(

√
s). Also,

if Gu is the quantity introduced in Corollary 4.9 of [7], we have that Gu = −2cu here. Then, our
claim would follow from (4.41) in [7] and (4.2).
We have preferred, however, to follow [5] in detail, in order to impose a slightly weaker regularity
assumption on a, namely (1.16).
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Then, [5, Theorem 1.6] states that P(u; x) ≤ 0, thence the desired claim.
But a caveat has to be taken into account in order to use [5, Theorem 1.6].

Namely, the functional in [5] was assumed to be smooth, namely F ∈ C2(R)

and � ∈ C3((0, +∞)), in order to perform the computations of Theorem 2.2 there
in the classical sense, while F and � are here only in C1,1

loc (R) and C2,1
loc ((0, +∞)),

by (1.16). This, however, is enough to repeat the computations of [5, Theorem 2.2]
verbatim in the weak distributional sense, and hence to get the desired result.

4.7. Analysis at infinity

The solutions which are monotone in one direction, say in the N th direction for
definiteness, may exhibit a particularly nice behavior when xN → ±∞.

The reason for this is that the functions, for xN → ±∞, depend on one variable
less and so, in some sense, the symmetry results (or, in our technique, the level set
estimates) obtained in R

N−1 may be of some use.
This idea goes back to [2] and variations of it have been used by several au-

thors.
The main result we need is the following, in which the solutions at infinity are

shown to satisfy the Poincaré type formula of Theorem 2.5, in one dimension less:

Theorem 4.12. Let u ∈ C1(RN ) ∩ W 1,∞(RN ) be a stable weak solution of (1.1)
in R

N .
Suppose that

{∇u = 0} = ∅ (4.12)

and

∂xN u ≥ 0. (4.13)

Then, the limits

u(x ′) := lim
t→−∞ u(x ′, xN + t)

u(x ′) := lim
t→+∞ u(x ′, xN + t)

(4.14)

exist and are finite for any x ′ ∈ R
N−1.

Also,

the limits in (4.14) hold in C1
loc(R

N ) (4.15)

and

u and u are weak solutions of (1.1) in R
N−1. (4.16)
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Finally, ∫
RN−1∩{∇u �=0}

[
λ1(|∇u|)|∇Lu,x ′ |∇u||2

+λ2(|∇u|)|∇u|2
N−2∑
�=1

κ2
�,u

]
φ2 dx ′

≤
∫

RN−1
|∇u|2

(
Ã(∇u)∇φ

)
· ∇φ dx ′,

(4.17)

for any locally Lipschitz, compactly supported φ : R
N−1 → R (and an analogous

claim holds for u).
Here above, we have used Ã ∈ Mat((N − 1) × (N − 1)) defined by

Ãi j = Ai j for 1 ≤ i, j ≤ N − 1.

Proof. We recall that
‖u‖C1,β (BR) ≤ CR (4.18)

for some β > 0. Also, given δ > 0, if � ⊂ {|∇u| ≥ δ} and diam (�) ≤ R,

‖u‖C2,βδ,R (�)
≤ Cδ,R, (4.19)

for some βδ,R ∈ (0, 1) by Schauder Estimates: for details, we refer to [7, page 459]
and to7 the bibliography quoted there.

Since u is bounded and monotone in the N th direction, due to (4.13), the limits
in (4.14) exist and are finite.

Then, (4.15) follows from (4.18) and the theorem of Ascoli.
We now fix δ > 0. Let B a ball contained in

Dδ := {(x ′, xN ) ∈ R
N−1 × R such that |∇u(x ′)| ≥ δ}.

7 The constants β and CR in (4.18) depend on ‖u‖W 1,∞(RN ). More precisely, if (B1) holds, then
we use (4.1) and (4.2) in [7] to obtain

‖∇u‖L∞(RN ) ≤ M and

sup
x,y∈BR

|∇u(x) − ∇u(y)| ≤ M

Rγ

( |x − y|
R

)β

for suitable M , γ and β possibly depending on ‖u‖L∞(RN ).
If, on the other hand, (B2) holds, the equation is uniformly elliptic, because ‖∇u‖L∞(RN ) < +∞
and then the regularity of u follows from Schauder Estimates.
In any case, this bounds the constants β and CR in (4.18) in dependence of ‖u‖W 1,∞(RN ).
Thus, the constants βδ,R and Cδ,R in (4.19) also depend on ‖u‖W 1,∞(RN ). The dependence of
such constants upon δ is due to the uniform ellipticity of the equation in {|∇u| ≥ δ}.
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It follows from (4.15) that |∇u(x ′, xN + t)| ≥ δ/2 if (x ′, xN ) ∈ B and t ≥ tδ , as
long as tδ is suitably large.

So, by (4.19), the second limit in (4.14) holds in C2(B).
That is,

the second limit in (4.14) holds in C2
loc(Dδ), (4.20)

and an analogous result holds for the first limit.
We also observe that (4.15) and (4.20) imply that u ∈ C1,β

loc (RN−1)∩C2({∇u �=
0}) for some β ∈ (0, 1), and that

∇Lu,x ′ |∇u|(x ′) = lim
t→+∞ ∇Lu,(x ′,xN +t)

|∇u|(x ′, xN + t), (4.21)

for any x ′ ∈ {|∇u| ≥ δ}, due to (2.6).
What is more, if κ�(y′) = κ�,u(y′) are the principal curvatures of Lu,x ′ at y′ ∈

Lu,x ′ ∩ {|∇u| ≥ δ}, for � = 1, . . . , N − 2, a consequence of (2.9), (4.15) and (4.20)
is that

|∇u(x ′)|2
N−2∑
�=1

κ2
�(y′) = lim

t→+∞ |∇u(x ′, xN + t)|2
N−1∑
�=1

κ2
� (y′, xN + t). (4.22)

Of course, statements analogous to (4.21) and (4.22) also hold for u.
Moreover, ∫

RN
a(|∇u|)∇u · ∇ϕ − f (u)ϕ dx = 0, (4.23)

for any ϕ ∈ C∞
0 (RN ), due to (1.1).

