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Stability estimates for certain Faber-Krahn,
isocapacitary and Cheeger inequalities

NICOLA FUSCO, FRANCESCO MAGGI AND ALDO PRATELLI

Abstract. The first eigenvalue of the p-Laplacian on an open set of given mea-
sure attains its minimum value if and only if the set is a ball. We provide a
quantitative version of this statement by an argument that can be easily adapted
to treat also certain isocapacitary and Cheeger inequalities.
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(secondary).

1. Introduction and statements

1.1. The first eigenvalue of the p-Laplacian

It was shown by Faber [11] and Krahn [21] that the first eigenvalue of the Laplacian
on a bounded open set � ⊂ R2 of given area attains its minimum value if and only
if � is a disk. The popularity of this classical result is due in part to its simple, yet
interesting, physical interpretation. Indeed, the aforementioned eigenvalue models
the principal tone, i.e. the lowest frequency of free vibration, of a membrane of
shape �. The Faber-Krahn result states that the gravest principal tone is obtained
in the case of a circular membrane, as conjectured by Lord Rayleigh back to 1877
in his treatise “The theory of sound” [29].

Regardless possible physical motivations, the above result was soon general-
ized to arbitrary dimension n ≥ 2 by Krahn [22]. Yet another extension is valid,
namely the Laplacian can be replaced by the p-Laplacian, for any p ∈ (1, ∞).
With modern tools at disposal, such as the theory of radially symmetric decreasing
rearrangements, it is rather easy to justify these results.

To be more precise, given an open set � ⊂ Rn with finite measure, the first
eigenvalue of the p-Laplacian on � can be defined via a variational problem as

λp(�) := inf

{∫
�

|∇ f |p :
∫

�

| f |p = 1 , f ∈ W 1,p
0 (�)

}
.
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The scaling law of λp is λp(r�) = r−pλp(�), r > 0. If B denotes the open
unit ball in Rn centered at the origin, and |E | denotes the Lebesgue measure of the
Borel set E ⊂ Rn , then, as an immediate consequence of the classical Pólya-Szegö
inequality, we have that

|�|p/nλp(�) ≥ |B|p/nλp(B) . (1.1)

This inequality is known as the Faber-Krahn inequality. The quantity |�|p/nλp(�)

remains constant on rescaling the domain �, and of course (1.1) implies that among
open sets of given measure, balls minimize the first eigenvalue of the p-Laplacian.
Since the unique non-negative eigenfunction on the ball is radially symmetric and
strictly decreasing, the Brothers-Ziemer Theorem [5], concerning the cases of
equality in the Pólya-Szegö inequality, immediately implies that equality holds
in (1.1) if and only if � is a ball. Summarizing, there is attainment in the varia-
tional problem

inf{|�|p/nλp(�) : � is open in Rn , with |�| < ∞} ,

and the set of minimizers consists exactly of all balls of Rn .
The first purpose of the present paper is to refine this last statement into a

quantitative estimate. In other words, we aim to prove that the difference between
the two sides of (1.1) controls the distance of � from a ball. More rigorously, we
introduce the p-Laplacian deficit of �

Dp(�) := |�|p/nλp(�)

|B|p/nλp(B)
− 1 ,

as a measure of how much � is far from realizing equality in (1.1). Next, following
the terminology of Hall-Hayman-Weitsman [17], for every Borel set E ⊂ Rn with
finite measure, we define the Fraenkel asymmetry of E as

A(E) := inf

{ |E�(x0 + r B)|
|E | : x0 ∈ R

n , rn|B| = |E |
}

.

This quantity can be seen as a natural notion of distance of E from the set of all
balls of Rn of measure |E |.

Inequality (1.1) and the characterization of its equality cases are equivalently
formulated in terms of the set functions Dp and A by stating that: Dp(�) ≥ 0 for
every open set � with finite measure, with Dp(�) = 0 if and only if A(�) = 0.
To make these statements quantitative, we are going to prove (as a corollary of
Theorem 1.1 below) the existence of a constant C(n, p), depending on n and p
only, such that

A(�) ≤ C(n, p) Dp(�)1/(2+p) , (1.2)

or, equivalently,

|�|p/nλp(�) ≥ |B|p/nλp(B)

{
1 + A(�)2+p

C(n, p)

}
.
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Therefore the stability estimate (1.2) can be formulated as a lower bound on the first
eigenvalue of the p-Laplacian of �. In a similar way, inequalities (1.12) and (1.15)
provide lower bounds on the p-capacity and the m-Cheeger constant of �.

Quantitative versions of the Faber-Krahn inequality in the spirit of (1.2) have
already been studied in the literature. In the planar case n = 2, under the assumption
that � is bounded, inequality (1.2) has been proved with the exponent 3 in place of
2 + p by Bhattacharya [3]. On assuming convexity of �, and without restrictions
on dimension n, the stability problem has been considered by Melas [25]: under the
convexity assumption, the notion of Fraenkel asymmetry is naturally replaced by a
sort of “Hausdorff asymmetry”, defined by

AH (E) := inf
{
dH (E, x0 + r B) : x0 ∈ R

n , rn|B| = |E |} .

