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Approximation of complex algebraic numbers
by algebraic numbers of bounded degree

YANN BUGEAUD AND JAN-HENDRIK EVERTSE

Abstract. To measure how well a given complex number ξ can be approximated
by algebraic numbers of degree at most n one may use the quantities wn(ξ) and
w∗

n(ξ) introduced by Mahler and Koksma, respectively. The values of wn(ξ) and
w∗

n(ξ) have been computed for real algebraic numbers ξ , but up to now not for
complex, non-real algebraic numbers ξ . In this paper we compute wn(ξ), w∗

n(ξ)
for all positive integers n and algebraic numbers ξ ∈ C \ R, except for those pairs
(n, ξ) such that n is even, n ≥ 6 and n + 3 ≤ deg ξ ≤ 2n − 2. It is known that
every real algebraic number of degree > n has the same values for wn and w∗

n as
almost every real number. Our results imply that for every positive even integer
n there are complex algebraic numbers ξ of degree > n which are unusually well
approximable by algebraic numbers of degree at most n, i.e., have larger values
for wn and w∗

n than almost all complex numbers. We consider also the approxi-
mation of complex non-real algebraic numbers ξ by algebraic integers, and show
that if ξ is unusually well approximable by algebraic numbers of degree at most
n then it is unusually badly approximable by algebraic integers of degree at most
n + 1. By means of Schmidt’s Subspace Theorem we reduce the approximation
problem to compute wn(ξ), w∗

n(ξ) to an algebraic problem which is trivial if ξ is
real but much harder if ξ is not real. We give a partial solution to this problem.

Mathematics Subject Classification (2000): 11J68.

1. Introduction

Conjecturally, most of the properties shared by almost all numbers (throughout the
present paper, ‘almost all’ always refers to the Lebesgue measure) should be either
trivially false for the algebraic numbers, or satisfied by the algebraic numbers. Thus,
the sequence of partial quotients of every real, irrational algebraic number of degree
at least 3 is expected to be unbounded, and the digit 2 should occur infinitely often in
the decimal expansion of every real, irrational algebraic number. Our very limited
knowledge on these two problems show that they are far from being solved.

In Diophantine approximation, the situation is better understood. For instance,
for ξ ∈R, denote by λ(ξ) the supremum of all λ such that the inequality |ξ − p/q| ≤
Received August 27, 2007; accepted in revised form September 11, 2008.
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max{|p|, |q|}−λ has infinitely many solutions in rational numbers p/q where p, q ∈
Z, q �= 0. Then for almost all real numbers ξ we have λ(ξ) = 2, while by Roth’s
theorem [15], we have also λ(ξ) = 2 for every real, algebraic, irrational number ξ .

More generally, the quality of the approximation of a complex number ξ by
algebraic numbers of degree at most n can be measured by means of the exponents
wn(ξ) and w∗

n(ξ) introduced by Mahler [14] in 1932 and by Koksma [13] in 1939,
respectively, which are defined as follows:

• wn(ξ) denotes the supremum of those real numbers w for which the inequality

0 < |P(ξ)| ≤ H(P)−w

is satisfied by infinitely many polynomials P ∈ Z[X ] of degree at most n;
• w∗

n(ξ) denotes the supremum of those real numbers w∗ for which the inequality

0 < |ξ − α| ≤ H(α)−w∗−1

is satisfied by infinitely many algebraic numbers α of degree at most n.

Here, the height H(P) of a polynomial P ∈ Z[X ] is defined to be the maximum of
the absolute values of its coefficients, and the height H(α) of an algebraic number
α is defined to be the height of its minimal polynomial (by definition with coprime
integer coefficients). The reader is directed to [2] for an overview of the known
results on the functions wn and w∗

n .
For every complex number ξ and every integer n ≥ 1 one has w∗

n(ξ) ≤ wn(ξ),
but for every n ≥ 2, there are complex numbers ξ for which the inequality is strict.
Sprindžuk (see his monograph [24]) established in 1965 that for every integer n ≥
1, we have wn(ξ) = w∗

n(ξ) = n for almost all real numbers ξ (with respect to the
Lebesgue measure on R), while wn(ξ) = w∗

n(ξ) = n−1
2 for almost all complex

numbers (with respect to the Lebesgue measure on C).
Schmidt [20] confirmed that with respect to approximation by algebraic num-