We take ϕ := ϕ1(x ′)ϕ2(xN ), with ϕ ∈ C∞
0 (RN−1) and ϕ2 ∈ C∞

0 (R), with∫
R

ϕ2(xN )dxN = 1.

By passing (4.23) to the limit and recalling (4.15) and Lemma 4.5, we deduce that∫
RN−1

a(|∇u(x ′)|)∇u(x ′) · ∇ϕ1(x ′) − f (u(x ′))ϕ1(x ′) dx ′ = 0,

for any ϕ1 ∈ C∞
0 (RN−1), and the same for u, thus proving (4.16).

Furthermore, u satisfies (2.10), by Theorem 2.5, hence so does ut . We then
take ϕ := ϕ1(x ′)ϕ2(xN ), with ϕ1 : R

N−1 → R and ϕ2 : R → R locally Lip-
schitz, compactly supported functions. We also take ϕ2 of the form ϕ2(xN ) :=√

µτ(µxN ), where µ > 0 is a small parameter, τ ∈ C∞
0 (R) and∫

R

τ 2(xN )dxN = 1.
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We thus have that ∫
R

ϕ2
2(xN )dxN = 1. (4.24)

Now, we pass (2.10) to the limit. Namely, we set ut (x) := u(x ′, xN + t) and
κ t
�(x) := κ�,ut (x) = κ�,u(x ′, xN + t), and we use (2.10), (4.12), (4.15), (4.21),

(4.22), (4.24) and Lemma 4.5 to obtain∫
{|∇u|≥δ}

[
λ1(|∇u|)|∇Lu,x ′ |∇u||2 + λ2(|∇u|)|∇u|2

N−2∑
�=1

κ2
�

]
ϕ2

1 dx ′

=
∫

R

∫
{|∇u|≥δ}

[
λ1(|∇u|)|∇Lu,x ′ |∇u||2 + λ2(|∇u|)|∇u|2

N−2∑
�=1

κ2
�

]
ϕ2 dx ′ dxN

= lim
t→+∞

∫
R

∫
{|∇u|≥δ}

[
λ1(|∇ut |)|∇Lut ,x

|∇ut ||2

+λ2(|∇ut |)|∇ut |2
N−1∑
�=1

(κ t
�)

2

]
ϕ2 dx ′ dxN

= lim
t→+∞

∫
Dδ

[
λ1(|∇ut |)|∇Lut ,x

|∇ut ||2

+ λ2(|∇ut |)|∇ut |2
N−1∑
�=1

(κ t
�)

2

]
ϕ2 dx

≤ lim
t→+∞

∫
RN

|∇ut |2(A(∇ut )∇ϕ) · ∇ϕ dx =
∫

RN
|∇u|2(A(∇u)∇ϕ) · ∇ϕ dx .

Thence, by taking δ arbitrarily small,∫
{∇u �=0}

[
λ1(|∇u|)|∇Lu,x ′ |∇u||2 + λ2(|∇u|)|∇u|2

N−2∑
�=1

κ2
�

]
ϕ2

1 dx ′

≤
∫

RN
|∇u|2(A(∇u)∇ϕ) · ∇ϕ dx .

(4.25)

We now observe that ∂xN u = 0 and so

|∇u|2 Ai j (∇u) = |∇u|2a(|u|)δi j if either i = N or j = N .

Therefore,

|∇u|2(A(∇u)∇ϕ) · ∇ϕ

= |∇u|2
(

Ã(∇u)(∂x1ϕ, . . . , ∂xN−1ϕ)
)

· (∂x1ϕ, . . . , ∂xN−1ϕ)

+ |∇u|2a(|∇u|)|∂xN ϕ|2.
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This, Lemma 4.2, (4.24) and (4.25) imply that

∫
{∇u �=0}

[
λ1(|∇u|)|∇Lu,x ′ |∇u||2 + λ2(|∇u|)|∇u|2

N−2∑
�=1

κ2
�

]
ϕ2

1 dx ′

≤
∫

RN
ϕ2

2(xN )|∇u|2
(

Ã(∇u)∇ϕ1

)
· ∇ϕ1 dx

+ const
∫

RN
ϕ2

1(x ′)|ϕ′
2(xN )|2 dx

≤ µ

∫
RN

τ 2(µxN )|∇u(x ′)|2
(

Ã(∇u(x ′))∇ϕ1(x ′)
)

· ∇ϕ1(x ′) dx ′dxN

+ const µ3
∫

RN
ϕ2

1(x ′)|τ ′(µxN )|2 dx ′ dxN

≤
∫

RN−1
|∇u(x ′)|2

(
Ã(∇u(x ′))∇ϕ1(x ′)

)
· ∇ϕ1(x ′) dx ′

+ const µ2
∫

R

|τ ′(s)|2 ds ·
∫

RN−1
ϕ2

1(x ′) dx ′,

where the above constants possibly depend on ‖u‖C1(RN ). We then conclude that
(4.17) holds by sending µ → 0+.

In the notation of (4.14), it is convenient to define

M := sup
RN

u, M := sup
RN−1

u, M := sup
RN−1

u,

m := inf
RN

u, m := inf
RN−1

u, m := inf
RN−1

u

and to observe that, from (4.13),

M = M ≥ M and m ≥ m = m. (4.26)

Recalling the notation in Lemma 4.11, we write

cu := sup
[m,M]

F. (4.27)

In our case, this quantity may be better determined:

Lemma 4.13. Let u ∈C1(RN )∩W 1,∞(RN ) be a weak solution of (1.1) with {∇u =
0} = ∅. Then, we have that cu > F(t) for any t ∈ (m, M). In particular, cu =
max{F(m), F(M)} and if F(t
) = cu then t
 ∈ {m, M}.
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Proof. The second and third claims are consequence of the first one, which we now
prove. Suppose, by contradiction, that cu = F(t) for some t ∈ (m, M). Then, there
exists x
 ∈ R

N in such a way that u(x
) = t . But then, by Lemma 4.11,

�1(|∇u(x
)|) ≤ cu − F(u(x
)) = 0,

thence ∇u(x
) = 0, against the assumptions.