Here dH (E, F) denotes the Hausdorff distance between two bounded sets E and F
of Rn . Further results, specific to the case p = 2, and dealing with both the Fraenkel
asymmetry and the Hausdorff asymmetry, are due to Hansen and Nadirashvili [18].
Besides these various contributions, to the best of our knowledge, an inequality
valid for arbitrary values of n and p, and on arbitrary domains �, such as (1.2), was
still missing.

1.2. Method of proof

Our approach to (1.2) develops around the classical theory of radially symmetric
decreasing rearrangements, combined with a suitable quantitative version of the
isoperimetric inequality, namely

P(E) ≥ n|B|1/n|E |(n−1)/n

{
1 + A(E)2

C(n)

}
. (1.3)

Here E is an arbitrary Borel set with 0 < |E | < ∞, and P(E) denotes the distri-

butional perimeter of E (recall that P(E) = H n−1
(∂ E) whenever the boundary

of E is at least Lipschitz regular). Inequality (1.3) has been proved on axially sym-
metric sets by Hall [16], and, in full generality, by the authors in [15]. Let us recall
that a weaker version of (1.3), with the 4-th power of the Fraenkel asymmetry in
place of its square (that in turn is the best possible exponent), was proved on arbi-
trary sets E by Hall in [16], combining his result on axially symmetric sets with a
symmetrization theorem from [17]. We also spot that many other interesting quan-
titative versions of the isoperimetric inequality are known, see [14, 26, 27].

As said, the framework in which we shall apply (1.3) is provided by the theory
of radially symmetric decreasing rearrangements. Given a Borel function f : Rn →
[0, ∞) with |{ f > t}| < ∞ for every t > 0, its radially symmetric decreasing
rearrangement f � : Rn → [0, ∞) is defined for x ∈ Rn by

f �(x) := sup{t > 0 : |{ f > t}| > |B||x |n} .
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In this way { f � > t} is a ball centered at the origin, with measure equal to |{ f > t}|.
Therefore the operation of rearrangement preserves every Lq -norm. If furthermore
∇ f ∈ L p(Rn, Rn), then ∇ f � ∈ L p(Rn, Rn) and we have the Pölya-Szegó inequal-
ity ∫

Rn
|∇ f |p ≥

∫
Rn

|∇ f �|p .

A classical proof (see [5, 30]) of this inequality is based on the Fleming-Rishel
Coarea Formula [12] and on the isoperimetric inequality, applied to the level sets of
f . As we shall see below, on replacing in this argument the standard isoperimetric
inequality by its quantitative version (1.3), one comes to prove that

∫ ∞

0
A({ f > t})2 µ(t)p/n′

|µ′(t)|p−1
dt ≤ C(n, p)

(∫
Rn

|∇ f |p −
∫

Rn
|∇ f �|p

)
, (1.4)

where µ′(t) is the classical derivative, that exists for a.e. t > 0, of the non-
increasing function µ(t) := |{ f > t}|. We will apply (1.4) to a non negative
optimal function f for the variational problem defining λp(�). By construction,∫ |∇ f |p = λp(�). Furthermore f � ∈ W 1,p

0 (B) if, say, |�| = |B|, and 1 =∫
f p = ∫

( f �)p. Therefore
∫ |∇ f �|p ≥ λp(B) and inequality (1.4) implies

∫ ∞

0
A({ f > t})2 µ(t)p/n′

|µ′(t)|p−1
dt ≤ C(n, p)Dp(�) . (1.5)

This shows that the p-Laplacian deficit controls, in a weighted form, the Fraenkel
asymmetry of the level sets of f .

In order to come to (1.2), what is missing is a link between the Fraenkel asym-
metry of � and the Fraenkel asymmetry of the level sets of the optimizer f . This
link shall be provided in the form of the following inequality, in which A(�) is
controlled in terms of the Fraenkel asymmetry of a generic level set of f , the height
of the considered level set and the p-Laplacian deficit of �. Namely, one has

A(�) ≤ C(n, p){t + A({ f > t}) + Dp(�)} . (1.6)

The proof shall then be concluded by selecting via (1.5) a height t such that A({ f >

t}), and t itself, are comparable with Dp(�).

1.3. Faber-Krahn type inequalities

The purely variational nature of our approach allows to treat, with basically the
same effort, other interesting problems. The first situation we describe is that of the
following family of Faber-Krahn type inequalities: let n ≥ 2 and p ∈ (1, ∞) be
given as above, consider a further parameter q, obeying{

1 ≤ q < p� , if 1 < p < n and p� := np/(n − p) ,

1 ≤ q < ∞ , if p ≥ n ,
(1.7)
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and define the variational problems

λp,q(�) := inf

{∫
�

|∇ f |p :
∫

�

| f |q = 1 , f ∈ W 1,p
0 (�)

}
. (1.8)

When q = p we recover the case of the first eigenvalue of the p-Laplacian, but there
are in fact other relevant cases: for example, when n = 2, λ2,1(�)−1 is proportional
to the torsional rigidity of � (see [28, page 87]).

