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A family of adapted complexifications for SL2(R)

STEFAN HALVERSCHEID AND ANDREA IANNUZZI

Abstract. Let G be a non-compact, real semisimple Lie group. We con-
sider maximal complexifications of G which are adapted to a distinguished one-
parameter family of naturally reductive, left-invariant metrics. In the case of G =
SL2(R) their realization as equivariant Riemann domains over GC = SL2(C) is
carried out and their complex-geometric properties are investigated. One obtains
new examples of non-univalent, non-Stein, maximal adapted complexifications.

Mathematics Subject Classification (2000): 53C30 (primary); 53C22, 32C09,
32Q99, 32M05 (secondary).

1. Introduction

Let ∇ be a linear connection on a real-analytic manifold M which is identified
with the zero section in the tangent bundle T M . A complex structure defined on
a domain � of T M containing M is adapted to the connection if for any ∇-
geodesic γ its complexification γ∗, given by (x + iy) → y γ ′(x), is holomorphic
on (γ∗)−1(�). In this situation we refer to � as an adapted complexification of
(M, ∇). In the case where ∇ is real-analytic, R. Bielawski [3] and R. Szőke [26]
recently showed that the adapted complex structure exists in a neighborhood of
M . In [26] one also finds a uniqueness result. For the Levi Civita connection of a
real-analytic Riemannian manifolds, such results were known since the pioneering
works of Guillemin-Stenzel [13] and Lempert-Szőke [19].

In the presence of a “large enough” Lie group acting on M and preserving
the geodesic flow induced by ∇, one can prove that there exists a maximal domain
� for the adapted complex structure, i.e. every adapted complexification is nec-
essarily contained in � (see Proposition 3.1, cf. [14]). If M is a non-compact,
Riemannian symmetric space such a maximal complexification is well-known un-
der the name of Akhiezer-Gindikin domain (see [2], cf. [10]).

Recall that M is the fixed point set of the anti-holomorphic involution on � ⊂
T M given by v → −v and in the case of the Levi Civita connection associated to
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a pseudo-Riemannian manifold the metric ν appears as the restriction of a pseudo-
Kähler metric κ with the same index as ν. Moreover κ admits a global potential
whose properties give important geometric insights of � ( [26], cf. [5, 19, 21, 23,
24]).

For a connected, non-compact, real semisimple Lie group G, let g = k ⊕ p

be the Cartan decomposition of its Lie algebra g with respect to a maximal com-
pact subalgebra k. Denote by B the Killing form of G and consider the distin-
guished one-parameter family of left-invariant metrics νm ( degenerate for m = 0 )
uniquely defined by

νm |g(X, Y ) = −m B(Xk, Yk) + B(Xp, Yp) ,

for any X = Xk + Xp and Y = Yk + Yp in k ⊕ p. Note that for all real m,
the action of the group L := G × K , given by left and right multiplication on
G, is isometric. Here K is the connected subgroup of G generated by k. Recall
that for m > 0 these metrics appear in the classification of all naturally reductive,
left-invariant Riemannian metrics on G given by C. Gordon in [12].

Our main goal is to present new examples of maximal complexifications
adapted, in the non-degenerate cases, to the Levi Civita connection associated to a
metric of the above family. In the degenerate case one finds a maximal complexifi-
cation adapted to the unique real-analytic linear connection which is obtained as the
limit of such Levi Civita connections. For G = SL2(R) we give a precise descrip-
tion of these complexifications and we determine their basic complex-geometric
properties. For positive m this gives, along with previous results (see [6, 15, 25]),
examples among all classes of 3-dimensional, naturally reductive, Riemannian ho-
mogeneous spaces (cf. [7]). For m = −1 one obtains the symmetric pseudo-
Riemannian case which has been investigated, among others, by G. Fels [9] and
R. Bremigan [4].

The paper is organized as follows. Basic results and properties of the above
metrics νm are recalled in Section 2. There we also point out with an example
that in order to perform (pseudo) Kählerian reduction in this pseudo-Riemannian
context, one may need more conditions than those necessary in the Riemannian
case (Remark 2.3, cf. [1]).

In Section 3 we give a version of the characterization of maximal adapted
complexifications given in [14] which is suitable in our situation (Proposition 3.1).
In particular we show the existence of the maximal complexification �m adapted
to νm . This is realized as an L-equivariant Riemann domain over the universal
complexification GC of G, with polar map Pm : �m → GC . By considering the
usual identification T G ∼= G × g, such complexification can be described via a
slice for the induced L-action by

�m = L · �m ,

where �m ⊂ {e} × g is a semi-analytic subset of the product of k and the closure
of a Weyl chamber in a maximal Abelian subalgebra a of p. That is, (e, X) ∈ �m
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if and only if X belongs to the intersection of sublevel sets of certain real-analytic
functions of k ⊕ a (Proposition 3.2 and 4.2).

The case G = SL2(R) is carried out in detail and the defining functions for
�m as well as the polar map Pm are explicitly determined in terms of a fixed basis
of k ⊕ a in Sections 4 and 6. For this it is useful to have concrete realizations of
slices and quotients of SL2(C) with respect to the involved actions, i.e. those of
SL2(R), SL2(R) × SO2(R) and SL2(R) × SO2(C). This is separately discussed
in Section 5.

Finally, in Sections 7 and 8 we single out the following different situations,
whose boundary cases are given by the symmetric pseudo-Riemannian m = −1
and the degenerate m = 0. For m < −1 all maximal adapted complexifications
are biholomorphic via Pm to a non-Stein L-invariant domain. Namely SL2(C)

without a single SL2(R) × SO2(C)-orbit (Theorem 7.2). For −1 ≤ m ≤ 0 the
polar map Pm remains injective but its non-Stein image misses more and more
SL2(R) × SO2(C)-orbits. If m > 0, the maximal adapted complexifications turn
out to be neither holomorphically convex, nor holomorphically separable (Theo-
rem 8.4). In all cases the envelope of holomorphy of �m is shown to be biholo-
morphic to SL2(C) (cf. [26, Section 9]).

Note that in the Riemannian context m > 0 all metrics νm have mixed sign
sectional curvature. A similar situation can be noticed in the examples discussed in
[14]. In these examples certain left-invariant Riemannian metrics on the generalized
Heisenberg group were considered. Their sectional curvature has mixed sign and
the associated maximal adapted complexifications have similar complex-geometric
properties. It would be interesting to know if this is only a coincidence.

ACKNOWLEDGEMENTS. We wish to thank Róbert Szőke for sharing with us a
preliminary version of [26] and the referee for his helpful suggestions.

2. Preliminaries

Let G be a non-compact, semisimple Lie group. Here we recall basic properties
of the one-parameter family of left-invariant metrics on G which will be consid-
ered in the sequel. Such a family contains degenerate, Riemannian and pseudo-
Riemannian, naturally reductive metrics. The Riemannian ones appear in the clas-
sification given by C. Gordon in [12]. More details and curvature computations can
be found in [15].

We also recall those facts on adapted complex structures which are needed
in the present paper. Finally we point out an example showing that the reduction
procedure indicated by R. Aguilar [1] in the Riemannian context does not apply
automatically when dealing with pseudo-Riemannian geometry.

Definition 2.1 (cf. [20]). A pseudo-Riemannian metric ν on a homogeneous man-
ifold M is naturally reductive if there exist a connected Lie subgroup L of Iso(M)
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acting transitively on M and a decomposition l = h ⊕ m of l, where h is the Lie
algebra of the isotropy group H at some point of M , such that Ad(H)m ⊂ m and

ν̃([X, Y ]m, Z) = ν̃(X, [Y, Z ]m)

for all X, Y, Z ∈ m. Here [ , ]m denotes the m-component of [ , ] and ν̃ is the
pull-back of ν to m via the natural projection L → L/H ∼= M . In this setting we
refer to h ⊕ m as a naturally reductive decomposition and to L/H as a naturally
reductive realization of M .

For a naturally reductive realization L/H every geodesic through the base
point eH is the orbit of a one-parameter subgroup of L generated by some X ∈
m (see [20], page 313). In fact for a Riemannian homogeneous manifold L/H
with an Ad(H)-invariant decomposition h ⊕ m this property implies that L/H is
a naturally reductive realization (see, e.g. [7]).

Let G be a connected, non-compact, semisimple Lie group and let g = k ⊕ p

be the Cartan decomposition of its Lie algebra with respect to a maximal compact
Lie subalgebra k. Let B denote the Killing form on g and, for every real m, assign
a left-invariant metric νm on G by defining its restriction on g ∼= TeG as follows:

νm
∣∣
g
(X, Y ) = −m B(Xk, Yk) + B(Xp, Yp), (2.1)

for any X = Xk + Xp and Y = Yk + Yp in k ⊕ p. Since B is negative definite on
k and positive definite on p, these metrics are Riemannian, degenerate or pseudo-
Riemannian when m > 0, m = 0 or m < 0, respectively.