From now on, in the light of Lemma 4.13, we will suppose that

cu = F(m), (4.28)

since the case in which cu = F(M) may be treated similarly (simply, the rôles of u
and u would switch in some arguments).

After the above analysis, we are now in a position to classify the behavior of
the one-dimensional profiles at infinity:

Lemma 4.14. Let u ∈ C1(RN ) ∩ W 1,∞(RN ) be a stable weak solution of (1.1)
in R

N , satisfying (4.12) and (4.13). Let u be as in (4.14) and suppose that it pos-
sesses one-dimensional symmetry, that is, there exist ω ∈ SN−2 and h : R → R in
such a way that u(x ′) = h(ω · x ′), for any x ∈ R

N−1.
Then, h satisfies one of the following:

A. h is constant,

B. {h′ = 0} = ∅,

C. There exists β ∈ R in such a way that h′(t) < 0 for t < β and h(t) = m
for t ≥ β.

D. There exists β ∈ R in such a way that h′(t) > 0 for t > β and h(t) = m
for t ≤ β.

E. There exist β1 ≤ β2 ∈ R in such a way that h′(t) < 0 for t < β1, h′(t) > 0
for t > β2 and h(t) = m for t ∈ [β1, β2].

Proof. Note that h(t) = u(ωt), thence it satisfies (4.4), thanks to (4.16).
Also,

h(t) < M (4.29)

for any t ∈ R, because if otherwise h(t) = M for some t , then

M = h(t) = u(ωt) = lim
s→−∞ u(ωt, s) ≤ u(ωt, 0) ≤ M,

due to (4.13), and so
M = max

RN
u = u(ωt, 0),

which implies ∇u(ωt, 0) = 0, in contradiction with (4.12).
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We then use the classification in Lemma 4.10: if h satisfies I or II there, then
we are in cases A or B, and we are done.

We now show that case III of Lemma 4.10 is impossible in this circumstance.
Indeed, if case III holds, by (4.10) and (4.26), we would have that h is strictly
monotone in (β1, β2) and

F(h(β1)) = F(h(β2) = F(inf h) = F(m) = F(m)

for any t ∈ (β1, β2). But then, by (4.28), we see that

F(h(β1)) = F(h(β2)) = cu

and so
h(β1), h(β2)) ∈ {m, M},

thanks to Lemma 4.13.
Therefore, by (4.29), we get that h(β1) = h(β2) = m, but this is in contradic-

tion with the fact that h is strictly monotone in (β1, β2).
Thus, the only remaining possibility is that h satisfies IV of Lemma 4.10. Up

to changing t with −t , we may just consider the case in which the interval in IV of
Lemma 4.10 is of the form (−∞, β). Then, by (4.11), (4.26) and (4.28),

F(h(β)) = F(m) = F(m) = cu .

Thus, by Lemma 4.13, h(β) ∈ {m, M}. Therefore, by (4.29), h(β) = m.
Now, if h(t) = m for t ≥ β, then we are in case C. Thus, we may suppose

that h(t
) > m for some t
 > β.
But then there must be t ′ > β in such a way that h′(t ′) > 0. Hence, there exists

an interval (β2, β3), which we suppose as large as possible, with β2 > β =: β1
and β3 ∈ (β2, +∞) ∪ {+∞} in such a way that h′(t) > 0 for any t ∈ (β2, β3).
If β3 �= +∞, we would have that h′(β2) = h′(β3) = 0 and, from (4.9), we would
reduce to case III of Lemma 4.10, that we have already shown to be impossible.
Therefore, β3 = +∞. Analogously, h(t) must be equal to m in [β1, β2] because,
if not there would be an interval (β ′

1, β
′
2) ⊂ [β1, β2] in such a way that h′(t) �= 0

in (β ′
1, β

′
2) and h′(β ′

1) = h′(β ′
2) = 0, reducing again to the impossible case III.

This shows that h′(t) �= 0 for t < β1 and t > β2 and h(t) = m for t ∈ [β1, β2],
yielding case E.

We remark that the possible occurrence of cases C, D and E in Lemma 4.14
is due to the possible degeneracy of our operator (non-degenerate operators do not
admit non-constant solutions with plateaus, because of Comparison Principles). See
Section 7.2 for explicit examples.

Corollary 4.15. The following global energy bound holds:∫ +∞

−∞
�2(h

′(t)) − F(h′(t)) + cu dt < +∞. (4.30)
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Proof. From (4.28), Lemma 4.2 and Corollary 4.9, we see that∫ +∞

−∞
cu − F(h′(t)) dt =

∫ +∞

−∞
�1(h

′(t)) dt ≤ const
∫ +∞

−∞
�2(h

′(t)) dt,

hence the claim is proven if we show that∫ +∞

−∞
�2(h

′(t)) dt < +∞. (4.31)

To this extent, we consider the different cases in Lemma 4.14 and we make use of
Lemma 4.4.

Namely, in case A, the quantity in (4.31) vanishes and we are done.
In case B, ∫ +∞

−∞
�2(h

′(t)) dt = lim
α→−∞
β→+∞

∫ β

α

�2(h
′(t)) dt

≤ lim
α→−∞
β→+∞

const |h(β) − h(α)|

≤ 2 const M.