By the Pólya-Szegö inequality, if |�| = |B| then λp,q(�) ≥ λp,q(B). This
last inequality can be set in a scale invariant form by noticing that λp,q(r�) =
r−npγ λp,q(�) for every r > 0, where

γ := 1

n
+ 1

q
− 1

p
. (1.9)

Thus we come to the Faber-Krahn type inequality

|�|pγ λp,q(�) ≥ |B|pγ λp,q(B) ,

in which equality holds if and only if � is a ball. The related notion of deficit is of
course given by

Dp,q(�) := |�|pγ λp,q(�)

|B|pγ λp,q(B)
− 1 ,

and the following theorem contains (1.2) as a particular case (i.e., q = p):

Theorem 1.1. Whenever � ⊂ Rn is an open set with finite measure, then

A(�) ≤ K (n, p, q)Dp,q(�)1/(2+p) , (1.10)

or, equivalently,

|�|pγ λp,q(�) ≥ |B|pγ λp,q(B)

{
1 + A(�)2+p

K (n, p, q)2+p

}
.

Here K (n, p, q) denotes a constant depending only on n, p and q, which is bounded
if p is bounded from above and γ is bounded from below by a strictly positive
constant.

Notice that, by the definition (1.9), saying that γ is bounded from below means
that either p > n or p ≤ n and q is “far” from p�.
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1.4. Isocapacitary inequalities

We now briefly introduce another family of inequalities that can be established in
quantitative form along the same lines outlined above. For n ≥ 2 and 1 < p < n,
define the p-capacity of an open set of finite measure � ⊂ Rn as

Capp(�) := inf

{∫
Rn

|∇ f |p : f ≥ 1� , f ∈ L p�

(Rn) , ∇ f ∈ L p(Rn, R
n)

}
.

We remark that slightly different definitions of p-capacity are commonly used,
depending on the context of interest; for example the one adopted in [23, Sec-
tion 11.15], and stemming from physical considerations, differs from the one used
in [10, Section 4.7] in view of applications to Geometric Measure Theory. The
main motivation of our choice relies in the fact that we are going to work with the
Fraenkel asymmetry of �.

Once again the Pólya-Szegö inequality implies that Capp(�) ≥ Capp(B)

whenever |�| = |B|. As Capp(r�) = rn−pCapp(�), r > 0, one comes to the
isocapacitary inequality

|�|(p/n)−1Capp(�) ≥ |B|(p/n)−1Capp(B) ,

in which equality is seen to hold if and only if � is a ball. Introducing the proper
notion of deficit

E p(�) := |�|(p/n)−1Capp(�)

|B|(p/n)−1Capp(B)
− 1 ,

we come to the corresponding quantitative isocapacitary inequality:

Theorem 1.2. Whenever � ⊂ Rn is an open set with finite measure, then

A(�) ≤ K (n, p)E p(�)1/(2+p) , (1.11)

or, equivalently,

|�|(p/n)−1Capp(�) ≥ |B|(p/n)−1Capp(B)

{
1 + A(�)2+p

K (n, p)2+p

}
. (1.12)

Here K (n, p) denotes a constant depending only on n and p, which, for any n ∈ N,
is bounded from above if p is bounded away from n.

Various stability results are known for isocapacitary inequalities. Hall, Hay-
man and Weitsman [17] have proved an analogous estimate to (1.11) in the case
p = 2, with the dimension dependent exponent n + 1 in place of 2 + p (note that
they cover also the case n = p = 2, that is left out in our approach), see also [18].
Similar results, specialized to the case of planar domains (n = 2) are found in [4].
Once again, as far as we know, inequality (1.11) covers a wide range of previously
untreated dimensions and exponents.
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1.5. Cheeger constants

Given m ∈ [1, n′) and an open set of finite measure �, we define the m-Cheeger
constant of � as

hm(�) = inf

{
P(A)

|A|1/m
: A ⊆ � is open

}
,

(since hn′(�) = n|B|1/n for every �, we do not consider the case m = n′). The
Cheeger constants are strictly related to the Faber-Krahn type variational prob-
lems (1.8), considered in the limit case p → 1+. As shown by Kawohl and Frid-
man [13],

lim
p→1+ λp,p(�) = h1(�) .

Therefore, on passing to the limit as p → 1+ in the Faber-Krahn inequality for
λp,p, one comes to a corresponding inequality for Cheeger constants,

|�|1/nh1(�) ≥ |B|1/nh1(B) . (1.13)

Note that this method of proof does not lead to a characterization of the equality
cases of (1.13). Since from the proof of Theorem 1.1 one can easily see that the
constant K (n, p, p) is bounded as p → 1+, then letting p → 1+ in (1.10) we
derive a quantitative form of (1.13), that is,

A(�)3 ≤ C(n)

(
|�|1/nh1(�)

|B|1/nh1(B)
− 1

)
.

In particular equality holds in (1.13) if and only if � is equivalent to a ball. The
same argument works for the other values of m.