bers of degree at most n, real algebraic numbers of degree larger than n behave like
almost all real numbers. Precisely, for every real algebraic number ξ of degree d ,
we have

wn(ξ) = w∗
n(ξ) = min{d − 1, n} (1.1)

for every integer n ≥ 1. The d − 1 in the right-hand side of (1.1) is an immediate
consequence of the Liouville inequality. A comparison with Sprindžuk’s result
gives that if ξ is a real algebraic number of degree > n then wn(ξ) = wn(η) for
almost all η ∈ R, that is, real algebraic numbers of degree > n are equally well
approximable by algebraic numbers of degree at most n as almost all real numbers.
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In this paper we consider the problem to compute wn(ξ) and w∗
n(ξ) for com-

plex, non-real algebraic numbers ξ . It follows again from the Liouville inequality
that for complex, non-real algebraic numbers ξ of degree d ≤ n one has wn(ξ) =
w∗

n(ξ) = (d − 2)/2, but there is no literature about the case where ξ has degree
d > n. This case is treated in the present paper.

Our results may be summarized as follows. Let ξ be a complex, non-real
algebraic number of degree larger than n. Then if n is odd, we have wn(ξ) =
w∗

n(ξ) = n−1
2 , while if n is even we have wn(ξ) = w∗

n(ξ) ∈ { n−1
2 , n

2 }. Further, for
every even n both cases may occur. In fact, we are able to decide for every positive
even integer n and every complex algebraic number ξ whether wn(ξ) = w∗

n(ξ) =
n−1

2 or n
2 , except when n ≥ 6, n + 2 < deg ξ ≤ 2n − 2, [Q(ξ) : Q(ξ) ∩ R] = 2,

and 1, ξ + ξ, ξ · ξ are linearly independent over Q.
A comparison with Sprindžuk’s result for complex numbers mentioned above

gives that for every even integer n ≥ 2 there are complex algebraic numbers ξ of
degree > n such that wn(ξ) > wn(η) for almost all complex numbers η. So an
important consequence of our results is that in contrast to the real case, for every
even integer n ≥ 2 there are complex algebraic numbers ξ of degree larger than n
that are better approximable by algebraic numbers of degree at most n than almost
all complex numbers.

We also study how well complex algebraic numbers can be approximated by
algebraic integers of bounded degree, and our results support the expectation that
complex algebraic numbers which are unusually well approximable by algebraic
numbers of degree at most n, are unusually badly approximable by algebraic inte-
gers of degree at most n + 1.

We define quantities w̃n(ξ), w̃∗
n(ξ) analogously to wn(ξ), w∗

n(ξ), except that
now the approximation is with respect to monic polynomials in Z[X ] of degree at
most n + 1 and complex algebraic integers of degree at most n + 1, instead of
polynomials in Z[X ] of degree at most n and complex algebraic numbers of degree
at most n. We prove that if ξ is a complex algebraic number of degree larger than
n, then w̃n(ξ) = w̃∗

n(ξ) = n−1
2 if wn(ξ) = n−1

2 , while w̃n(ξ) = w̃∗
n(ξ) = n−2

2 if
wn(ξ) = n

2 .
Similarly to the case that the number ξ is real algebraic, in our proofs we

apply Schmidt’s Subspace Theorem and techniques from the geometry of numbers.
In this way, we reduce our approximation problem to a purely algebraic problem
which does not occur in the real case and which leads to additional difficulties.

ACKNOWLEDGEMENTS. We are pleased to thank Noriko Hirata-Kohno, Corentin
Pontreau and Damien Roy for helpful discussions. The research leading to this
paper started with a discussion by both authors at the Erwin Schroedinger Insti-
tut in April 2006, in the frame of a research program on Diophantine approxima-
tion and heights organized by David Masser, Hans Peter Schlickewei and Wolfgang
Schmidt.
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2. Main results

The exponents wn and w∗
n defined in the Introduction measure the quality of al-

gebraic approximation, but do not give any information regarding the number, or
the density, of very good approximations. This led the authors of [3] to introduce
exponents of uniform Diophantine approximation. For a complex number ξ and
an integer n ≥ 1, we denote by ŵn(ξ) the supremum of those real numbers w for
which, for every sufficiently large integer H , the inequality

0 < |P(ξ)| ≤ H−w

is satisfied by an integer polynomial P of degree at most n and height at most H .
Khintchine [12] proved that ŵ1(ξ) = 1 for all irrational real numbers ξ . Quite

unexpectedly, there are real numbers ξ with ŵ2(ξ) > 2. This was established very

recently by Roy [16, 17] (in fact with ŵ2(ξ) = 3+√
5

2 ). However, it is still open
whether there exist an integer n ≥ 3 and a real number ξ such that ŵn(ξ) > n.