In case C, ∫ +∞

−∞
�2(h

′(t)) dt = lim
α→−∞

∫ β

α

�2(h
′(t)) dt

≤ lim
α→−∞ const |h(β) − h(α)|

≤ 2 const M,

and case D is analogous.
Finally, in case E,∫ +∞

−∞
�2(h

′(t)) dt = lim
α→−∞
β→+∞

∫ β1

α

�2(h
′(t)) dt +

∫ β

β2

�2(h
′(t)) dt

≤ lim
α→−∞
β→+∞

const (|h(β1) − h(α)| + |h(β) − h(β2)|)

≤ 4 const M,

which completes the proof of the desired result.

The above global energy estimates imply that u has “the good energy” in balls:
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Corollary 4.16. Let u ∈ C1(RN ) ∩ W 1,∞(RN ) be a stable weak solution of (1.1)
in R

N , satisfying (4.12) and (4.13). Let u possess one-dimensional symmetry. Then,∫
BR

�2(|∇u(x)|) − F(u(x)) + cu dx ≤ K RN−1,

for a suitable K ≥ 1.

Proof. By (4.30), we have that∫
BR

�2(|∇u(x ′)|) − F(u(x ′)) + cu dx

=
∫

BR

�2(h
′(ω · x ′)) − F(h(ω · x ′)) + cu dx

=
∫

BR

�2(h
′(ω · x ′)) − F(h(ω · x ′)) + cu dx ′ dxN

=
∫

(y′′,t,xN )∈(RN−2×R×R)∩BR

�2(h
′(t)) − F(h(t)) + cu dy′′ dt dxN

≤ const RN−1.

(4.32)

Also, recalling Lemma 4.1 and (4.15),∫
BR

�2(|∇u(x)|) − F(u(x)) + cu dx

= ER(u) + cu |BR|
≤ lim

t→+∞ ER(ut ) + cu |BR| + const RN−1

=
∫

BR

�2(|∇u(x ′)|) − F(u(x ′)) + cu dx + const RN−1.

The latter estimate and (4.32) imply the desired claim.

5. First proof of Theorem 1.2, via a capacity argument

We consider the graph of a function v ∈ C1(RN ) as a surface in R
N+1 and we set

Y = Y (x) := (x, v(x)) ∈ R
N × R.

We will derive suitable capacity estimates on the graph of v under the assumption
that ∫

|Y (x)|≤ρ

a(|∇v(x)|) |∇v(x)|2 dx ≤ C ρ2, (5.1)

as long as ρ ≥ C , for a suitable C > 0.
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The advantage of such estimates is that the capacity is evaluated on the graph
of v, not on the whole space, and this makes it possible to obtain two-dimensional
capacity estimates even in R

3, as we will see below.
The main technical estimate needed is the following:

Lemma 5.1. Suppose that v ∈ C1(RN ) satisfies (5.1).
Then, there exists C ≥ 1 in such a way that

∫
√

ρ≤|Y |≤ρ

a(|∇v|) |∇v|2
|Y |2 dx ≤ C ln ρ, (5.2)

as long as ρ ≥ C.

Proof. This argument is a modification of the classical ones on [24, page 24] and
[18, page 403].

Since

2
∫ ρ

|Y |
τ−3 dτ = |Y |−2 − ρ−2,

we obtain, from Fubini’s theorem, that∫
√

ρ≤|Y |≤ρ

a(|∇v|) |∇v|2(|Y |−2 − ρ−2) dx

= 2
∫

√
ρ≤|Y |≤ρ

(∫ ρ

|Y |
a(|∇v(x)|) |∇v(x)|2τ−3 dτ

)
dx

= 2
∫ ρ

√
ρ

(∫
√

ρ≤|Y |≤τ

a(|∇v(x)|) |∇v(x)|2τ−3 dx

)
dτ

= 2
∫ ρ

√
ρ

τ−3

(∫
√

ρ≤|Y |≤τ

a(|∇v(x)|) |∇v(x)|2 dx

)
dτ.

Accordingly, from (5.1),∫
√

ρ≤|Y |≤ρ

a(|∇v|) |∇v|2(|Y |−2 − ρ−2) dx

≤ const
∫ ρ

√
ρ

τ−1 dτ ≤ const ln ρ,

if ρ is large enough.
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Using this and (5.1) once more, we conclude that∫
√

ρ≤|Y |≤ρ

a(|∇v|) |∇v|2|Y |−2 dx

= ρ−2
∫

√
ρ≤|Y |≤ρ

a(|∇v|) |∇v|2 dx

+
∫

√
ρ≤|Y |≤ρ

a(|∇v|) |∇v|2(|Y |−2 − ρ−2) dx

≤ const + const ln ρ,

as desired.

The hypotheses of next result need to be quite general, since we apply it in the
proofs of both Theorems 1.2 and 1.4.

Lemma 5.2. Let (1.2), (1.3) hold.
Suppose that v ∈ C1(RN ) ∩ C2({∇v �= 0}) with ∇v ∈ W 1,2

loc (RN ) is a stable
weak solution of (1.1) and that it satisfies (5.1).

Assume that

|∇v(x)|2 λ1(|∇v(x)|) ≤ C a(|∇v(x)|), (5.3)

for any x ∈ R
N as long as |∇v(x)| ≥ C ′, for suitable C, C ′ > 0.

Suppose that either (A1) or (A2) holds.
Assume also that either N = 2 or that

λ1(t) ≤ C ′′a(t), (5.4)

for any t ∈ (0, C ′], for a suitable C ′′ > 0.
Then, v possesses one-dimensional symmetry, in the sense that there exists v̄ :

R → R and ω ∈ SN−1 in such a way that v(x) = v̄(ω · x), for any x ∈ R
N .

Proof. We first notice that, if |∇v(x)| ≥ C ′, then

|∇v(x)|2 λ1(|∇v(x)|) ≤ C

(C ′)2
(C ′)2a(|∇v(x)|)

≤ C

(C ′)2
|∇v(x)|2 a(|∇v(x)|),

(5.5)

thanks to (5.3).
We now define

� :=
{

1 if N = 2,

0 if N ≥ 3.
(5.6)
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We claim that

|∇v(x)|2λ1(|∇v(x)|) ≤ const
(
� + |∇v(x)|2a(|∇v(x)|)

)
(5.7)

for any x ∈ R
N .