Theorem 1.3. For every open set � with finite measure we have

lim
p→1+ λp,p′m/(p′−m)(�) = hm(�) . (1.14)

Moreover,

A(�)3 ≤ C(n, m)

(
|�|1/n+1/m−1hm(�)

|B|1/n+1/m−1hm(B)
− 1

)
, (1.15)

and in particular hm(�) ≥ hm(B) whenever |�| = |B|.
We conclude this introductory section by remarking that, in recent years, much

work has been done in studying the existence and the properties of the Cheeger sets,
that is, the subsets of � realizing the infimum in the definition of hm(�) (see for
instance [1, 6–8, 19, 20]). From this point of view, it is interesting to obtain bounds
from below on the Cheeger constant hm(�) for a given set � with |�| = |B|; of
course, the inequality (1.15) can be seen as a better and more precise estimate than
the well known bound hm(�) ≥ hm(B).
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2. Proofs

This section is entirely devoted to the proofs of Theorem 1.1, Theorem 1.2 and
Theorem 1.3. We carry on the proofs of the first two results at the same time, to
stress the fact that the underlying argument is basically the same, while the proof
of Theorem 1.3 is presented separately. In the following � shall always denote an
open set with finite measure in Rn , n ≥ 2. The parameters p and q are fixed so
that 1 < p < ∞ and q satisfies (1.7) when dealing with Theorem 1.1, while we
ask 1 < p < n when proving Theorem 1.2. In the proofs of Theorems 1.1 and 1.2
several constants will appear, which have been numbered so to help the reader to
keep trace of them. Notice that all these constants are bounded whenever p and q
are in the range stated in Theorems 1.1 and 1.2.

Step one. We show that for every open set � with finite measure there exists a non
negative minimizer in the variational problems defining λp,q(�) and Capp(�).

The Faber-Krahn case. Let { fh}h∈N be a minimizing sequence for λp,q(�), i.e.

fh ∈ W 1,p
0 (�),

∫
�

| fh |q = 1 and
∫
�

|∇ fh |p → λp,q(�). A straightforward ap-
plication of the Direct Method suffices to prove the existence of a minimizer, once
we show that the sequence { fh}h is compact in Lq . To this end, thanks to the uni-
form bound on the L p norms of the gradients and to the restrictions on p and q set
in (1.7), it will suffice to show that no Lq -mass is concentrated by { fh}h at infinity,
i.e. that for every ε > 0 there exists R > 0 such that

sup
h∈N

‖ fh‖Lq (Rn\RB) ≤ ε .

When 1 < p < n we just note that

‖ fh‖Lq (Rn\RB) ≤ ‖ fh‖L p�
(Rn\R B)|� \ R B|1/q−1/p�

,

so that, by the Sobolev inequality,

sup
h→∞

‖ fh‖Lq (Rn\R B) ≤ C(n, p)|� \ R B|1/q−1/p�

,

The assertion follows since |�| < ∞. The case p ≥ n is, of course, treated
similarly. Once a minimizer f is shown to exist, | f | is a non negative minimizer.

The isocapacitary case. Let { fh}h∈N be a minimizing sequence for Capp(�), so that

fh ≥ 1�, fh ∈ L p�
(Rn) and

∫
Rn |∇ fh |p → Capp(�). Without loss of generality

we may assume that fh converges weakly in L p�
(Rn) to a function f ∈ L p�

(Rn),
with ∇ f ∈ L p(Rn, Rn) and, in fact,

∫
Rn |∇ f |p ≤ Capp(�). The convex constraint

fh ≥ 1� is stable under weak convergence, therefore f ≥ 1�. Thus f is optimal
in Capp(�).

Step two. First, in the proof of Theorems 1.1 and 1.2, it can be assumed that |�| =
|B|. Indeed, writing for simplicity δ(�) to denote Dp,q(�) or E p(�) depending
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whether we are in the Faber-Krahn or in the isocapacitary case, � �→ A(�) and
� �→ δ(�) are both scaling invariant set functions.

Second, if for a certain δ > 0 there exists an exponent β and a constant C(δ)

such that

A(�) ≤ C(δ)δ(�)β , whenever δ(�) < δ, (2.1)

then, on arbitrary sets �, we have

A(�) ≤ max

{
C(δ),

2

δβ

}
δ(�)β .

Indeed assume (2.1) has been proved, and consider � such that δ(�) ≥ δ. Then, as
A(�) is always bounded by 2, we find A(�) ≤ 2 ≤ (2/δβ)δ(�)β .

In view of these two remarks, in the following we shall always assume that
|�| = |B|, and that Dp,q(�) and E p(�) are bounded by a certain parameter δ on
which restrictions shall be imposed in the course of the proof.

Step three. We come now to derive estimates of the form (1.6). Let f be a non
negative optimal function for λp,q(�) or Capp(�), depending on the context. We
have to separate once again the exposition depending if we work with λp,q or with
Capp, because in the first case the level sets { f > t} that are supposed to be close to
� are those for t close to 0, in the second case are those with t close to 1 (the differ-
ence between the two cases is actually more substantial: in the first case the relevant
level sets are contained in �, while in the second one they contain � instead).

The Faber-Krahn case. We show that for every t > 0 and a suitable K1(n, p, q) to
be specified later, we have

A(�) ≤ K1(n, p, q)
(

t + Dp,q(�) + A({ f > t})
)

, ∀t > 0 , (2.2)

with the convention that A(∅) := 0. The inequality is trivial for t ≥ |B|−1/q pro-
vided K1(n, p, q) ≥ 2|B|1/q . Indeed in this case A(�)≤2≤ K1(n, p, q)|B|−1/q ≤
K1(n, p, q)t . Notice that the inequality K1(n, p, q) ≥ 2|B|1/q is in turn ensured as
soon as

K1(n, p, q) ≥ K2 := 2 max{ωn , n ∈ N} < +∞ ,

denoting by ωn the volume of n−dimensional unit ball. Notice that K2 is indepen-
dent of n, p and q.