Let K be the connected subgroup of G generated by k (which is compact if
G is a finite covering of a real form of a complex semisimple Lie group). Since k,
p and B are Ad(K )-invariant, νm is right K -invariant, i.e. the action of G × K
on G defined by (g, k) · l := glk−1 is by isometries. Here we allow discrete
ineffectivity given by the diagonal in Z(G) × Z(G), where Z(G) ⊂ K is the
center of G. One has G = (G × K )/H with H the diagonal in K × K .

Note that a different choice of a maximal compact connected subalgebra k′
induces an equivalent left-invariant Riemannian structure, i.e. there exists an iso-
metric isomorphism

(G, νm) → (G, ν′
m) .

This is given by the internal conjugation transforming k in k′.
We summarize the main properties of the above metrics in the following propo-

sition where the degenerate metric ν0 can be regarded as a limit case of non-
degenerate ones.

Proposition 2.2 ( [15, Section 3], cf. [12, proof of Theorem 5.2]). Let G be a non-
compact, semisimple Lie group and, for m ∈ R, let νm be the above defined left-
invariant metric. Then

i) the action of G × K by left and right multiplication is by isometries and
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ii) the direct sum h ⊕ m, with h the isotropy Lie algebra and

m := { ( −m Xk + Xp, −(1 + m) Xk ) ∈ g × k : Xk + Xp ∈ k ⊕ p } ,

is a naturally reductive decomposition of g × k = Lie(G × K ). In particular
for every X = Xk + Xp in k ⊕ p ∼= TeG the unique geodesic through e and
tangent to X is given by γX : R → G,

t −→ expG t ( −m Xk + Xp ) expK t (1 + m)Xk .

From [12, Section 5], it follows that in the Riemannian cases m > 0 the connected
component of the isometry group is essentially given by G × K (here discrete in-
effectivity is allowed) while in the pseudo-Riemannian symmetric case m = −1
it coincides with G × G. Further information regarding the Levi Civita connec-
tions (or their limit when m vanishes), the curvature tensor, the scalar and Ricci
curvature can be found in [15, Section 3].

Let M be a complete real-analytic Riemannian manifold. Following the re-
sults of Guillemin-Stenzel [13] and Lempert-Szőke [19] one can introduce a com-
plex structure on a subdomain of the tangent bundle T M which is canonically
adapted to the given Riemannian structure. Recently R. Bielawski [3] and R. Szőke
[26] have pointed out that for the existence of such a complex structure it is enough
to have a real-analytic linear connection ∇. A real-analytic complex structure on a
domain � of T M is adapted to ∇ if all leaves of the induced foliation are com-
plex submanifolds with their natural complex structure. That is, for any ∇-geodesic
γ : I → M the induced map γ∗ : T I ⊂ C → T M defined by (x+iy) 
→ y γ ′(x)

is holomorphic on (γ∗)−1(�) with respect to the adapted complex structure. Here
y γ ′(x) ∈ Tγ (x)M is the scalar multiplication in the vector space Tγ (x)M .

The adapted complex structure exists and it is unique on a sufficiently small
neighborhood of M , which is identified with the zero section in its tangent bundle
T M . If � is a domain of T M containing M on which this structure is defined,
then we refer to it as an adapted complexification.

Associated to every non-degenerate metric νm of the above introduced one-
parameter family one has the Levi Civita connection. For X and Y in g this is
given by the formula (cf. [15])

∇m X Y = 1

2

([X, Y ] + (1 + m)
([Xk, Yp] + [Yk, Xp]

))
.

Note that this uniquely defines a left-invariant, real-analytic, linear connection also
in the degenerate case m = 0. Therefore for all real m one has an adapted complex
structure at least in a neighborhood of M in T M . In the next section we will
see that there exists an adapted complexification which is maximal in the sense of
containing any other adapted complexification.

Remark 2.3. Let M be a real-analytic, Riemannian manifold with a free action by
isometries of a compact Lie group K and endow M/K with the unique Rieman-
nian metric such that the natural projection M → M/K becomes a Riemannian
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submersion. Then, as a consequence of results in [1], if the adapted complex struc-
ture exists on all of T M , so it does on T (M/K ). In the pseudo-Riemannian context
the analogous result does not hold in this generality.

For instance, let U be a compact, semisimple Lie group and denote by UC

its universal complexification. Let G be a non-compact, real form of UC and
K = G ∩ U . Denote by k and u the Lie algebras of K and U , respectively, and
by B the Killing form on U . Consider the unique left-invariant Riemannian metric
ν on U defined for all X, Y ∈ u by

ν|u(X, Y ) = −2B(Xk, Yk) − B(Xp, Yp),

where p := k⊥B . Endow U × K with the unique bi-invariant pseudo-metric ν̃

such that
ν̃|u×k((X, Z), (Y, W )) = −B(X, Y ) + 2B(Z , W )

for all (X, Z), (Y, W ) in u×k. Then the projection U×K → U, (u, k) → uk−1

turns out to be a pseudo-Riemannian submersion. Moreover the adapted complex
structure is defined on all of T (U × K ). Indeed (U × K , ν̃) is essentially (up
to the sign of the metric in the second component) the product of two symmetric
Riemannian spaces of the compact type, thus this is a consequence of results in [24]
and [26].

However (U, ν) has some negative sectional curvatures (see [8], cf. [15, Sec-
tion 3]), thus by [19, Theorem 2.4] the adapted complex structure is not defined on
all of T U .

3. A family of maximal adapted complexifications

Let G be a connected, non-compact, semisimple Lie group and consider the one-
parameter family of left-invariant metrics (pseudo-Riemannian for m < 0, degen-
erate for m = 0) introduced in Section 2 and defined by

νm |g := −m B(Xk, Yk) + B(Xp, Yp).

Then (cf. Proposition 2.2) the action of L = G × K by left and right multiplication
is by isometries, the isotropy in e is H = { (k, k) ∈ G × K : k ∈ K } and
the quotient L/H is a natural reductive realization of (G, νm). The Riemannian
exponential map Expe in e is given by

Expe(X) = expL(−m Xk + Xp, −(1 + m)Xk) · e

= expG(−m Xk + Xp) expK (1 + m)Xk ,

for every X ∈ g ∼= TeG. Note that the L-action on G induces an action on the
tangent space T G just by differentiation. If one identifies T G with G × g as
usual, this action reads as

(g, k) · (g′, X) = (gg′k−1, Adk(X)).
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The group L also acts on the universal complexification GC of G by left and right
multiplication.

Next we show the existence of a maximal complexification in T G adapted to
the connection associated to νm for all real m. It can be characterized as follows:

Proposition 3.1. Let G be a connected, non-compact, semisimple Lie group en-
dowed with a metric νm of the above family. Then there exists a maximal complex-
ification �m adapted to the connection associated to νm. Let

Pm : G × g → GC

be the L-equivariant map defined by

(g, X) → g expGC i(−m Xk + Xp) expK C i(1 + m)Xk .

Then �m is given by the connected component of { |D Pm | 
= 0 } containing G ×
{0}. The polar map Pm |�m is locally biholomorphic.

Proof. Note that the universal complexifications of L and H are LC = GC × K C

and HC = { (k, k) ∈ LC : k ∈ K C}, respectively. Let L act on LC/HC by left
multiplication and consider the L-equivariant map P̃m : T G → LC/HC defined,
for l ∈ L and X ∈ TeG, by

l∗(X) → l expLC (i(−m Xk + Xp, −(1 + m)Xk))HC .

Identify G = L/H with the zero section in T G. Then an analogous argument
as in [14, Corollary 3.3], applies to show that the connected component �m of
{ |D P̃m | 
= 0 } which contains G is the maximal adapted complexification and the
restriction P̃m |�m is locally biholomorphic.

Since expLC = expGC × expK C , the statement is a consequence of the follow-
ing real-analytic, L-equivariant identification

LC/HC → GC, (g, k)HC → gk−1 .

In order to describe �m it is convenient to determine a slice for the L-action. Let
a+ be the closure of a Weyl chamber in a maximal Abelian subalgebra a of p and
define

� := { (e, X) ∈ G × g : Xp ∈ a
+} .

Since a+ is a fundamental domain for the AdK action on p, every L-orbit of
G × g meets �. Then one has:

Proposition 3.2. Denote by �m the connected component of (e, 0) in the subset
{ (e, X) ∈ � : |(D Pm)(e,X)| 
= 0 } of �. Then �m = L · �m.

Proof. Note that the L-equivariance of Pm induces that of D Pm , i.e.

(D Pm)l·(e,X) ◦ Dl(e,X) = DlPm(e,X) ◦ (D Pm)(e,X) ,

for all l ∈ L and (e, X) ∈ �. In particular (D Pm)l·(e,X) has maximal rank if and
only if so does (D Pm)(e,X), implying the statement.
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4. The case of SL2(R)

Let G = SL2(R). Here we choose K = SO2(R) and give an explicit description
of �m in terms of fixed basis of k, a, p. By Proposition 3.2 this determines the
maximal adapted complexification �m associated to the connection of νm . Identify
sl2(R) with the set of zero trace matrices and let

U =
(

0 −1
1 0

)
, H =

(
1 0
0 −1

)
, W =

(
0 1
1 0

)
.