Our results show that the three functions wn , w∗
n and ŵn coincide on the set of

complex algebraic numbers. Our first result is as follows.

Theorem 2.1. Let n be a positive integer, and ξ a complex, non-real algebraic
number of degree d. Then

wn(ξ) = w∗
n(ξ) = ŵn(ξ) = d − 2

2
if d ≤ n + 1, (2.1)

wn(ξ) = w∗
n(ξ) = ŵn(ξ) = n − 1

2
if d ≥ n + 2 and n is odd, (2.2)

wn(ξ) = w∗
n(ξ) = ŵn(ξ) ∈

{
n − 1

2
,

n

2

}
if d ≥ n + 2 and n is even. (2.3)

Thus, Theorem 2.1 settles completely the case when n is odd. Henceforth we as-
sume that n is even. In Theorem 2.2 we give some cases where wn(ξ) = n/2 and
in Theorem 2.3 some cases where wn(ξ) = n−1

2 . Unfortunately, we have not been
able to compute wn(ξ) in all cases. We denote by α the complex conjugate of a
complex number α.

Theorem 2.2. Let n be an even positive integer and ξ a complex, non-real alge-
braic number of degree ≥ n + 2. Then wn(ξ) = w∗

n(ξ) = ŵn(ξ) = n
2 in each of the

following two cases:
(i) 1, ξ + ξ and ξ · ξ are linearly dependent over Q;

(ii) deg ξ = n + 2 and [Q(ξ) : Q(ξ) ∩ R] = 2.

One particular special case of (i) is when ξ = √−α for some positive real algebraic
number α of degree ≥ n

2 + 1. Then ξ + ξ = 0 and so wn(ξ) = w∗
n(ξ) = ŵn(ξ) =

n/2.
We do not know whether Theorem 2.2 covers all cases where wn(ξ) = n

2 . We
now give some cases where wn(ξ) = n−1

2 .
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Theorem 2.3. Let again n be an even positive integer and ξ a complex, non-real
algebraic number of degree ≥ n + 2. Then wn(ξ) = w∗

n(ξ) = ŵn(ξ) = n−1
2 in

each of the following two cases:

(i) [Q(ξ) : Q(ξ) ∩ R] ≥ 3;
(ii) deg ξ > 2n − 2 and 1, ξ + ξ , ξ · ξ are linearly independent over Q.

For n = 2, 4 we have 2n − 2 ≤ n + 2, so in that case Theorems 2.2 and 2.3 cover
all complex algebraic numbers ξ . Further, for n = 2, case (ii) of Theorem 2.2 is
implied by case (i). This leads to the following corollary.

Corollary 2.4. Let ξ be a complex, non-real algebraic number.

(i) If ξ has degree > 2, then

w2(ξ) = w∗
2(ξ) = ŵ2(ξ) = 1 if 1, ξ + ξ, ξ · ξ are linearly dependent over Q,

w2(ξ) = w∗
2(ξ) = ŵ2(ξ) = 1

2
otherwise.

(ii) If ξ has degree > 4, then

w4(ξ) = w∗
4(ξ) = ŵ4(ξ) = 2 if 1, ξ + ξ, ξ · ξ are linearly dependent over Q

or if deg ξ = 6 and [Q(ξ) : Q(ξ) ∩ R] = 2,

w4(ξ) = w∗
4(ξ) = ŵ4(ξ) = 3

2
otherwise.

Theorems 2.1, 2.2, 2.3 and Corollary 2.4 allow us to determine wn(ξ), w∗
n(ξ), ŵn(ξ)

for every positive integer n and every complex, non-real algebraic number ξ , with
the exception of the following case:

n is an even integer with n ≥ 6, ξ is a complex algebraic number such that n + 2 <

deg ξ ≤ 2n − 2, [Q(ξ) : Q(ξ) ∩ R] = 2 and 1, ξ + ξ, ξ · ξ are linearly independent
over Q.