To prove (5.7) we distinguish the cases N = 2 and N ≥ 3.
If N ≥ 3, we have that (5.4) is satisfied. We exploit this and (5.5) to conclude

that

|∇v(x)|2λ1(|∇v(x)|) ≤ C ′′′|∇v(x)|2a(|∇v(x)|) for any x ∈ R
N , (5.8)

where

C ′′′ := C

(C ′)2
+ C ′′.

This proves (5.7) when N = 3.
We now prove (5.7) when N = 2. To this extent, we observe that λ1 ∈

L∞
loc([0, +∞)), because of either (A1) or (A2), thence

t2λ1(t) ≤ const

if t ∈ [0, C ′].
This and (5.5) imply that

|∇v(x)|2λ1(|∇v(x)|) ≤ const
(

1 + |∇v(x)|2a(|∇v(x)|)
)

(5.9)

for any x ∈ R
N , hence (5.7) holds when N = 2 too.

This completes the proof of (5.7).
Now, we use (5.3) and (5.7) to conclude that

|∇v(x)|4λ1(|∇v(x)|) ≤ const
(
� + |∇v(x)|2a(|∇v(x)|)

)
(5.10)

for any x ∈ R
N .

Also, since, obviously, (5.7) holds with λ1 replaced by λ2, due to (1.5), we
deduce, recalling Lemma 2.1, that

|∇v(x)|2 |A(∇v(x))| ≤ const
(
� + |∇v(x)|2a(|∇v(x)|)

)
(5.11)

for any x ∈ R
N .

Also, by Lemma 5.1 and (5.6),∫
BR\B√

R

� + |∇v(x)|2a(|∇v|)
|Y |2 dx ≤ C ln R, (5.12)

as long as R is large enough.
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Then, given R > 0 (to be taken appropriately large in what follows) and x ∈
R

N , we now define

ϕR(x) :=


1 if |Y | ≤ √

R,

2 ln(R/|Y |)
ln R

if
√

R < |Y | < R,

0 if |Y | ≥ R.

By construction, ϕR is a Lipschitz function and

∇ϕR(x) = −
const

(
x + v(x)∇v(x)

)
|Y |2 ln R

for any x ∈ R
N such that

√
R < |Y | < R.

Consequently, from (2.2),(
A(∇v(x))∇ϕR(x)

)
· ∇ϕR(x)

≤ const

|Y |4 ln2 R

[(
A(∇v(x)) x

)
· x + v2(x)

(
A(∇v(x))∇v(x)

)
· ∇v(x)

]
.

(5.13)

Additionally, by (5.11),

|∇v(x)|2
(

A(∇v(x))x
)

· x ≤ const
(
� + |∇v(x)|2a(|∇v(x)|)

)
|x |2

≤ const
(
� + |∇v(x)|2a(|∇v(x)|)

)
|Y |2,

(5.14)

and, by (2.1) and (5.10),

v2(x) |∇v(x)|2
(

A(∇v(x))∇v(x)
)

· ∇v(x)

= v2(x) |∇v(x)|4 λ1(|∇v(x)|)
≤ const

(
� + |∇v(x)|2a(|∇v(x)|)

)
|Y |2.

(5.15)

So (5.13), (5.14) and (5.15) imply

|∇v(x)|2
(

A(∇v(x))∇ϕR(x)
)

· ∇ϕR(x)

≤
const

(
� + |∇v(x)|2a(|∇v(x)|)

)
|Y |2 ln2 R

.
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Thus, exploiting again Theorem 2.5,∫
{∇v �=0}∩B√

R

[
λ1(|∇v|)

∣∣∣∇Lv,x |∇v|
∣∣∣2 + λ2(|∇v|) |∇v|2 κ2

1

]
dx

≤
∫

R2
|∇v(x)|2

(
A(∇v(x))∇ϕR(x)

)
· ∇ϕR(x) dx

≤
∫

BR\B√
R

const
(
� + |∇v(x)|2a(|∇v(x)|)

)
|Y |2 ln2 R

dx .

Therefore, by (5.12), if R is conveniently large,∫
{∇v �=0}∩B√

R

[
λ1(|∇v|)

∣∣∣∇Lv,x |∇v|
∣∣∣2 + λ2(|∇v|) |∇v|2 κ2

1

]
dx

≤ const ln R

ln2 R
.

By taking R arbitrarily large, we thus conclude that∫
{∇v �=0}

[
λ1(|∇v|)

∣∣∣∇Lv,x |∇v|
∣∣∣2 + λ2(|∇v|) |∇v|2 κ2

1

]
dx = 0

and so, by Lemma 2.1, that ∇Lv,x |∇v|(x) = 0 = κ1(x) at any x ∈ {∇v �= 0}.
Consequently, by Lemma 2.11, v possesses one-dimensional symmetry.

5.1. Completion of the first proof of Theorem 1.2

We observe that u and u are, in this case, functions on R
2. Hence, by (4.17) and

Corollary 2.6, we have that

κ1,u = κ1,u = 0 and ∇Lu,x ′ |∇u| = ∇Lu,x ′ |∇u|.

Therefore, by Lemma 2.11, both u and u possess one-dimensional symmetry and
so, by (4.27) and Corollary 4.16,∫

BR

�2(|∇u(x)|) dx ≤
∫

BR

�2(|∇u(x)|) − F(u(x)) + cu dx ≤ const R2. (5.16)

Also, if either (B1) or (B2) holds, we have that (1.2) and (1.3) are satisfied, due to
Lemma 2.1.