Then { U } is a basis of k, while {H, W } gives a basis of p. Consider the polar map
Pm : G × g → GC introduced in Section 3 and choose � by fixing a+ := { aH :
a ≥ 0 }. Given (e, X) ∈ � consider the natural identification T(e,X)(G × g) ∼=
g × g and note that for Y ∈ g one has

(D Pm)(e,X)(Y, 0) = d

ds

∣∣∣
0

Pm(exp sY, X)

= d

ds

∣∣∣
0

exp sY exp i(−m Xk + Xp) exp i(1 + m)Xk

= DRexp i(1+m)Xk
◦ DRexp i(−m Xk+Xp)Y,

(D Pm)(e,X)(0, Yk) = d

ds

∣∣∣
0

Pm(0, X + sYk)

= d

ds

∣∣∣
0

exp i(−m(Xk + sYk) + Xp) exp i(1 + m)(Xk + sYk)

= DRexp i(1+m)Xk
◦ (D exp)i(−m Xk+Xp)(−imYk)

+ DLexp i(−m Xk+Xp) ◦ (D exp)i(1+m)Xk
(i(1 + m)Yk),

(D Pm)(e,X)(0, Yp) = d

ds

∣∣∣
0

Pm(0, X + sYp)

= d

ds

∣∣∣
0

exp i(−m Xk + Xp + sYp) exp i(1 + m)Xk

= DRexp i(1+m)Xk
◦ (D exp)i(−m Xk+Xp)(iYp) ,

where Lg and Rg denote left and right multiplication by g ∈ GC, respectively,
and exp is the exponential map of GC. Recall that by identifying Texp X GC with
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gC via left multiplication one has

(D exp)X (Y ) =
∞∑

l=0

(−1)l

(l + 1)!adl(X)Y

for all X, Y ∈ gC (see, e.g. [27]). Fix X = uU +aH in �. By using the above for-
mulae, one shows that the basis {(U, 0), (H, 0), (W, 0), (0, U ), (0, H), (0, W ) }
of g × g ∼= T(e,X)(G × g) is mapped by the differential D Pm |(e,X) into the image
via Adexp −i(1+m)Xk

of the following six vectors

Adexp i(umU−aH)U, Adexp i(umU−aH)H, Adexp i(umU−aH)W,

∞∑
l=0

(−1)l

(l + 1)!adl(i(−umU + aH))(−imU ) + i(1 + m)U,

∞∑
l=0

(−1)l

(l + 1)!adl(i(−umU + aH))(i H),

∞∑
l=0

(−1)l

(l + 1)!adl(i(−umU + aH))(iW ).

Now note that w → cosh w and w → sinh w
w

are even holomorphic, thus the func-

tions z → cosh
√

z and z → sinh
√

z√
z

are well defined and holomorphic. Moreover
the cofficients of their Taylor series around the origin are real. Then, by restriction
one obtains two real-analytic functions which will be denoted in the sequel by C
and S, respectively.

Letting x = 4u2m2 − 4a2, a further computation (see Appendix) shows that
the above six vectors can be written as(

1 − 4a2 C(x) − 1

x

)
U + 4aum

C(x) − 1

x
H + 2aS(x) iW ,

−4aum
C(x) − 1

x
U +

(
1 + 4u2m2 C(x) − 1

x

)
H + 2umS(x) iW ,

2aS(x) iU − 2umS(x) i H + C(x) W ,(
1 + 4a2m

S(x) − 1

x

)
iU − 4aum2 S(x) − 1

x
i H + 2am

C(x) − 1

x
W ,

−4aum
S(x) − 1

x
iU +

(
1 + 4u2m2 S(x) − 1

x

)
i H − 2um

C(x) − 1

x
W ,

−2a
C(x) − 1

x
U + 2um

C(x) − 1

x
H + S(x) iW .

Let us point out without proof some properties of the functions C : R → R,
x → cosh

√
x , and S : R → R , x → sinh

√
x/

√
x , which are used in the sequel.
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Lemma 4.1. For x > −π2 the real-analytic functions S, S′ are strictly positive
and S, C, S′, C/S, S/S′ are strictly increasing. Moreover

C ′(x) = 1

2
S(x) , S′(x) = C(x) − S(x)

2x
and x <

C(x)

2S′(x)
.

We can now determine the maximal adapted complexification �m by computing
the slice �m introduced in Proposition 3.2.

Proposition 4.2. The slice �m for the maximal adapted complexification consists
of the elements (e, uU + aH) in � such that

∗) 4u2m2 − 4a2 > −π2

∗∗) 4u2m2 + m4a2 < f (4u2m2 − 4a2) ,

where the function f : R → R is defined by f (x) := x C(x)
C(x)−S(x)

= C(x)
2S′(x)

.

Proof. Let X = uU +aH ∈ � and x = 4u2m2−4a2 . By the above computations
(D Pm)(e, X) is non-singular if and only if the two determinants

∣∣∣∣∣∣∣∣∣∣

1 − 4a2 C(x)−1
x 4aum C(x)−1

x 2aS(x)

−4aum C(x)−1
x 1 + 4u2m2 C(x)−1

x 2umS(x)

−2a C(x)−1
x 2um C(x)−1

x S(x)

∣∣∣∣∣∣∣∣∣∣
and ∣∣∣∣∣∣∣∣∣∣

2aS(x) −2umS(x) C(x)

1 + 4a2m S(x)−1
x −4aum2 S(x)−1

x 2am C(x)−1
x

−4aum S(x)−1
x 1 + 4u2m2 S(x)−1

x −2um C(x)−1
x

∣∣∣∣∣∣∣∣∣∣
,

do not vanish. A straightforward computation yields the two conditions above.

Note that in the pseudo-Riemannian symmetric case m = −1, conditions ∗) and
∗∗) coincide and yield the set { (e, X) ∈ � : D expX not singular }.
Definition 4.3. For m ∈ R let �∗

m be the subdomain of � defined by condition
∗) in Proposition 4.2, i.e.

�∗
m := { (e, uU + aH) ∈ � : 4m2u2 − 4a2 > −π2 }.



A FAMILY OF COMPLEXIFICATIONS 27

Remark 4.4 (see Figure 4.1). For m ≤ −1 one has �m = �∗
m . Indeed by Lem-

ma 4.1 one has x < f (x), for x > −π2. Consequently for any (e, uU + aH) ∈
�∗

m
4u2m2 + 4a2m ≤ 4u2m2 − 4a2 < f (4u2m2 − 4a2),

thus condition ∗∗) is automatically fulfilled.
For m > −1 the closure of �m in � is contained in �∗

m . Indeed, for
4u2m2 − 4a2 = −π2, one has

4u2m2 + 4a2m > 4u2m2 − 4a2 = −π2 = f (−π2) = f (4u2m2 − 4a2) ,

therefore condition ∗∗) is not fulfilled. In particular the boundary of �m in � is
defined by{

(e, uU + aH) ∈ �∗
m : 4u2m2 + 4a2m = f (4u2m2 − 4a2)

}
.

m ≤ −1 m = − 1
2 m = 1

1

−1

π

4
π

2

u

a

1

−1

π

4
π

2

u

a

1

−1

π

4
π

2

u

a

· · · boundary of �m - - - boundary of �∗
m

Figure 4.1.

Remark 4.5. For m > −1 one checks that the vector fields tangential to Pm(�),
i.e. (D Pm)(e,X)(0, U ) and (D Pm)(e,X)(0, H), remain linearly independent on the
boundary of P(�m). Thus the boundary of the maximal adapted complexifica-
tion can be characterized by saying that L-orbits (in fact exp(W )-orbits) become
tangential to Pm(�).

On the other hand for m ≤ −1 it is the dimension of L-orbits at the boundary
of P(�m) to drop from 4 to 3 (see i) of Proposition 5.4 below), giving again a
characterization of the maximal adapted complexification.

Before studying the restriction of Pm to �m it will be useful to obtain a con-
crete realization of quotients of GC with respect to those actions which are in-
volved.
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5. Slices and quotients of SL2(C)

Here G and K denote SL2(R) and SO2(R), respectively. Let L = G × K act
on GC by left and right multiplication. Note that since K is compact, this action is
proper. The main goal of this section is to present models for the quotients G\GC,
GC/L , GC/(G × K C) and for the relative quotient maps. First consider the map

�1 : GC → GC , g → σG(g)−1g ,

where σG : GC → GC, g → g, is the conjugation in GC, i.e. the unique anti-
holomorphic involutive automorphism of GC whose fixed point set is G. Let G
act on GC by left multiplication and note that every fiber of this map consist of a
single G-orbit. Thus �1(GC) is set theoretically equivalent to G\GC and

�1 : GC → �1(G
C)

is a realization of the quotient map. Moreover, a simple computation shows that
(cf., e.g. [28])

�1(G
C) = { g ∈ GC : σG(g) = g−1 }.

It is convenient to consider the automorphism A : GC → GC transforming
SL(2, R) onto SU (1, 1). This is induced by the unique complex Lie algebra mor-
phism of gC mapping the basis {U, H, W } (cf. beginning of Section 4) into
{i H, iU, W }. Recall that the involution of GC defining SU (1, 1) is given by
σSU (1,1)(g) = J t g−1 J , where

J :=
(

1 0
0 −1

)
.