We deduce Theorems 2.1, 2.2, 2.3 from Theorem 2.5 below. To state the latter, we
have to introduce some notation. For n ∈ Z>0, ξ ∈ C∗, µ ∈ C∗, define the Q-vector
space

Vn(µ, ξ) := { f ∈ Q[X ] : deg f ≤ n, µ f (ξ) ∈ R}, (2.4)

and for n ∈ Z>0, ξ ∈ C∗ denote by tn(ξ) the maximum over µ of the dimensions
of these spaces, i.e.,

tn(ξ) := max{dimQ Vn(µ, ξ) : µ ∈ C∗}. (2.5)

It is clear that tn(ξ) ≤ n + 1 and tn(ξ) = n + 1 if and only if ξ ∈ R.
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Theorem 2.5. Let n be a positive integer and ξ a complex, non-real algebraic num-
ber of degree > n. Then

wn(ξ) = w∗
n(ξ) = ŵn(ξ) = max

{
n − 1

2
, tn(ξ) − 1

}
.

The proof of Theorem 2.5 is based on Schmidt’s Subspace Theorem and geometry
of numbers. It should be noted that Theorem 2.5 reduces the problem to determine
how well ξ can be approximated by algebraic numbers of degree at most n to the
algebraic problem to compute tn(ξ). We deduce Theorems 2.1, 2.2 and 2.3 by
combining Theorem 2.5 with some properties of the quantity tn(ξ) proved below.

3. Approximation by algebraic integers

In view of a transference lemma relating uniform homogeneous approximation to
inhomogeneous approximation (see [4]), for any integer n ≥ 2, the real numbers ξ

with ŵn(ξ) > n are good candidates for being unexpectedly badly approximable
by algebraic integers of degree less than or equal to n + 1. This has been confirmed
by Roy [18] for the case n = 2. Namely, in [17] he proved that there exist real

numbers ξ with ŵ2(ξ) = 3+√
5

2 > 2, and in [18] he used this to prove that there

exist real numbers ξ with the property that |ξ − α| � H(α)−(3+√
5)/2 for every

algebraic integer α of degree at most 3. By a result of Davenport and Schmidt [9],

the exponent 3+√
5

2 is optimal. On the other hand Bugeaud and Teulié [5] proved
that for every κ < 3 and almost all ξ ∈ R, the inequality |ξ − α| < H(α)−κ has
infinitely many solutions in algebraic integers of degree 3.

Analogously to the real case one should expect that complex numbers ξ with
ŵn(ξ) > n−1

2 are unusually badly approximable by algebraic integers of degree at
most n + 1. In Theorem 3.1 below we confirm this for complex algebraic numbers.

We introduce the following quantities for complex numbers ξ and inte-
gers n ≥ 1:

• w̃n(ξ) denotes the supremum of those real numbers w̃ such that

0 < |P(ξ)| ≤ H(P)−w̃

is satisfied by infinitely many monic polynomials P ∈ Z[X ] of degree at most
n + 1;

• w̃∗
n(ξ) denotes the supremum of those real numbers w̃∗ for which

0 < |ξ − α| ≤ H(α)−w̃∗−1

holds for infinitely many algebraic integers of degree at most n + 1;
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• ˆ̃wn(ξ) denotes the supremum of those real numbers w̃ with the property that
for every sufficiently large real H , there exists a monic integer polynomial P of
degree at most n + 1 and height at most H such that

0 < |P(ξ)| ≤ H−w̃.

It is known that every real algebraic number ξ of degree d satisfies

w̃n(ξ) = w̃∗
n(ξ) = ˆ̃wn(ξ) = min{d − 1, n}

for every integer n (see [2, 22]). Furthermore, methods developed by Bugeaud and
Teulié [5] and Roy and Waldschmidt [19] allow one to show that for every positive
integer n we have

w̃n(ξ) = w̃∗
n(ξ) = ˆ̃wn(ξ) = n for almost all ξ ∈ R,

w̃n(ξ) = w̃∗
n(ξ) = ˆ̃wn(ξ) = n − 1

2
for almost all ξ ∈ C.