We are then left to consider the case 0 < t < |B|−1/q , in which { f > t} is non
empty, as the norm constraint ‖ f ‖Lq (�) = 1 implies ‖ f ‖L∞(�) ≥ |B|−1/q .

Let x0 ∈ Rn . Of course we have

|B|A(�) ≤ |��(x0 + B)| = 2|(x0 + B) \ �|
≤ 2|(x0 + B) \ { f > t}|
≤ 2|[x0 + (B ∩ { f � ≤ t})] \ { f > t}| + 2|(x0 + { f � > t}) \ { f > t}|
≤ 2

(
|B ∩ { f � ≤ t}| + |(x0 + { f � > t})�{ f > t}|

)
.



60 NICOLA FUSCO, FRANCESCO MAGGI AND ALDO PRATELLI

As x0 + { f � > t} is a ball with the same measure as { f > t}, an optimization over
x0 leads to

A(�) ≤ K3(n)
(
|B ∩ { f � ≤ t}| + A({ f > t})

)
, (2.3)

where

K3(n) = 2 max

{
1

ωn
, 1

}
.

In order to prove (2.2), we will first show that

|B ∩ { f � ≤ t}| ≤ K4(n, p, q){t + Dp,q(�)} ∀t ∈ (0, |B|−1/q) . (2.4)

This is done as follows. Consider the comparison function ft , defined by

ft (x) := max{ f �(x) − t, 0} ,

and let r > 0 be such that { ft > 0} = { f � > t} = (1 − r)B. Since ft ∈
W 1,p

0 ((1 − r)B),

λp,q(B)

(1 − r)nγ p
= λp,q((1 − r)B) ≤

∫
(1−r)B |∇ ft |p(∫
(1−r)B | ft |q

)p/q ≤
∫

B |∇ f �|p(∫
(1−r)B | ft |q

)p/q

≤
∫
�

|∇ f |p(∫
(1−r)B | ft |q

)p/q = λp,q(B)(1 + Dp,q(�))(∫
(1−r)B( f � − t)q

)p/q ,

i.e. (∫
(1−r)B

( f � − t)q
)1/q

≤ (1 − r)nγ (1 + Dp,q(�))1/p . (2.5)

As (1 − r)nγ ≤ 1 − min{nγ, 1}r , we have

(1 − r)nγ (1 + Dp,q(�))1/p≤
(

1 − min{1, nγ }r
) (

1 + Dp,q(�)

p

)

≤1 + Dp,q(�)

p
− min{1, nγ } r .

(2.6)

On the other hand, by triangular inequality and also keeping in mind that t <

|B|−1/q ,(∫
(1−r)B

( f � − t)q
)1/q

≥
(∫

(1−r)B
( f �)q

)1/q

− t |(1 − r)B|1/q

≥
(∫

B
( f �)q −

∫
B\(1−r)B

( f �)q
)1/q

− t |B|1/q

≥ (
1 − tq |B|)1/q − t |B|1/q ≥ 1 − tq |B| − t |B|1/q

≥ 1 − 2t |B|1/q .

(2.7)



STABILITY ESTIMATES FOR CERTAIN INEQUALITIES 61

From (2.5), (2.6) and (2.7) we deduce

r ≤ 1

min{1, nγ }
(

1

p
Dp,q(�) + 2|B|1/q t

)
≤ K2

min{1, nγ }
(
Dp,q(�) + t

)
.

Since |B ∩ { f � ≤ t}| = (1 − (1 − r)n)|B| ≤ n|B|r , then (2.4) follows with

K4(n, p, q) := n|B|K2

min{1, nγ } .

From (2.3) and (2.4) we derive that the searched inequality (2.2) is true for

K1(n, p, q) ≥ max
{

K3(n) max
{

K4(n, p, q), 1
}
, K2

}
,

which in turn is ensured for

K1(n, p, q) := c(n)

min{1, nγ }
for a suitable constant c(n).

The isocapacitary case. The optimal function f for Capp(�) satisfies of course
0 ≤ f ≤ 1 on Rn . Let us show that, provided E p(�) ≤ 1, then, for every t ∈
(1/2, 1),

A(�) ≤ K5(n, p)
(
(1 − t) + E p(�) + A({ f > t})

)
(2.8)

for a constant K5(n, p) to be found.
Let x0 ∈ Rn . Then,

|B|A(�) ≤ 2|� \ (x0 + B)| ≤ 2|{ f > t} \ (x0 + B)|
≤ 2|{ f > t} \ (x0 + { f � > t})| + 2|{ f � > t} \ B| .

A minimization over x0 leads to

A(�) ≤ 2

|B|
{
|{ f > t}|A({ f > t}) + |{ f � > t} \ B|

}
. (2.9)

Note that we cannot argue as in the Faber-Krahn case since in the present case we do
not have the trivial bound |{ f > t}| ≤ |B|. Note also that the role of |B ∩{ f � ≤ t}|
is now played by |{ f � > t} \ B|. We claim the following estimate for this last
quantity:

|{ f � > t} \ B| ≤ K6(n, p){(1 − t) + E p(�)} . (2.10)

The proper comparison function used in this case is given by

ft (x) := min{1, f �(x)/t} .
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If r > 0 is such that { f � > t} = (1 + r)B, then ft ≥ 1(1+r)B , with ft ∈ L p�
(Rn)

and ∇ ft ∈ L p(Rn, Rn). Therefore, by the scaling law of the p-capacity

(1 + r)n−p Capp(B) = Capp((1 + r)B) ≤
∫

Rn
|∇ ft |p

≤ 1

t p

∫
Rn

|∇ f �|p ≤ 1

t p

∫
Rn

|∇ f |p

= Capp(B)(1 + E p(�))

t p
,

i.e.