Since the elements of the above basis are fixed by the Lie algebra automorphisms
induced by σG and σSU (1,1) respectively, it follows that

A ◦ σG = σSU (1,1) ◦ A . (5.1)

Note that Q := A ◦ �1(GC) can be identified with �1(GC) ∼= G\GC. Then

Q = { A(g) : g ∈ GC and σG(g) = g−1 }
= { g ∈ GC : σSU (1,1)(g) = g−1}
=

{(
s b

−b t

)
: s, t ∈ R, b ∈ C and st + |b|2 = 1

}

gives a model of the quotient G\GC. Let us describe how the right K C-action on
GC is transformed after applying A ◦ �1. For λ ∈ C and g ∈ GC one has

A ◦ �1(g exp(−λU )) = A(σG(g exp(−λU ))−1g exp(−λU ))

= A(σG(exp(−λU )))−1 A(σG(g))−1 A(g)A(exp(−λU )))
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and by (5.1) this gives

σSU (1,1)(A(exp(−λU )))−1 A(σG(g)−1g)A(exp(−λU )))

= (Jexp(−iλH)J )−1 A(�1(g)) exp(−iλH)

= exp(iλH)A(�1(g)) exp(−iλH).

Thus A ◦ �1 : GC → Q is K C-equivariant, if one let K C act on GC by right
multiplication and on Q by

exp(λU ) ·
(

s b
−b t

)
:= exp(iλH)

(
s b

−b t

)
exp(−iλH)

=
(

e2ys e2i x b
−e−2i x b e−2yt

)
,

for every x + iy = λ ∈ C. In particular, after applying A ◦ �1, the right K -action
on GC reads as rotations on b. Let

P := { (s, t) ∈ R
2 : st ≤ 1}

and define �2 : Q → P by (
s b

−b t

)
→ (s, t) .

For every (s, t) ∈ P the inverse image �−1
2 (s, t) consists of a single K -orbit

given by {(
s b

−b t

)
∈ Q : |b|2 = 1 − st

}

In fact P is a realization of the quotient Q/K ∼= GC/L . Recall that LC = GC ×
K C act on GC by left and right multiplication. Let the one-parameter subgroup
of LC defined by R := {e} × exp ik act on P by ( {e} × exp(iyU ) ) · (s, t) :=
(e2ys, e−2yt), for all y ∈ R and (s, t) ∈ P . One has:

Lemma 5.1. Let K C act on Q by

exp(x + iy)U ·
(

s b
−b t

)
=

(
e2ys e2i x b

−e−2i x b e−2yt

)
,

for x + iy ∈ C. Then

i) a model for the quotient G\GC is Q with K C-equivariant quotient map
A ◦ �1 : GC → Q . The fixed point set of the K -action on Q is given

by

{(
s 0
0 t

)
: st = 1

}
,
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ii) a model for Q/K is given by P with quotient map �2 : Q → P defined by(
s b

−b t

)
→ (s, t) ,

iii) a model for the quotient GC/L is P with R-equivariant quotient map F :=
�2 ◦ A ◦ �1 : GC → P . In particular G\GC/K C ∼= P/R.

Remark 5.2. Let NGC (K C) denote the normalizer of K C in GC. Then e and

ẽ :=
(

i 0
0 −i

)
represent the two elements of the quotient NGC (K C)/K C. A simple

computation shows that F is equivariant with respect to right (or left) multiplica-
tion by ẽ in GC and reflection with respect to the origin in P . Furthermore F is
equivariant with respect to conjugation by ẽ in GC and reflection with respect to
the line of equation s = t in P .

Remark 5.3. The action of R on P is not proper. Set theoretically P/R can
be identified with the slice for the R-action on P defined by the union { s =
t, st ≤ 1 } ∪ { s = −t } ∪ { p1, p2, p3, p4 }, where p1 := (2, 0), p2 := (0, 2),
p3 := (−2, 0) and p4 := (0, −2) correspond to the non-closed R-orbits in P .
The closure of these orbits is obtained by adding the unique fixed point p0 = (0, 0).
However for our purposes it is more convenient to consider the following slice (cf.
Figure 5.1)

S := { s + t = 2, t ≥ s } ∪ { s + t = −2, s ≥ t } ∪ { p0, p1, p3 }.

2

−2

t

s

— the slice S - - - boundary of P · · · R-orbits

Figure 5.1.

Here and in the sequel a slice is assumed to intersect every orbit in a single point.
Let � = { (e, X) ∈ G × g : Xp ∈ a+ } be the slice in T G ∼= G × g introduced
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in Section 3. Consider the subdomain

�AG =
{

(e, uU + aH) ∈ � : 4u2 − 4a2 > − π2

4

}

and denote by �AG its closure in �. One has:

Proposition 5.4. Let G × K C ⊂ LC act on GC by left and right multiplication.

i) A slice for the L-action on GC is given by

S1 := exp i�AG ∪ ẽ exp i�AG .

All L-orbits are closed (the action is proper), the union of all 3-dimensional
L-orbits is given by F−1({ st = 1 }) = L · (exp ik ∪ ẽ exp ik). All other orbits
are 4-dimensional with discrete isotropy given by the ineffectivity ±(e, e) of L.

ii) A slice for the G × K C-action is given by

S2 := { exp ρi(U + H) : ρ ≥ 0 }∪ ẽ{ exp ρi(U + H) : ρ ≥ 0 }∪{ g0, g1, g3},
where g0 = exp i π

4 H, g1 = exp − i
2 (U + H) and g3 = ẽg1. The only non-

closed G × K C-orbits are those through g1, g2 g3, g4, with g2 = exp i
2 (U +

H) and g4 = ẽg2. Their closure is obtained by adding the orbit through g0.
The only 4-dimensional orbits are those through e, ẽ and g0, all other orbits
have maximal dimension.

Proof. For all (e, uU + aH) in �AG one has

F( exp i(uU + aH)) = �2 ◦ A(exp 2i(uU + aH)) = �2(exp −2(u H + aU ))

= �2

(
C(x) − 2uS(x) 2aS(x)

−2aS(x) C(x) + 2umS(x)

)

= (C(x) − 2uS(x), C(x) + 2uS(x)),

where x = 4u2 − 4a2. Fix x ≥ −π2/4 and note that the set Qx := { (e, uU +
aH) ∈ �AG : 4u2 − 4a2 = x } is given by { (e, uU + aH) : 4u2 ≥ x, 0 ≤ a =√

4u2 − x/2 }. Then, from the above formula it follows that F(exp i Qx ) consists
of the intersection of P with the line of equation s + t = 2C(x). As a conse-
quence exp i�AG is mapped bijectively onto P ∩ {s ≥ −t}. This and Remark 5.2
imply that F maps S1 bijectively onto P . Thus S1 is a slice for the L-action
on GC.

Since F = �2 ◦ A ◦ �1, by i) of Lemma 5.1 the only 3-dimensional L-orbits
are those through F−1({ st = 1 }) and all others are 4-dimensional. Moreover
the isotropy of the K -action on Q \ �−1

2 ({ st = 1 }) is given by the ineffectivity
±(e, e), implying that last claim in i).



32 STEFAN HALVERSCHEID AND ANDREA IANNUZZI

For ii) note that F( exp iρ(U +H)) = (1−2ρ, 1+2ρ) (cf. the above formula).
This and Remark 5.2 apply to show that the restriction F |S2 : S2 → S is bijective,
where S is the R-slice in P introduced in Remark 5.3. One has a commutative
diagram of canonical quotients

GC F−→ GC/L ∼= P

↘ ↓

GC/(G × K C) ∼= P/R

where, by iii) of Lemma 5.1, the map F is R-equivariant. This gives a one to one
correspondence between the G × K C-orbit space of GC and the R-orbit space
of P . As a consequence S2 is a slice for the G × K C-action on GC. Moreover
the G × K C-orbits through g0, . . . , g4 correspond to the five R-orbits in {st =
0} ⊂ P , implying the topological claim. Finally, the dimension of every G × K C

orbit can be obtained by adding to the dimension of the corresponding R-orbit the
dimension of the L-orbit given in i). Since every R-orbit different from the fixed
point (0, 0) is one-dimensional, this concludes the proof.

Regard G/K as a Riemannian symmetric space of rank one. Its maximal
adapted complexification can be realized in GC/K C and it is usually described as
�AG = G exp(i[0, π

4 )H)K C (see [2, 6]). Its boundary is given by ∪3
j=1Gg j K C

and we refer to Gg0K C as its singular boundary. For later use we note the follow-
ing direct consequence of [11, Theorem 6.1 and Example 6.3].