We show that for every positive integer n the functions w̃n , w̃∗
n , ˆ̃wn coincide on the

complex algebraic numbers and, moreover, that a complex algebraic number ξ is
unusually badly approximable by algebraic integers of degree at most n+1 (i.e., has
w̃n(ξ) = w̃∗

n(ξ) = ˆ̃wn(ξ) < n−1
2 ) if and only if it is unusually well approximable by

algebraic numbers of degree at most n (i.e., has wn(ξ) = w∗
n(ξ) = ŵn(ξ) > n−1

2 ).
More precisely, we prove the following.

Theorem 3.1. Let n be a positive integer and ξ a complex, non-real algebraic num-
ber of degree d. Then

w̃n(ξ) = w̃∗
n(ξ) = ˆ̃wn(ξ) = d − 2

2
if d ≤ n + 1, (3.1)

w̃n(ξ) = w̃∗
n(ξ) = ˆ̃wn(ξ) = n − 1

2
if d ≥ n + 2 and n is odd, (3.2)

w̃n(ξ) = w̃∗
n(ξ) = ˆ̃wn(ξ) ∈

{
n − 2

2
,

n − 1

2

}
if d ≥ n + 2 and n is even. (3.3)

Moreover, if d ≥ n + 2 and n is even then

w̃n(ξ) = w̃∗
n(ξ) = ˆ̃wn(ξ) = n − 2

2
⇐⇒ wn(ξ) = w∗

n(ξ) = ŵn(ξ) = n

2
.

Combining Theorem 3.1 with Corollary 2.4, we get at once the following statement.
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Corollary 3.2. Let ξ be a complex, non-real algebraic number.

(i) If ξ has degree > 2, then

w̃2(ξ) = w̃∗
2(ξ) = ˆ̃w2(ξ) = 0 if 1, ξ + ξ, ξ · ξ are linearly dependent over Q,

w̃2(ξ) = w̃∗
2(ξ) = ˆ̃w2(ξ) = 1

2
otherwise.

(ii) If ξ has degree > 4, then

w̃4(ξ)= w̃∗
4(ξ)= ˆ̃w4(ξ)=1 if 1, ξ+ξ, ξ ·ξ are linearly dependent over Q

or if deg ξ = 6 and [Q(ξ) : Q(ξ) ∩ R] = 2,

w̃4(ξ) = w̃∗
4(ξ) = ˆ̃w4(ξ) = 3

2
otherwise.

4. Deduction of Theorem 2.1 from Theorem 2.5

For every positive integer m we define the Q-vector space

Wm := { f ∈ Q[X ] : deg f ≤ m}

and for any subset S of the polynomial ring Q[X ] and any polynomial g ∈ Q[X ],
we define the set g · S := {g f : f ∈ S}.

In this section, n is a positive integer, and ξ a complex, non-real algebraic
number of degree d > n. We prove some lemmata about the quantity tn(ξ) which
in combination with Theorem 2.5 will imply Theorem 2.1. Choose µ0 ∈ C∗ such
that dim Vn(µ0, ξ) = tn(ξ).

Lemma 4.1. Let µ ∈ C∗ be such that dim Vn(µ, ξ) > n+1
2 . Then Vn(µ, ξ) =

Vn(µ0, ξ).

Proof. Our assumption on µ clearly implies that tn(ξ) > n+1
2 . Both vector spaces

Vn(µ, ξ), Vn(µ0, ξ) are contained in the same n + 1-dimensional vector space,
hence they have non-zero intersection. Let f1 ∈ Q[X ] be a non-zero polynomial
lying in both spaces and put µ1 := f1(ξ)−1. Then µ1/µ ∈ R, µ1/µ0 ∈ R, hence
Vn(µ, ξ) = Vn(µ1, ξ) = Vn(µ0, ξ).

Lemma 4.2. Suppose that tn(ξ) > n+1
2 . Then

(i) Wn+1 is the direct sum of the Q-vector spaces Vn(µ0, ξ) and X · Vn(µ0, ξ).
(ii) n is even, tn(ξ) = n+2

2 .