1 + r ≤ (1 + E p(�))1/(n−p)

(1 − (1 − t))p/(n−p)
.

Let us recall that E p(�) ≤ 1 and that 0 < s := (1 − t) < 1/2. By the elementary
inequalities

(1 + E)1/(n−p) ≤ 1 + max{1, 2−1+1/(n−p)}
n − p

E ,

1

(1 − s)p/(n−p)
≤ 1 + p 2n/(n−p)

n − p
s ,

∀ E ∈ (0, 1) ,

∀ s ∈
(

0,
1

2

)
,

(2.11)

we eventually deduce

r ≤ K7(n, p){(1 − t) + E p(�)} , (2.12)

where K7(n, p) is immediately found by (2.11) and it is bounded, for any given
n ∈ N, if p is bounded away from n. By (2.12) we know that r ≤ 2K7(n, p), and
then

|{ f � > t} \ B| = ((1 + r)n − 1)|B| ≤ K8(n, p)r .

From this estimate and (2.12) we obtain the validity of (2.10) with

K6(n, p) = K7(n, p)K8(n, p) .

By (2.10), one has

|{ f > t}| = |{ f � > t}| ≤ |B| + K6(n, p){(1 − t) + E p(�)}
≤ (|B| + K6(n, p)

){1 + E p(�)} ≤ 2
(|B| + K6(n, p)

)
.

Plugging this estimate and (2.10) into (2.9) we finally obtain the validity of (2.8)
with

K5(n, p) := 2

|B|
(
2|B| + K6(n, p)

)
,

a constant which, for any n ∈ N, is bounded if p is bounded away from n.
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Remark 2.1. Note that (2.4) when applied to � = B provides a simple estimate on
how fB , the optimal function for λp,q(B), detaches from the zero boundary value.
In a similar way (2.10), when � = B, contains a non trivial information on the
t-level sets of the optimal function for Capp(B) for t close to 1.

Step four. Let f be a non negative optimal function for λp,q(�) or Capp(�),
respectively. We aim to show that

∫ ∞

0
A({ f > t})2 µ(t)p/n′

|µ′(t)|p−1
dt ≤ C(n, p) δ(�) , (2.13)

where µ(t) := |{ f > t}| and for a suitable C(n, p) to be found later.
As explained in the introduction, this is obtained by combining the Coarea

Formula with the quantitative isoperimetric inequality. Let µ(t) := |{ f > t}|,
t > 0, then µ is a non-increasing function of t . It is shown by the Coarea Formula
(see [5, 9]) that the absolutely continuous part of the distributional derivative of µ

has a (non positive) density µ′(t) satisfying

−µ′(t)=
∫

{ f �=t}
dH n−1

|∇ f �| ≥
∫

{ f =t}
dH n−1

|∇ f | , for a.e. t ∈ (0, ‖ f ‖L∞(�)). (2.14)

Again by the Coarea Formula and the Hölder inequality we have∫
Rn

|∇ f |p =
∫ ∞

0
dt

∫
{ f =t}

|∇ f |p−1 dH n−1

≥
∫ ∞

0

P({ f > t})p(∫
{ f =t} |∇ f |−1 dH n−1

)p−1
dt

≥
∫ ∞

0

P({ f > t})p

|µ′(t)|p−1
dt .

(2.15)

Replacing f with f �, one sees that equality holds both in (2.14) and in (2.15) (as
|∇ f �| is constant on each { f � = t}). Therefore∫

Rn
|∇ f �|p =

∫ ∞

0

P({ f � > t})p

|µ′(t)|p−1
dt . (2.16)

Since { f � > t} is a ball with the same volume as { f > t}, it follows from (2.15),
(2.16) and the isoperimetric inequality that

∫ |∇ f |p ≥ ∫ |∇ f �|p. On applying
instead the quantitative isoperimetric inequality (1.3), we find

∫
Rn

|∇ f |p−
∫

Rn
|∇ f �|p ≥ p

C(n)

∫ ∞

0
A({ f > t})2

(
n|B|1/nµ(t)(n−1)/n

)p

|µ′(t)|p−1
dt (2.17)
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where the elementary inequality a p − bp ≥ p(a − b)bp−1, a ≥ b ≥ 0, has also
been used. By definition one has∫

Rn
|∇ f |p −

∫
Rn

|∇ f �|p ≤ λp,q(�) − λp,q(B) = Dp,q(�)λp,q(B) ,∫
Rn

|∇ f |p −
∫

Rn
|∇ f �|p ≤ Capp(�) − Capp(B) = E p(�)Capp(B) ,

depending on which of the two theorems we are proving. By considering a given
smooth function f : B → [0, 1] such that |{ f = 1}| > 0, it is immediate to deduce
that

λp,q(B) ≤ C1(n, p) ,

where, given n ∈ N, C1(n, p) is bounded if p is bounded. On the other hand, it is
easy to remark that Capp(B) ≤ C2 for all 1 < p < n and for all n ≥ 2. From these
considerations and (2.17) we immediately obtain (2.13) with

C(n, p) = C(n)C1(n, p)

pn p|B|p/n

for the Faber–Krahn case, and

C(n, p) = C(n)C2

pn p|B|p/n

for the isocapacitary case. Notice that, given n ∈ N, in Faber–Krahn case the
constant C(n, p) is bounded for p bounded, while in the isocapacitary case C(n, p)

is always bounded.