Lemma 5.5. For G = SL2(R), let � be a G-invariant domain of GC/K C which
contains �AG and its non-singular boundary, i.e. � contains the invariant sub-
set �AG \ G exp(i π

4 H)K C . Then � is holomorphically convex if and only if it
coincides with GC/K C.

6. The reduced polar map

Let G = SL2(R) be endowed with one of the metrics νm . By Proposition 3.2
the associated maximal adapted complexification is given by �m = L · �m , where
�m consists of the elements of �m which are in the slice � for the L-action on
G × g ∼= T G. Note that every L-orbit in G × g intersects � in a single element,
thus � ∼= T G/L . One has a commutative diagram

T G ∼= G × g
Pm→ GC

↓ ↓ F

T G/L ∼= �
P̂m→ GC/L ∼= P ,
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where F : GC → P is the realization of the quotient map given in Lemma 5.1 and
P̂m := F ◦ Pm |� . Here we show that the polar map Pm |�m is injective if and only
if so is the restriction P̂m |�m . We also point out certain properties of the map P̂m
which are used in the remaining sections in order to discuss injectivity of Pm |�m . It
will turn out that �m is biholomorphic to an L-invariant domain of GC if m ≤ 0,
while it is a non-holomorphically separable Riemann domain over GC if m > 0.
In both cases �m is not holomorphically convex and its envelope of holomorphy
is biholomorphic to GC.

We first compute the two components of P̂m with respect to the basis {U, H}.
One has

P̂m(e, uU + aH) = F ◦ Pm(e, uU + aH)

= F
(
exp i(−umU + aH) exp iu(1 + m)U

)
= �2 ◦ A

(
exp iu(1 + m)U exp 2i (−umU + aH) exp iu(1 + m)U

)
= �2

(
exp −u(1 + m)H exp 2(um H − aU ) exp −u(1 + m)H

)

= �2


e−2u(1+m) (C(x) + 2umS(x)) 2aS(x)

−2aS(x) e2u(1+m) (C(x) − 2umS(x))


 ,

where x = 4u2m2 − 4a2. This gives

P̂m(e,uU+aH)=
(
e−2u(1+m)(C(x)+2umS(x)), e2u(1+m)(C(x)−2umS(x))

)
. (6.1)

Remark 6.1. The map P̂m has maximal rank on { (e, X) ∈ �m : Xa+ 
= 0 }.
Indeed it is easy to check that F has maximal rank on F−1({ st 
= 1 }), therefore
so does P̂m on the set �m ∩ P̂−1

m ({ st 
= 1 }). From formula (6.1) it follows that
this set coincides with �m ∩ { (e, uU + aH) : a > 0 }.

Recall that for all real m the slice �m is contained in the domain �∗
m =

{ (e, uU + aH) ∈ � : 4m2u2 − 4a2 > −π2 } (cf. Remark 4.4). For such bigger
domain one has:

Lemma 6.2. The restriction of Pm to any L-orbit of L · �∗
m is a diffeomorphism

onto an L-orbit of GC.

Proof. Note that the isotropy of L at a point (e, X) of �∗
m is given by { (k, k) :

k ∈ K } if X ∈ k, it consists of the ineffectivity ±(e, e) otherwise. Moreover since
K and exp ik commute, the identity

(g, k) · Pm(e, X) = Pm(e, X)
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holds true if and only if

g exp i(−muU + aH)k = exp i(−muU + aH) .

Now, a similar computation as in formula (6.1) yields

F(exp i(X)) = ( C(x) + 2umS(x) , C(x) − 2umS(x) ) ,

which belongs to { st = 1 } if and only if a = 0. Then, as a consequence of i) of
Proposition 5.4, the isotropy at Pm(e, uU + aH) is given by { (k, k) : k ∈ K } if
a = 0 or ±(e, e) otherwise, which proves the statement.

Remark 6.3. For (e, uU + aH) ∈ ∂�∗
m one has 4u2m2 − 4a2 = −π2. Thus,

by formula (6.1)

F ◦ Pm(e, uU + aH) = (−e−u(1+m), −eu(1+m)) ∈ { (s, t) ∈ P : st = 1} .

Then i) of Proposition 5.4 implies that the dimension of the L-orbit through
Pm(e, uU + aH) is only three. In particular an analogous statement as in the
above lemma does not hold on domains larger than �∗

m .

Since �m = L · �m and �m is contained in �∗
m , from the above lemma it

follows that Pm |�m is injective if and only if different L-orbits in �m are mapped
by Pm to different L-orbits in GC. Recalling that for G = SL2(R) every orbit
intersects �m in a single point and that F : GC → P is a realization of the
quotient map with respect to the L-action on GC, one has:

Proposition 6.4. The polar map Pm |�m is injective if and only if P̂m |�m is injec-
tive.

We conclude this section with a technical result which will be repeatedly used
in the sequel. Consider the two involutions

α : �∗
m → �∗

m Xk + Xp → −Xk + X p

and
β : P → P (s, t) → (t, s)

and denote by fix(α) = { X ∈ �∗
m : Xk = 0 } and fix(β) = { (s, t) ∈ P : s = t }

the associated fixed point sets.
Note that P̂m |�∗

m
: �∗

m → P is equivariant with respect to these involutions.

As a consequence P̂m(fix(α)) is contained in fix(β). Also consider the α-invariant
map � : �∗

m → R defined by

�(uU + aH) := m

1 + m

C(4u2(1 + m)2)

S(4u2(1 + m)2)
− C(x)

S(x)
,

with x = 4u2m2 − 4a2.
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Lemma 6.5. Let α : �∗
m → �∗

m and β : P → P be the two involutions defined
above.

i) For m ≤ −1 one has (
P̂m |�∗

m

)−1
(fix(β)) = fix(α) .

ii) For m > −1 one has (cf. Figure 6.1)(
P̂m |�∗

m

)−1
(fix(β)) = fix(α) ∪ graph(γ )

where γ : k → a is the real-analytic map implicitly defined by { � = 0 }.

m = − 1
2 m = 1

1

0 π

4
π

2

u

a

1

0 π

4
π

2

u

a

— ∂�m - · - ∂�∗
m - - - { � = 0 } · · · �c for c ≈ 0.7, 0.2, 0, −0.7

Figure 6.1.

Proof. Formula (6.1) implies that the set
(

P̂m |�∗
m

)−1
(fix(β)) is given by

{uU + aH ∈ �∗
m : e−2u(1+m)(C(x) + 2umS(x)) = e2u(1+m)(C(x) − 2umS(x))}

= { cosh(2u(1 + m)) 2um S(x)

= sinh(2u(1 + m)) C(x) } .

Then the cases m = −1 and m = 0 are straightforward. For m 
= −1 this set can
be written as { u = 0 } ∪ { � = 0 }, with � as in the statement.
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For m < −1 let u > 0 and note that

cosh(2u(1 + m))

sinh(2u(1 + m))
<

cosh(2um)

sinh(2um)
.

Recalling that x → C(x)/S(x) is strictly increasing this yields

m

1 + m

C(4u2(1 + m)2)

S(4u2(1 + m)2)
= cosh(2u(1 + m)) 2um

sinh(2u(1 + m))

>
cosh(2um) 2um

sinh(2um)

= C(4u2m2)

S(4u2m2)

≥ C(4u2m2 − 4a2)

S(4u2m2 − 4a2)
,

for any a ≥ 0, implying that { � = 0 } has no solution for u > 0. Along with the
α-invariance of �, this implies i).

For m > −1, m 
= 0 and u > 0 fixed, an analogous argument shows that

m

1 + m

C(4u2(1 + m)2)

S(4u2(1 + m)2)
<

C(4u2m2)

S(4u2m2)
.

Since C(x)/S(x) is strictly increasing for x > −π2 and C(x)/S(x) → −∞ for
x → −π2, it follows that there exists a unique a ∈ R with 4u2m2 − 4a2 > −π2

such that �(uU + aH) = 0. This and α-invariance of � yield ii).

7. The case of m ≤ −1

Let G = SL2(R) be endowed with one of the metrics νm for some m ≤ −1. In
this case we show that the polar map Pm is a biholomorphism from the maximal
adapted complexification �m onto an L-invariant domain of GC. This domain is
given by removing from GC a single 4-dimensional G × K C-orbit. Its envelope
of holomorphy turns out to be biholomorphic to GC.

Consider the one parameter subgroup R := {e}×exp(ik) of LC. The {e}× K -
action on �m induces a local R-action whose infinitesimal generator is given, for
all (g, X) in �m , by

iU → Jm

(
d

dy

∣∣∣
0
({e} × exp(yU )) · (g, X)

)
.

Here Jm denotes the adapted complex structure of �m .
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Since Pm is holomorphic and ({e} × K )-equivariant, it is also locally equiv-
ariant with respect to such local R-action on �m and the global R-action on GC.
Furthermore both (local) actions commute with the L-actions on �m and on GC,
thus they push down to (local) R-actions on �m/L ∼= �m and on GC/L ∼= P ,
respectively. Since one has the commutative diagram

�m
Pm→ GC

↓ ↓ F

�m/L ∼= �m
P̂m→ P ∼= GC/L ,

the restriction P̂m |�m is locally R-equivariant. Recall that by iii) of Lemma 5.1, the
R-action on P is explicitly given by ({e}×exp iyU )·(s, t) = (e2ys, e−2yt). In par-
ticular the function P → R, defined by (s, t) → st , is R-invariant. This is used to
determine local R-orbits in �m as follows. For c ≤ 1 let �c := (P̂m |�m )−1({ st =
c }) and denote by �+

m the set { (e, uU + aH) ∈ �m : a > 0, u > 0 }. One has:

Lemma 7.1. Let m ≤ −1. Then

i) a local R-orbit of �+
m coincides with a connected component of �c ∩ �+

m ,
ii) the intersection �c ∩ �+

m has two connected components if 0 ≤ c < 1, it is
connected if c < 0,

iii) P̂m maps different local R-orbits of �+
m to different R-orbits of P ,

iv) P̂m is injective on �m,
v) P̂m maps different local R-orbits of �m to different R-orbits of P ,

vi) local R-orbits closed to {e} × k are mapped bijectively by P̂m to R-orbits of
P , i.e. R acts globally in a R-invariant neighborhood of {e} × k.