Moreover, recalling also Lemma 4.2, we see that (5.4) is fulfilled and (5.3) is
empty, because u has bounded gradient.
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Thus, if u is as requested in Theorem 1.2, we exploit Corollaries 4.3 and 4.16
to get that ∫

|(x,u(x))|≤R
a(|∇u(x)|) |∇u(x)|2 dx

≤
∫

BR

a(|∇u(x)|) |∇u(x)|2 dx

≤ const
∫

BR

�2(|∇u(x)|) dx

≤ const
∫

BR

�2(|∇u(x)|) − F(u(x)) + cu dx

≤ const R2,

hence (5.1) is fulfilled by u.
The above observations give that the assumptions of Lemma 5.2 are fulfilled,

thence, by such a result, u possesses one-dimensional symmetry, thus completing
the first proof of Theorem 1.2.

6. Second proof of Theorem 1.2, via a Liouville type argument

6.1. A Liouville type result

We now point out a Liouville type result, which is a variation of the one in [3, 17]
and it is closely related to analogous estimates performed in [5, 7].

Lemma 6.1. Let B ∈ L∞(RN , Mat(N × N )) be such that B(x) is symmetric and
positive definite for any x ∈ R

N . Let ω ∈ L∞(RN ), with ω(x) > 0 for any x ∈ R
N .

Suppose that ζ ∈ C1(RN ) is a weak solution of

div
(
ω(x)B(x)∇ζ(x)

)
= 0. (6.1)

Assume also that there exist C > 0 in such a way that∫
RN

ω(x)ζ 2(x)
(

B(x)τ (x)
)

· τ(x) dx ≤ C ‖τ‖L∞(RN ) R2, (6.2)

for any τ ∈ C∞
0 (RN , R

N ) supported in B2R.
Then, ζ is constant.

Proof. The proof is a Caccioppoli type argument modified from [3]. We take α ∈
C∞

0 (B2) so that 0 ≤ α(x) ≤ 1 for any x ∈ R
N and α(x) = 1 for any x ∈ B1. We

also set αR(x) := α(x/R), τR(x) := ∇α(x/R) and φR(x) := (αR(x))2ζ(x).
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From (6.1),∫
RN

α2
Rω(B∇ζ ) · ∇ζ dx

=
∫

RN
ω(B∇ζ ) · ∇φR dx − 2

∫
RN

αRζω(B∇ζ ) · ∇αR dx

≤ 0 + 2
∫

R≤|x |≤2R
αR|ζ | ω |(B∇ζ ) · ∇αR| dx .

We now fix an auxiliary parameter δ > 0, and we exploit (2.2) with V :=√
δωαR∇ζ

and W := √
δ−1ω|ζ |∇αR , so we conclude that

2αR|ζ | ω |(B∇ζ ) · ∇αR| ≤ δα2
Rω(B∇ζ ) · ∇ζ + δ−1ωζ 2(B∇αR) · ∇αR

and therefore ∫
RN

α2
Rω(B∇ζ ) · ∇ζ dx

≤ δ

∫
R≤|x |≤2R

α2
Rω(B∇ζ ) · ∇ζ dx

+ δ−1
∫

R≤|x |≤2R
ωζ 2(B∇αR) · ∇αR dx .

(6.3)

Note also that, from (6.2),∫
R≤|x |≤2R

ωζ 2(B∇αR) · ∇αR dx = R−2
∫

RN
ωζ 2(B∇τR) · ∇τR dx ≤ C ′,

for a suitable C ′ > 0.
Accordingly, if δ < 1, from (6.3),

(1 − δ)

∫
BR

ω(B∇ζ ) · ∇ζ dx

≤ (1 − δ)

∫
RN

α2
Rω(B∇ζ ) · ∇ζ dx

≤ C ′δ−1.

By sending R → +∞, we thus obtain that∫
RN

ω(B∇ζ ) · ∇ζ dx < +∞
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and therefore

lim
R→+∞

∫
|x |≥R

ω(B∇ζ ) · ∇ζ dx = 0.

Using this and sending R → +∞ in (6.3), we conclude that∫
RN

ω(B∇ζ ) · ∇ζ dx

≤ δ lim
R→+∞

∫
R≤|x |≤2R

ω(B∇ζ ) · ∇ζ dx

+ δ−1 lim
R→+∞

∫
R≤|x |≤2R

ωζ 2(B∇αR) · ∇αR dx

≤ 0 + C ′δ−1.

By sending now δ → +∞, we conclude that∫
RN

ω(B∇ζ ) · ∇ζ dx = 0

and so that ∇ζ = 0.

The relation between (6.1) and our problem is given by the following standard
observation (compare, e.g., with [3, 7]):

Lemma 6.2. Let u ∈ C2(RN ) be a solution of (1.1), such that |∇u| ∈ L∞(RN )

and ∂N u(x) > 0 for any x ∈ R
N .

Fix j ∈ {1, . . . , N − 1} and define ζ(x) := u j (x)/uN (x), ω(x) := (uN (x))2

and B(x) := A(∇u(x)).
Then, B ∈ L∞(RN , Mat(N × N )), B(x) is symmetric and positive definite for

any x ∈ R
N , ω ∈ L∞(RN ), ζ ∈ C1(RN ) and it is a weak solution of (6.1).

Proof. The regularity of B, ω and ζ is obvious and Lemma 2.1 gives that B(x) is
positive definite.

Also,
ωζi = uN ui j − u j ui N

and so, by Lemma 2.2,

div (ωB∇ζ ) = div (uN B∇u j − u j B∇uN )

= uN div (B∇u j ) + (B∇u j ) · ∇uN − div (u j B∇uN )

= uN div (B∇u j ) − u j div (B∇uN )

= −uN f ′(u) u j + u j f ′(u) uN = 0,

as claimed.
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The symmetry property in our case is thus a consequence of a “kinetic energy”
bound:

Corollary 6.3. Let u ∈ C2(RN ) be a solution of (1.1), such that |∇u| ∈ L∞(RN )

and ∂N u(x) > 0 for any x ∈ R
N .