We are now in the position to conclude the proof of our theorems.

Proof of Theorem 1.1. Without loss of generality we may assume that |�| = |B|
and that Dp,q(�) < δ for δ < 1 to be fixed later. We denote by f a non negative
optimal function for λp,q(�). From (2.4), if 0 < t < |B|−1/q ,

µ(t) = |{ f > t}| = |B| − |B ∩ { f � ≤ t}| ≥ |B| − K4(n, p, q){t + Dp,q(�)} .

Setting

t0 := min
{
|B|−1/q ,

|B|
4K4(n, p, q)

}
, δ ≤ |B|

4K4(n, p, q)
, (2.18)

we have

µ(t) ≥ |B|
2

, ∀t ∈ (0, t0) .
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If we plug this into (2.13) we find

∫ t0

0

A({ f > t})2

|µ′(t)|p−1
dt ≤ C3(n, p)Dp,q(�) , (2.19)

with

C3(n, p) := 2p/n′

|B|p/n′ C(n, p) .

Let us now introduce two parameters σ > 0 and α > 0, and define

I1 :=
{

t ∈ (0, t0) : A({ f > t})2

|µ′(t)|p−1
≥ σ

}
, I2 := {t ∈ (0, t0) : |µ′(t)| ≥ σ−α} .

Thanks to (2.19) we have H 1
(I1) ≤ C3(n, p)Dp,q(�)/σ , and moreover

H 1
(I2) ≤

∫
I2

|µ′(t)|σαdt ≤ |B|σα ;

hence, the set I := I1 ∪ I2 satisfies

H 1
(I ) ≤ C4(n, p)

{
Dp,q(�)

σ
+ σα

}
,

with
C4(n, p) = max{C3(n, p), |B|} .

This suggests to chose σ = Dp,q(�)1/(1+α), and correspondingly

H 1
(I ) ≤ 2C4(n, p) Dp,q(�)α/(1+α) .

This last estimate tell us that, if δ is small enough depending on n, p, q and α, then

(0, t0) ∩ (0, 3C4(n, p)Dp,q(�)α/(1+α)) \ I is non empty.

More precisely, this happens if we choose

δ := min

{( t0
2C4(n, p)

)(1+α)/α

,
|B|

4K4(n, p, q)
, 1

}
. (2.20)

Furthermore, as t does not belong to I , the Fraenkel asymmetry of A({ f > t}) is
controlled by the deficit too, more precisely

A({ f > t})2 ≤ σ |µ′(t)|p−1 ≤ σ 1−α(p−1) = Dp,q(�)(1−α(p−1))/(1+α) .
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On applying (2.2) with such an height t we find that

A(�) ≤ K1(n, p, q)

(
3C4(n, p)Dp,q(�)α/(1+α) + Dp,q(�)

+ Dp,q(�)(1−α(p−1))/2(1+α)
)

.

In conclusion, provided α = 1/(1 + p) and Dp,q(�) < δ, we have

A(�) ≤ K9(n, p, q)Dp,q(�)1/(2+p)

with K9(n, p, q) given by

K9(n, p, q) = K1(n, p, q)
(
3C4(n, p) + 2

)
.

As explained in step two, this concludes the proof of (1.10) with

K (n, p, q) = max

{
K9(n, p, q),

2

δ1/(2+p)

}
.

To conclude the proof of Theorem 1.1, we only have to check that this constant p
is bounded whenever p is bounded from above and γ is bounded from below by a
strictly positive constant. Concerning K9(n, p, q), this property has been already
pointed out during the proof. We have then to exclude that δ1/(2+p) → 0, which
in turn may happen only if δ → 0. Recalling (2.20) and (2.18), we obtain that
δ is bounded from above for p and γ bounded because in this range the constants
K4(n, p, q) and C(n, p) are bounded from above. The proof is then concluded.

Proof of Theorem 1.2. Without loss of generality we can assume that |�| = |B|
and that E p(�) ≤ δ < 1/2. Let f be a non negative optimal function in Capp(�),
so that 0 ≤ f ≤ 1. As |{ f > t}| ≥ |B| for every t ∈ (0, 1), from (2.13) we find∫ 1

1/2

A({ f > t})2

|µ′(t)|p−1
dt ≤ C(n, p)

|B|p/n′ E p(�) .

Let σ > 0 and α > 0 be two parameters to be chosen later, and let

I1 :=
{

t ∈ (1/2, 1) : A({ f > t})2

|µ′(t)|p−1
≥ σ

}
, I2 := {t ∈ (1/2, 1) : |µ′(t)| ≥ σ−α} .

Evidently

H 1
(I1) ≤ C(n, p)E p(�)

|B|p/n′
σ

.