Proof. Note that (0, 0) is the unique fixed point for the R-action on P and that
(P̂m)−1(0, 0) = (e, π

4 ) does not belong to �+
m . Furthermore, the restriction P̂m |�+

m
is locally diffeomorphic by Remark 6.1 and locally R-equivariant by construction.
This implies that every local R-orbit of �+

m is one-dimensional.
One checks that �c = { (e, uU + aH) ∈ �∗

m : φm(a, u) = √
1 − c }, where

φm(a, u) := 2aS(4m2u2−4a2). Moreover ∂φm/∂a 
= 0 on �+
m , therefore �c∩�+

m
is a one-dimensional manifold. By construction, �c is locally R-invariant, hence
local R-orbits of �+

m are open and closed in �c ∩ �+
m , implying i).

For ii), recall that �m = �∗
m by Remark 4.4. As a consequence φm vanishes

on the boundary of �m . Also note that φm(a, 0) = sin(2a) and that for u fixed
and a such that (e, uU + aU ) ∈ �+

m , the map R≥0 → R, u → φm(a, u) is
strictly increasing (cf. Lemma 4.1). This implies that �c ∩ �+

m is the (connected)
graph of a function defined on a+ \ {0} for c < 0, while, for 0 ≤ c < 1, it consists
of two connected components (which are contained in �+

m \ { (e, uU + aH) : 0 <

a < π
2 and sin(2a) ≥ √

1 − c }).
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For iii) first consider the case of 0 < c < 1. One needs to show that the two
components of �c ∩ �+

m are mapped to different components of the hyperbola in
P defined by { st = c }. For this it is enough to note that this holds for the two
limit points given by { (e, aH) : 0 < a < π

2 and sin(2a) = √
1 − c }.

The only other non-connected case is c = 0, when the two components of
�0 ∩ �+

m have the same limit point (e, π
4 H). By Remark 6.1 the map P̂m is a

diffeomorphism in a neighborhood (in �m) of this point, thus these two components
are mapped to different components of { (s, t) ∈ P : st = 0, (s, t) 
= (0, 0) }, as
claimed. The case c < 0 is straightforward.

Since all R-orbits in P have connected isotropy and P̂m |�+
m

is a local diffeo-

morphism, P̂m is necessarily injective on every local R-orbit of �m . Therefore
iii) implies that P̂m |�+

m
is injective. Moreover, from i) of Lemma 6.5 it follows that

�+
m is mapped to one of the two connected components of P \ fix(β). By α-β-

equivariance of P̂m this implies that �−
m := α(�+

m ) is injectively mapped to the
other connected component. Finally it is easy to check that k∪ fix(β) is injectively
mapped into { st = 1 } ∪ fix(β), implying iv).

Now note that a local R-orbit of �m either meets fix(α) in a unique point or
is contained in �+

m ∪ �−
m . As noticed, P̂m maps different elements of fix(α) into

different R-orbits of P . Then iii) and α-β-equivariance of P̂m , imply v).
For vi), one can move towards infinity (topologically) along local R-orbits of

�m which are closed to {e} × k, apply P̂m and check that one is moving towards
infinity along R-orbits in P . Recalling that e2u(1+m) (C(x) − 2umS(x)) is the
second component of P̂m , this follows by showing that for ε > 0 small enough
and uU + aH ∈ �m , with a < π

4 , such that 2aS(x) = ε, one has

lim
u→∞ e2u(1+m) (C(x) − 2umS(x)) = ∞ .

The details of this computation are omitted.

Theorem 7.2. Let G = SL2(R) endowed with a metric νm, with m ≤ −1.
Then the polar map Pm |�m : �m → GC is injective and consequently �m is
L-equivariantly biholomorphic to Pm(�m). This domain is not holomorphically
convex and its envelope of holomorphy is biholomorphic to GC.

Proof. Injectivity follows from iv) of Lemma 7.1 and Proposition 6.4. Assume by
contradiction that �m is holomorphically convex, i.e. that the domain Pm(�m) is
Stein. Then the categorical quotient Pm(�m)//K with respect to the K -action is
Stein (see [16, Section 6.5]). Note that all local K C-orbits are closed in Pm(�m)

and by v) of Lemma 7.1 the domain Pm(�m) is K -orbit-convex in GC. It follows
that Pm(�m)//K is biholomorphic to �(Pm(�m)), where � : GC → GC/K C is
the canonical projection. In particular �(Pm(�m)) is Stein.
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Denote by “P̂m(�m)/L” the image of P̂m(�m) in P/L via the canonical pro-
jection. Consider the commutative diagram

Pm(�m) ⊂ GC F−→ P̂m(�m) ⊂ P

� ↓ ↓

�(Pm(�m)) ⊂ GC/K C −→ G\�(Pm(�m)) ∼= “P̂m(�m)/L” ⊂ P/L ,

where F : GC → P is our usual quotient map. One checks (cf. the proof of Lemma
7.1) that P̂m(�m) intersects all local R-orbits of P but one, namely R · (−1, −1).

Moreover, for ẽ :=
(

i 0
0 −i

)
, one has F(ẽ) = (−1, −1). As a consequence

�(Pm(�m)) = GC/K C \ GẽK C which, by Lemma 5.5, is not holomorphically
convex. This gives a contradiction, showing that �m is not holomorphically con-
vex.

For the last statement, identify Pm(�m) with �m and note that its envelope
of holomorphy �̂m is a Stein, L-equivariant, Riemann domain over GC. One has
an induced Stein, G-equivariant, Riemann domain q : �̂m//K → GC/K C, where
�̂m//K denotes the K -categorical quotient of �̂m (see [11, Section 3]). In fact, this
can be regarded as a G/{±e}-equivariant, Riemann domain over GC/K C, since the
subgroup {±(e, e)} of L acts trivially on �m . Then, by [11, Theorem 7.6] the map
q is injective and [11, Corollary 3.3] implies that �̂m is univalent. That is, �̂m is
a Stein, L-invariant domain of GC. As a consequence �̂m//K is biholomorphic to
�(�̂m) and, by Lemma 5.5, it necessarily coincides with GC/K C.

Choose, on a neighborhood U of eK C in GC/K C, a Stein local trivialization
U × C∗ ⊂ GC of the principal C∗-bundle � : GC → GC/K C. Then one has
�̂m ∩(U ×C∗) = {(z, λ) ∈ U ×C∗ : a(z) < |λ| < b(z)}, with a < b functions on
U with values in the extended real line. Since �̂m ∩ (U ×C∗) is Stein, the functions
log a and − log b are plurisubharmonic. Moreover, vi) of Lemma 7.1 implies that
log a(z) = − log b(z) = −∞ for z close to eK C. Thus a ≡ 0 and b ≡ ∞ on U .
Finally a connectedness argument using local trivializations covering all GC shows
that this holds for any trivialization. Hence �̂m = GC as claimed.

8. The case m > −1

Let G = SL2(R) be endowed with one of the metrics νm . For −1 < m ≤ 0,
similarly to the cases considered in Section 7, we show that the polar map Pm
is a biholomorphism from the maximal adapted complexification �m onto an L-
invariant domain of GC which is not holomorphically convex. However, note that
here the projection �(Pm(�m)) of �m to GC/K C misses more than one G-orbit.

Finally, in the Riemannian cases m > 0 the polar map Pm is not injective
and its fibers consists of at most two elements. The maximal complexification �m
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is neither holomorphically separable, nor holomorphically convex. For all m, its
envelope of holomorphy is shown to be biholomorphic to GC.

Lemma 8.1. (cf. Figure 6.1) Let m > −1. Then

i) different local R-orbits of �m ∩{u > 0} are mapped by P̂m to different R-orbits
of P ,

ii) local R-orbits closed to {e}× k are mapped bijectively by P̂m to R-orbits of P ,
i.e. R acts globally in an R-invariant neighborhood of {e} × k,

iii) for −1 < m ≤ 0 one has (P̂m |�m )−1(fixβ) ⊂ fix(α) and different local R-
orbits of �m are mapped by P̂m to different R-orbits of P ,

iv) for −1 < m ≤ 0 the polar map P̂m is injective on �m,
v) for m > 0 one has (P̂m |�m )−1(fix(β)) 
⊂ fix(α). More precisely �m contains

the graph of γ |k\{0}, with γ defined as in Lemma 6.5.