Suppose that ∫
BR

�2(|∇u(x)|) dx ≤ C R2, (6.4)

for any R > 0, for a suitable C > 0.
Then, u possesses one-dimensional symmetry.

Proof. If ξ , v ∈ R
N with |v| ≤ 1 and |ξ | ≤ M , then

|ξ |2(A(ξ)v) · v ≤ CM �2(|ξ |), (6.5)

for a suitable CM > 0, because of Lemma 4.2 and Corollary 4.3.
We now take B, ω and ζ as in Lemma 6.2 and we make use of (6.4) and (6.5)

to deduce that ∫
RN

ω(x)ζ 2(x)
(

B(x)τ (x)
)

· τ(x) dx

≤
∫

RN
|∇u(x)|2

(
A(∇u(x))τ (x)

)
· τ(x) dx

≤ const ‖τ‖L∞(RN )

∫
B2R

�2(|∇u(x)|) dx

≤ const ‖τ‖L∞(RN ) R2,

for any τ ∈ C∞
0 (RN , R

N ) supported in B2R .
This shows that (6.2) holds and so, from Lemma 6.1, we get that u j = c j uN ,

for a suitable c j ∈ R, for any j = 1, . . . , N − 1.
Hence, if � := (c1, . . . , cN−1, 1), we have that ∂vu is identically zero for

any v orthogonal to � , which yields the desired result.

6.2. Completion of the second proof of Theorem 1.2

The second proof of Theorem 1.2 is ended thanks to (5.16) and Corollary 6.3.

7. Stability criteria

7.1. Monotonicity and stability

It is a standard fact of Allen-Cahn type equations that solutions that are strictly
monotone in one variable are stable. We provide a generalization of this fact in our
setting:
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Lemma 7.1. Let u ∈ C1(RN ) ∩ C2({∇u �= 0}), with ∇u ∈ W 1,2
loc (RN ) be a weak

solution of (1.1). Suppose that either (A2) holds or that {∇u = 0} = ∅.
Assume that ∂xN u ≥ 0.
Then, ∫

RN

(
A(∇u)∇φ

)
· ∇φ dx −

∫
{∂xN u>0}

f ′(u)φ2 dx ≥ 0 (7.1)

for any smooth and compactly supported function φ.
In particular, if u ∈ C2(RN ) is a solution of (1.1) in R

N with ∂xN u > 0, then
it is stable.

Proof. Let uN := ∂xN u and fix ε > 0 (in fact, if ∂xN u > 0, one can simply
take ε = 0 in what follows and the argument slightly simplifies).

Let φ be a smooth, compactly supported function and ψ := φ2/(uN + ε). We
write A := A(∇u) and we use (2.2) with V := (φ∇uN )/(uN + ε) and W := ∇φ

to obtain that

2φ

uN + ε
A∇uN · ∇φ − φ2

(uN + ε)2
A∇uN · ∇uN ≤ A∇φ · ∇φ.

From this and Lemma 2.4,

0 =
∫

A∇uN · ∇ψ − f ′(u)uN ψ dx

=
∫

2φ

uN + ε
A∇uN · ∇φ − φ2

(uN + ε)2
A∇uN · ∇uN − f ′(u)φ2 uN

uN + ε
dx

≤
∫

A∇φ · ∇φ − f ′(u)φ2 uN

uN + ε
dx .

By taking ε arbitrarily small, we obtain (7.1).
We point out that {∂xN u > 0} ∩ Nu has measure zero, due to (2.12). This also

implies that u is stable if ∂xN u > 0.

7.2. Degenerate examples

Our scope is now to show by examples that interesting degenerate cases are covered
by our setting. This part is not used in the proofs of the main results, and it may
thus be skipped by the uninterested reader.

Proposition 7.2. Let p > 2. Then, there exist w ∈ C2(RN ) and f ∈ C1(R) in
such a way that

• w is a stable solution of �pw + f (w) = 0 having one-dimensional symmetry,
• 0 ≤ w(x) ≤ 1 and ∂xN w(x) ≥ 0 for any x ∈ R

N ,
• w(x) = 0 if xN ≤ 0 and w(x) = 1 if xN ≥ 1.
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Proof. Given p > 2, we fix α such that

0 < α < min

{
1

2
,

p − 2

p

}
. (7.2)

We define

W (t) :=


0 if t ≤ 0,

1 − (1 − t1/α)1/α if 0 < t < 1,

1 if t ≥ 1.

and w(x) = w(x1, . . . , xN ) := W (xN ). Since 1/α > 2, we have that w ∈ C2(RN ),
and clearly ∂xN w ≥ 0.

A straightforward calculation shows that

�pw + f (w) = 0,

where

f (r) := κ + α

α2p
·
(
(1 − r)

(
1 − (1 − r)α

))κ ·
(

1 − (α + 1)(1 − r)α
)
χ(0,1)(r)

and
κ := p − αp − 1.

Note that κ > 1, thence f ∈ C1(R).
Moreover,

{∂xN w = 0} = {w = 0} ∪ {w = 1}
and so f ′(w(x)) = 0 for any x ∈ {∂xN w = 0}. Consequently,∫

∂xN w>0
f ′(w)φ2 dx =

∫
RN

f ′(w)φ2 dx

for any smooth and compactly supported φ.
Accordingly, w is stable, due to (7.1).

The example given in Proposition 7.2 shows that conditions (A1) and (A2)
do not coincide in general: indeed, of course, the p-Laplacian for 1 < p < 2
satisfies (A1) but not (A2), and the example given in Proposition 7.2 shows that
there are cases on which Theorem 1.1 applies that are covered by (A2) and not
by (A1), due to plateaus.

Case III in Lemma 4.10 is also embodied by the example of Proposition 7.2.