On the other hand, thanks to (2.10)∫ 1

1/2
|µ′(t)|dt = |{ f � > 1/2} \ B| ≤ K6(n, p) ,
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so that H 1
(I2) ≤ K6(n, p)σα . On putting things together,

H 1
(I1 ∪ I2) ≤ K10(n, p)E p(�)α/(1+α) ,

having defined

σ := E p(�)1/(1+α) , K10(n, p) := C(n, p)

|B|p/n′ + K6(n, p) .

Let I := I1 ∪ I2. If δ is small enough, then the set[(
1

2
, 1

)
∩

(
1 − 2K10(n, p)E p(�)α/(1+α), 1

)]
\ I

is not empty. More precisely, this happens if we set

δ := min

{(
1

2K10(n, p)

)(1+α)/α

,
1

2

}
.

To conclude, having set α = 1/(1 + p), it suffices to consider a t belonging to the
set above and to apply (2.8) in order to prove (1.11) with the constant

K5(n, p)
(
2K10(n, p) + 2

)
and under the additional assumption that E p(�) < δ. Once again, as explained in
step two, this implies (1.11) in its full generality, where the final constant is

K (n, p) := max

{
K5(n, p)

(
2K10(n, p) + 2

)
,

2

δ1/(2+p)

}
.

Also in this case, it is easy to check that the constant K (n, p) is bounded whenever
p is bounded away from n.

We eventually prove Theorem 1.3.

Proof of Theorem 1.3. By the boundedness property of the constant K (n, p, q) ap-
pearing in (1.10), we know that

lim sup
p→1+

K

(
n, p,

mp′

p′ − m

)
= C(n, m) ,

as mp′/(p′ − m) → m < n′ = 1� when p → 1+. Therefore in order to prove the
theorem it is sufficient to prove (1.14).

We start by showing, in the spirit of the argument in [13], that

lim sup
p→1+

λp,q(p)(�) ≤ hm(�) , (2.21)
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whenever limp→1+ q(p) = m. Indeed, let A be an open set compactly contained in
�. If ρ ∈ C∞

c (B), with 0 ≤ ρ ≤ 1 and
∫

B ρ = 1, and ρε(z) := ε−nρ(z/ε), then
the convolution product fε = (1A ∗ ρε) is such that fε → 1A in Lm(Rn) and

ω(ε) =
∣∣∣∣
∫

Rn
|∇ fε(x)|dx − P(A)

∣∣∣∣ → 0 ,

as ε → 0. For every ε > 0 we have |∇ fε| ≤ C(ρ)/ε, moreover fε ∈ C∞
c (�) as

soon as ε ≤ ε(A, �). We deduce that

P(A)

|A|1/m
≥

∫
Rn |∇ fε| − ω(ε)

|A|1/m

≥
(

ε

C(ρ)

)p−1 ∫
Rn |∇ fε|p

|A|1/m
− ω(ε)

|A|1/m

≥
(

ε

C(ρ)

)p−1

λp,q(p)(�)

(∫
Rn | fε|q(p)

)p/q(p)

|A|1/m
− ω(ε)

|A|1/m
.

We first pass to the limit p → 1+, and then let ε → 0. Since A was taken to be an
arbitrary open set well contained in �, we have proved (2.21).

We now show that

λp,mp′/(p′−m)(�) ≥
(

p′ − m

p′ hm(�)

)p

, (2.22)

whenever p < n. Note that (1.14) follows at once from (2.21) and (2.22). We pass
to prove (2.22). By the Coarea Formula, whenever g ∈ C∞

c (�), g ≥ 0, we have

∫
Rn

|∇g| =
∫ ∞

0
P({g > t})dt ≥ hm(�)

∫ ∞

0
|{g > t}|1/mdt ,

as the level sets of g are open and compactly contained in �. Notice that, by Fubini
and Hölder inequality,

∫
�

g(x)m dx =
∫ +∞

0

( ∫
{g>t}

g(x)m−1 dx

)
dt

≤
∫ +∞

0

( ∫
{g>t}

g(x)m dx

)(m−1)/m∣∣{g > t}∣∣1/m
dt

≤ ‖g‖m−1
Lm(�)

∫ +∞

0

∣∣{g > t}∣∣1/m
dt ,
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so that ∫ +∞

0

∣∣{g > t}∣∣1/m
dt ≥ ‖g‖Lm(�) .

Hence we deduce by density that for every g ∈ W 1,1
0 (�), g ≥ 0, it is

∫
Rn

|∇g| ≥ hm(�)‖g‖Lm(�) .

We apply this inequality to g = | f |τ , for τ > 1 to be chosen properly and a generic
f ∈ W1,p

0 , and find

hm(�)

(∫
Rn

| f |mτ

)1/m

≤ τ

∫
Rn

| f |τ−1|∇ f |

≤ τ‖∇ f ‖L p(Rn)

(∫
Rn

| f |p′(τ−1)

)1/p′

.

(2.23)

We ask p′(τ − 1) = mτ , therefore finding

τ = p′

p′ − m
,

(note that, with this choice of τ we certainly have g ∈ W 1,1
0 (�) since m < n′).

Then, (2.23) reads as

hm(�) ≤ p′

p′ − m

‖∇ f ‖L p(Rn)(∫
Rn | f |mp′/(p′−m)

)(p′−m)/mp′ ,

and thus (2.22) follows and the proof of Theorem 1.3 is achieved.
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