Proof. Recall that by Lemma 4.4 the slice �m is a proper subdomain of �∗
m . For

c ≤ 1 let �c := (P̂m |�∗
m
)−1({st = c}). A similar argument as in Lemma 7.1 shows

that different components of �c ∩ {(e, uU + aH) ∈ �∗
m : a > 0, u > 0} are

mapped by P̂m to different R-orbits of P . One also checks that local R-orbits of
�+

m := {(e, uU + aH) ∈ �m : a > 0, u > 0} are connected components of
�c ∩ �+

m . Then in order to prove i) it is enough to show that for every c < 1 and
every connected component O of �c ∩ {(e, uU + aH) ∈ �∗

m : a > 0, u > 0} the
locally R-invariant set O ∩ �+

m is connected.
For this recall that (cf. Proposition 4.2 and Remark 4.4) the boundary of �+

m in
the set {(e, uU + aH) ∈ �∗

m : u > 0, a > 0} is given by y = f (x) and that O is
a connected component of 4a2S2(x) = 1 − c, where

x = 4u2m2 − 4a2, y = 4u2m2 + 4a2m and f (x) = C(x)

2S′(x)
.

Since 4a2 = y−x
1+m , in the coordinates x, y such equations read as y − f (x) = 0

and y = (1+m)(1−c)
S2(x)

+ x . Thus it is enough to note that the function

(1 + m)(1 − c)

S2(x)
+ x − f (x)

can be rewritten as
(1 + m)(1 − c)

S2(x)
− x S(x)

C(x) − S(x)
,

hence it is strictly decreasing by Lemma 4.1. This proves i).
The analogous proof as in vi) of 7.1 implies ii).
For m = 0 one checks directly that (P̂m |�∗

m
)−1(fix(β)) = fix(α)∪∂�m = {u =

0} ∪ {a = π
4 } (cf. Lemma 6.5). Thus iii) holds for m = 0. Now let −1 < m < 0
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and let (e, X) be an element of (P̂m |�∗
m
)−1(fix(β)) \ fix(α). That is, X = uU + aH

with u 
= 0 and
m

1 + m

C(4u2(1 + m)2)

S(4u2(1 + m)2)
= C(x)

S(x)
, (8.1)

where x = 4u2m2 − 4a2 > −π2. In order to show that (e, X) does not belong to
�m we need to see that y > f (x), i.e that (cf. Lemma 4.1)

4u2m2 + 4a2m >
xC(x)

C(x) − S(x)
.

Since −1 < m < 0, equation (8.1) above implies that C(x)
S(x)

< 0. Then this inequal-
ity can be written as(

1 − S(x)

C(x)

)
(4u2m2 + 4a2m) > (4u2m2 − 4a2)

which becomes

4a2m + 4a2 >
S(x)

C(x)
(4u2m2 + 4a2m).

Note that C(x)
S(x)

< 0 also implies a 
= 0. Then, by using equation (8.1), one obtains

1 >
S(x)

C(x)

(4u2m2 + 4a2m)

4a2(1 + m)
= S(4u2(1 + m)2)

C(4u2(1 + m)2)

(
u2

a2
m + 1

)

which is easily checked to hold, since 0 <
S(4u2(1+m)2)

C(4u2(1+m)2)
< 1 and ( u2

a2 m + 1) < 1.
Finally, a similar argument as in Lemma 7.1 implies the last statement in iii). Part
iv) follows from iii) by using the same argument as in Lemma 7.1

For v) first note that �m ∩ {u = 0} = {(e, aH) : 0 ≤ a < ã}, with ã
uniquely defined by 0 < ã < π/2 and tan(2ã) = 2ã 1+m

m . Rewrite condition ∗∗) of

Proposition 4.2 as x + (1 + m)4a2 <
xC(x)

C(x)−S(x)
. That is

(1 + m)4a2 <
S(x)

2S′(x)
.

Recall that S(x)
S′(x)

is strictly increasing for x > −π2 (Lemma 4.1). Then for (e,aH)∈
�m and u ∈ R one has

(1 + m)4a2 <
S(−4a2)

2S′(−4a2)
≤ S(x)

2S′(x)

implying that {(e, uU + aH) : u ∈ R, 0 ≤ a < ã} ⊂ �m . Since one sees that
(e, ãH) = γ (0), in order to prove that the graph of γ |k\0 is contained in �m it is
enough to check that γ is strictly decreasing (increasing) for u > 0 (u < 0). This
can be done by a direct computation showing that

∂�

∂a

∣∣∣{�=0} < 0 and
∂�

∂u

∣∣∣{�=0} < 0

(
∂�

∂a

∣∣∣{�=0} < 0 and
∂�

∂u

∣∣∣{�=0} > 0

)
.



42 STEFAN HALVERSCHEID AND ANDREA IANNUZZI

Corollary 8.2. Let m >−1. Then the restrictions Pm|L·{�m∩{u≥0}} and Pm|L·{�m∩{u≤0}}
are injective.

Proof. First consider the case u ≥ 0. Since P̂m is necessarily injective on local
R-orbits, i) of Lemma 8.1 implies that P̂m is injective on �+

m = �m ∩ {u > 0}.
Moreover, a straightforward computation shows that P̂m is also injective on �m ∩
{u = 0}.

Then, for −1 < m ≤ 0, the map P̂m is injective on �m ∩ {u ≥ 0} by iii) of
Lemma 8.1. Now recall that every L-orbit of �m meets �m in a single element and
Pm is injective on such an orbit by Lemma 6.2. Then the statement follows in the
case −1 < m ≤ 0.

For m > 0 note that by v) of Lemma 8.1 the set (P̂m |�m∩{u≥0})−1(fix(β))

consists of a one-dimensional manifold with two connected components. Then in
these cases one can essentially argue as follows.

Assume by contradiction that P̂m(e, X) = P̂m(e, Y ) for some (e, X) in {u = 0}
and (e, Y ) in graph(γ |k\0). Since (e, X) ∈ ∂�+

m , (e, Y ) ∈ �+
m are both in �m ,

where P̂m is a local diffeomorphism, this would imply that P̂m |�+
m

is not injective,
which gives a contradiction.

Finally the case u ≤ 0 follows from α-β-equivariance of P̂m .

Let � be a complex S1-manifold. We need the following remark on limits of
local orbits for the induced local C∗-action. For details on induced local actions in
this particular situation we refer to [17].

Proposition 8.3. Let � be a complex S1-manifold and consider the induced lo-
cal C∗-action. Assume that there exist a sequence {xn} of � and an element X ∈
Lie(S1) such that exp(i X) acts on every xn and the sequences {xn}, {exp(i X) · xn}
converge to different local C∗-orbits. Then � admits no continuous plurisubhar-
monic exhaustion. In particular it is not holomorphically convex.

Proof. Assume by contradiction that a continuous, plurisubharmonic exhaustion
ϕ of � exists. After integration over S1, this function can be assumed to be S1-
invariant. Let x and y be the limit points of xn and of exp(i X) · xn . Denote by Ox
and Oy the local C∗-orbits through x and y, respectively, and choose M ∈ R such
that ϕ(x) < M and ϕ(y) < M . By assumption Ox ∩ Oy = ∅, therefore Ox is given
by {exp(λX) · x : a < Imλ < b}, with −∞ ≤ a < 0 and 0 < b < 1. Then
exp(i t X) · x → ∞ as t → b, in the sense of leaving all compact subsets of X . Thus
there exists a real b̃ with 0 < b̃ < b such that ϕ(exp(i b̃X) · x) > M . Furthermore
exp(i b̃X) · xn → exp(i b̃X) · x , thus for n large enough ϕ(exp(i b̃X) · xn) > M ,
while ϕ(xn) < M and ϕ(exp(i X) · xn) < M .

However S1-invariance and plurisubharmonicity of ϕ imply that the function
t → ϕ(exp(i t X) · xn) is convex. This gives a contradiction and concludes the
proof.
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In fact a similar argument yields the analogous result for actions of compact
Lie groups on holomorphically separable complex manifolds. The remaining cases
with m > −1 are discussed in the following theorem.

Theorem 8.4. Let G = SL2(R) endowed with a left invariant metric νm, with
m > −1. The polar map Pm |�m : �m → GC is

i) injective for −1 < m ≤ 0 and consequently �m is L-equivariantly biholomor-
phic to Pm(�m). Such domain is not holomorphically convex,

ii) not injective for m > 0 and its fibers have at most two elements. The maximal
complexification �m is a Riemann domain over GC which is neither holomor-
phically separable, nor holomorphically convex.

In both cases the envelope of holomorphy of �m is biholomorphic to GC.

Proof. From iv) of Lemma 8.1 and Proposition 6.4 it follows that Pm |�m is injective
for −1 < m ≤ 0. Assume by contradiction that Pm(�m) is Stein. Then the
analogous argument as in Theorem 7.2 shows that �(Pm(�m)) is Stein. However
one checks that [0, π

4 ]H ∈ �m (cf. proof of Lemma 8.1). Then, by G-invariance
of �m and G-equivariance of Pm , one has G exp(i[0, π

4 ]H)K C ⊂ �(Pm(�m)).
As a consequence the closure of the Akhiezer-Gindikin domain �AG is contained
in �(Pm(�m)). Since one sees that �(Pm(�m)) 
= GC/K C (cf. proof of Lemma
8.1), Lemma 5.5 implies that �(Pm(�m)) is not Stein. This gives a contradiction,
implying i).