Proposition 7.3. Let p > 2. Then, there exist w ∈ C2(RN ) and f ∈ C1(R) in
such a way that

• w is a stable solution of �pw + f (w) = 0 having one-dimensional sym-
metry,
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• 0 ≤ w(x) ≤ 1 and ∂xN w(x) ≥ 0 for any x ∈ R
N ,

• w(x) = 0 if xN ≤ 0, w(x) > 0 if xN > 0 and

lim
xN →+∞ w(x) = 1.

Proof. Given p > 2, we fix α as in (7.2) and we define

W (t) :=
{

0 if t ≤ 0,

1 − (1 + t1/α)−1 if t > 0.

We then set w(x) = w(x1, . . . , xN ) := W (xN ). Since 1/α > 2, we have that w ∈
C2(RN ), and clearly ∂xN w ≥ 0.

A straightforward calculation shows that

�pw + f (w) = 0,

where

f (r) := p − 1

α p
(1 − r)p−1+αpr p−1−αp(2r − 1 + α)χ(0,1)(r).

Note that p − 1 − αp > 1, thence f ∈ C1(R).
Moreover,

{∂xN w = 0} = {w = 0}
and so f ′(w(x)) = 0 for any x ∈ {∂xN w = 0}. Consequently,∫

∂xN w>0
f ′(w)φ2 dx =

∫
RN

f ′(w)φ2 dx

for any smooth and compactly supported φ.
Accordingly, w is stable, due to (7.1).

The example in Proposition 7.3 shows that case IV in Lemma 4.10 and case D
(and, analogously, case C) in Lemma 4.14 may happen.

8. Proof of Corollary 1.3

For any (x ′, x3) ∈ R
2 × R and r ∈ R, we define

U (x ′, x3) :=
{

u(x ′, x3) if x3 ≥ 0,

−u(x ′, −x3) if x3 < 0

and

f (r) :=
{

g(r) if r ≥ 0,

−g(−r) if r < 0.
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It can be easily seen (see [14] for details) that

�U (x) + f (U (x)) = 0 (8.1)

for any x ∈ R
3.

Also, by [3, Theorem 1.1], we have that ∂3u > 0, and so

∂3U > 0. (8.2)

Moreover, f is Lipschitz, since g(0) = 0. This, (8.1), (8.2) and Theorem 1.2 yield
the claim of Corollary 1.3.

9. Proof of Theorem 1.4

We take the assumptions of Theorem 1.4.
First, we observe that, without loss of generality, by possibly changing the sign

of u, we may replace the sign assumption on f by

f ≤ 0. (9.1)

9.1. Area type estimates

We consider the graph of u as a surface in R
3, namely, we set Y = Y (x) :=

(x, u(x)) ∈ R
2 × R, that is, we think of Y as a function of x ∈ R

2 in such a way
that Y ∈ R

3 belongs to the graph of u.
Area estimates are a classical topic in minimal surface theory. Next is a varia-

tion of such results in our framework:

Lemma 9.1. There exists a constant C ≥ 1 in such a way that∫
|Y |≤ρ

a(|∇u|)|∇u|2 dx ≤ Cρ2,

as long as ρ ≥ C.

Proof. This proof is inspired by analogous arguments on [24, page 24] and [18,
page 403].

To begin, we point out that ta(t) > 0 for any t > 0, due to (1.2), and the
map t 
→ ta(t) is increasing, due to (1.3). As a consequence, from (1.17),

|a(t) t | ≤ C (9.2)

for any t > 0.
Then, we take ζ ∈ C∞

0 (B2ρ, [0, 1]) such that ζ(x) = 1 if x ∈ Bρ , 0 ≤ ζ ≤ 1
and |∇ζ | ≤ const /ρ.
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For any t ∈ R, we also define

γ (t) :=


1 if t ≥ ρ,

t + ρ

2ρ
if |t | < ρ,

0 if t ≤ −ρ,

and ϕ(x) := γ (u(x))ζ(x).
Moreover, by (9.2),∣∣∣∣∫

R2
a(|∇u(x)|) γ (u(x)) ∇u(x) · ∇ζ(x) dx

∣∣∣∣ ≤ const ρ.

Therefore, using ϕ as a test function in (1.1) and recalling (9.1),

const

ρ

∫
|x |≤ρ
|u|≤ρ

a(|∇u(x)|)|∇u|2 dx

≤
∫

R2
a(|∇u(x)|) γ ′(u(x)) ζ(x) |∇u(x)|2 dx

=
∫

R2
f (u(x)) ϕ(x) − a(|∇u(x)|) γ (u(x)) ∇u(x) · ∇ζ(x) dx

≤ const ρ,

which yields the desired result.

9.2. Completion of the proof of Theorem 1.4

We show that the assumptions of Lemma 5.2 are fulfilled. Indeed, here N = 2,
thus (5.4) is not needed; also, (5.3) is implied by (1.18), while (5.1) is warranted by
Lemma 9.1.

Then, the use of Lemma 5.2 finishes the proof of Theorem 1.4.

10. Proof of Theorem 1.5

We note that Theorem 2.5 holds under the assumptions of Theorem 1.5 (though in
this case λ1 is only non-negative). Accordingly,∫

R2
λ2(|∇u(x)|) |∇u(x)|2 κ2(x)ϕ2(x) dx

≤
∫

R2
|∇u(x)|2

(
A(∇u(x))∇ϕ(x)

)
· ∇ϕ(x) dx
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for any locally Lipschitz, compactly supported function ϕ, where κ(x) is the curva-
ture of the level set passing through x .

Then, by (A1),∫
R2

λ2(|∇u(x)|) |∇u(x)|2 κ2(x)ϕ2(x) dx ≤ K
∫

R2
|∇ϕ(x)|2 dx .

As a consequence, arguing as in Corollary 2.6, since ∇u never vanishes, we con-
clude that the level sets are regular curves with vanishing curvatures, thence straight
lines.
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