For ii) note that by v) of Lemma 8.1 there exists an element (e, X) in �m ∩
(P̂m)−1(fixβ) with Xk 
= 0. Then by α-β-equivariance of P̂m one has P̂m(e, Xk +
Xa) = P̂m(e, −Xk+Xa), showing that P̂m |�m is not injective. Then, by Proposition
6.4 the polar map Pm |�m is not injective as well.

Since �m = (�m ∩ {u ≥ 0}) ∪ (�m ∩ {u ≤ 0}), from Corollary 8.2 and
Proposition 6.4 it follows that the fibers of Pm consist either of one point or two
points p+ and p−. In the second case, necessarily p+ ∈ L · �+

m and p− ∈ L · �−
m ,

where �−
m = α(�+

m ) = {(e, uU + aH) : u < 0, a > 0}.
Now let (e, [0, ã)H) = �m ∩a+ and note that local C∗-orbits through (e, t H)

accumulate, for t → ã, to different local C∗-orbits. Indeed this holds true for
their images in the quotient �m ∼= �/L . Such images are given by the R-orbits
through (e, t H) for which, chosen ε small enough, ({e} × exp(iεU )) · (e, t H) and
({e}×exp(−iεU )) · (e, t H) accumulate to different local R-orbits. Namely the two
connected components of �c̃ ∩ �m , with c̃ such that P̂m(e, ãH) ∈ {st = c̃} (cf. the
proof of Lemma 8.1). Then Proposition 8.3 implies that �m is not holomorphically
convex.

Assume by contradiction that �m is holomorphically separable. Then it
embeds in its envelope of holomorphy �̂m , which is a non-univalent, Stein,
L-equivariant, Riemann domain over GC. By Corollary 3.3 in [11], the induced
Stein, G-equivariant, Riemann domain q : �̂m//K →GC/K C is also non-univalent.
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However the subgroup {±(e, e)} of L acts trivially on �̂m , thus �̂m//K can be re-
garded as a G/{±e}-equivariant, Riemann domain. Then [11, Theorem 7.6] implies
that q is injective, giving a contradiction.

Finally, in view of ii) of Lemma 8.1, the last statement follows from the same
argument as in Theorem 7.2.

9. Appendix

Here we carry out the computation used in Section 4. For this note that [U, H ] =
2W , [U, W ] = −2H and [H, W ] = −2U . Thus

ad(i(umU −aH))U = [i(umU − aH), U ] = 2aiW,

ad2(i(umU −aH))U = [i(umU − aH), 2aiW ] = −4a(aU −um H),

ad3(i(umU −aH))U = [i(umU −aH), −4a(aU −um H)]=8a(u2m2 − a2)iW,

ad4(i(umU −aH))U = [i(umU − aH), 8a(u2m2 − a2)iW ]
= −16a(u2m2 − a2)(aU − um H).

Then, by recalling that Adexp = ead, one has

Adexp i(umU−aH)U = ead(i(umU−aH))U = U + 2aiW − 4a

2! (aU − um H)

+ 8a(u2m2−a2)

3! iW − 16a(u2m2−a2)

4! (aU −um H)+. . .

= U − 4a
cosh

√
x − 1

x
(aU − um H) + 2a

sinh
√

x√
x

iW

=
(

1 − 4a2 C(x) − 1

x

)
U + 4aum

C(x) − 1

x
H + 2aS(x)iW,

where x = 4u2m2 − 4a2. Similarly, for the second vector one has

ad(i(umU − aH))H = [i(umU − aH), H ] = 2umiW,

ad2(i(umU − aH))H = [i(umU − aH), 2umiW ] = −4um(aU − um H),

ad3(i(umU − aH))H = [i(umU − aH), −4um(aU − um H)]
= 8um(u2m2 − a2)iW,

ad4(i(umU − aH))H = [i(umU − aH), 8um(u2m2 − a2)iW ]
= −16um(u2m2 − a2)(aU − um H).
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Therefore

Adexp i(umU−aH)H = ead(i(umU−aH))H

= H + 2umiW − 4um

2! (aU − um H) + 8um(u2m2 − a2)

3! iW

− 16um(u2m2 − a2)

4! (aU − um H) + . . .

= H − 4um
cosh

√
x − 1

x
(aU − um H) + 2um

sinh
√

x√
x

iW

= −4aum
C(x) − 1

x
U +

(
1 + 4u2m2 C(x) − 1

x

)
H

+ 2umS(x)iW.

For the third vector one has

ad(i(umU − aH))W = [i(umU − aH), W ] = 2i(aU − um H),

ad2(i(umU − aH))W = [i(umU − aH), 2i(aU − um H)] = 4(u2m2 − a2)W,

ad3(i(umU − aH))W = [i(umU − aH), 4(u2m2 − a2)W ]

= 8(u2m2 − a2)i(aU − um H),

ad4(i(umU −aH))W = [i(umU −aH), 8(u2m2−a2)i(aU − um H)]

= 16(u2m2 − a2)2W.

Therefore

Adexp i(umU−aH)W = ead(i(umU−aH))W

= W + 2i(aU − um H) + 4(u2m2 − a2)

2! W

+ 8(u2m2 − a2)

3! i(aU − um H) + 16(u2m2 − a2)2

4! W + . . .

= 2
sinh

√
x√

x
i(aU − 2um H) + cosh

√
xW

= 2aS(x)iU − 2umS(x)i H + C(x)W.
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For the fourth vector one has

ad(−i(umU − aH))(−imU ) = [−i(umU − aH), −imU ]
= −2amW,

ad2(−i(umU − aH))(−imU ) = [−i(umU − aH), −2amW ]
= 4ami(aU − um H),

ad3(−i(umU − aH))(−imU ) = [−i(umU − aH), 4ami(aU − um H)]
= −8am(u2m2 − a2)W,

ad4(−i(umU − aH))(−imU ) = [−i(umU − aH), −8am(u2m2 − a2)W ]
= 16am(u2m2 − a2)i(aU − um H).

Therefore

∞∑
l=0

(−1)l

(l + 1)!adl(i(−umU + aH))(−imU ) + i(1 + m)U

= iU + 2am

2! W + 4am

3! i(aU − um H)

+ 8am(u2m2 − a2)

4! W + 16am(u2m2 − a2)

5! i(aU − um H) + . . .

= iU + 4am
sinh

√
x/

√
x − 1

x
i(aU − um H) + 2am

cosh
√

x − 1

x
W

=
(

1 + 4a2m
S(x) − 1

x

)
iU − 4aum2 S(x) − 1

x
i H

+ 2am
C(x) − 1

x
W.

For the fifth vector one has

ad(−i(umU − aH))i H = [−i(umU − aH), i H ] = 2umW,

ad2(−i(umU − aH))i H = [−i(umU − aH), 2umW ]
= −4umi(aU − um H),

ad3(−i(umU − aH))i H = [−i(umU − aH), −4umi(aU − um H)]
= 8um(u2m2 − a2)W,

ad4(−i(umU − aH))i H = [−i(umU − aH), 8um(u2m2 − a2)W ]
= −16um(u2m2 − a2)i(aU − um H).
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Therefore
∞∑

l=0

(−1)l

(l + 1)!adl(i(−umU + aH))(i H)

= i H − 2um

2! W − 4um

3! i(aU − um H)

− 8um(u2m2 − a2)

4! W − 16um(u2m2 − a2)

5! i(aU − um H) − . . .

= i H − 4um
sinh

√
x/

√
x − 1

x
i(um H − aU ) − 2um

cosh
√

x − 1

x
W

= −4aum
S(x) − 1

x
iU +

(
1 + 4u2m2 S(x) − 1

x

)
i H − 2um

C(x) − 1

x
W,

For the sixth vector one has

ad(−i(umU −aH))iW = [−i(umU −aH), iW ] = 2(aU − um H),

ad2(−i(umU −aH))iW = [−i(umU −aH), 2(aU −um H)]

= 4(u2m2 − a2)iW,

ad3(−i(umU −aH))iW = [−i(umU −aH), 4(u2m2 − a2)iW ]

= 8(u2m2 − a2)(aU − um H),

ad4(−i(umU −aH))iW = [−i(umU −aH), 8(u2m2 − a2)(aU − um H)]

= 16(u2m2 − a2)2iW.

Therefore
∞∑

l=0

(−1)l

(l + 1)!adl(i(−umU + aH))(iW )

= iW − 2

2! (aU − um H) + 4(u2m2 − a2)

3! iW

− 8(u2m2 − a2)

4! (aU − um H) + 16(u2m2 − a2)2

5! iW − . . .

= −2
cosh

√
x − 1

x
(aU − um H) + sinh

√
x√

x
iW

= −2a
C(x) − 1

x
U + 2um

C(x) − 1

x
H + S(x)iW.
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