APPROXIMATION OF COMPLEX ALGEBRAIC NUMBERS 341

Proof. Suppose that Vn(µ0, ξ) ∩ X · Vn(µ0, ξ) �= {0}. Choose a non-zero poly-
nomial f in the intersection of both spaces. Then f = Xg where g ∈ Vn(µ0, ξ).
Hence

ξ = f (ξ)

g(ξ)
= µ0 f (ξ)

µ0g(ξ)
∈ R ,

which is against our assumption. Therefore, Vn(µ0, ξ) ∩ X · Vn(µ0, ξ) = {0}.
From our assumption on ξ it follows that tn(ξ) ≥ n+2

2 . Further, both Vn(µ0, ξ) and
X · Vn(µ0, ξ) are linear subspaces of Wn+1. Hence by comparing dimensions,

2 · n + 2

2
≤ 2tn(ξ) = dim (Vn(µ0, ξ) + X · Vn(µ0, ξ)) ≤ dim Wn+1 = n + 2.

This implies (i) and (ii).

Lemma 4.3. Let ξ be a complex, non-real algebraic number of degree d > 1. Then
td−1(ξ) ≤ d

2 .

Proof. Choose µ0 ∈ C∗ such that dim Vd−1(µ0, ξ) = td−1(ξ). Pick a non-zero
polynomial f0 ∈ Vd−1(µ0, ξ). Then for every f ∈ Vd−1(µ0, ξ) we have f (ξ)

f0(ξ)
=

µ0 f (ξ)
µ0 f0(ξ)

∈ Q(ξ) ∩ R. For linearly independent polynomials f ∈ Q[X ] of degree
at most d − 1 = deg ξ − 1, the corresponding quantities f (ξ)/ f0(ξ) are linearly
independent over Q. Hence td−1(ξ) ≤ [Q(ξ) ∩ R : Q] ≤ d

2 .

In the proof of Theorem 2.1 we use the following observations.

Lemma 4.4. Let ξ be a complex number and n a positive integer. Then

(i) w∗
n(ξ) ≤ wn(ξ),

(ii) ŵn(ξ) ≤ wn(ξ).

Proof. If α is an algebraic number of degree n with minimal polynomial P ∈ Z[X ],
we have |P(ξ)| � H(P) · min{1, |α − ξ |}, where the implied constant depends
only on ξ and on n. This implies (i). If for some w ∈ R there exists H0 such
that for every H ≥ H0 there exists an integer polynomial P of degree at most
n with 0 < |P(ξ)| ≤ H−w, H(P) ≤ H , then clearly, there are infinitely many
integer polynomials P of degree at most n such that 0 < |P(ξ)| ≤ H(P)−w. This
implies (ii).

Proof of Theorem 2.1. Constants implied by � and � depend only on n, ξ . We
first prove (2.1). Assume that d ≤ n + 1. In view of Lemma 4.4, it suffices to prove
that

wn(ξ) ≤ d − 2

2
, w∗

n(ξ) ≥ d − 2

2
, ŵn(ξ) ≥ d − 2

2
.

To prove the former, denote by ξ (1), . . . , ξ (d) the conjugates of ξ , where ξ (1) = ξ ,
ξ (2) = ξ . For some a ∈ Z>0, the polynomial Q := a

∏d
i=1(X − ξ (i)) has integer
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coefficients, and for any polynomial P ∈ Z[X ] of degree at most n with P(ξ) �= 0,
the resultant R(P, Q) = an ∏d

i=1 P(ξ (i)) is a non-zero rational integer. This gives
the Liouville inequality

|P(ξ)|2 = |P(ξ)P(ξ)| � |R(P, Q)|
|P(ξ (3)) · · · P(ξ (d))| � H(P)2−d . (4.1)

Consequently, wn(ξ) ≤ d−2
2 .

By Theorem 2.5 with n = d − 1 and by Lemma 4.3 we have w∗
d−1(ξ) =

ŵd−1(ξ) = d−2
2 . Using that w∗

n(ξ), ŵn(ξ) are non-decreasing in n, we obtain that
for n ≥ d − 1,

w∗
n(ξ) ≥ w∗

d−1(ξ) = d − 2

2
, ŵn(ξ) ≥ ŵd−1(ξ) = d − 2

2
.

This completes the proof of (2.1).
Statements (2.2), (2.3) follow immediately by combining Theorem 2.5 with

part (ii) of Lemma 4.2. This completes the proof of Theorem 2.1.

5. Deduction of Theorem 2.2 from Theorem 2.5

To deduce Theorem 2.2 from Theorem 2.5, we prove again the necessary properties
for the quantity tn(ξ) defined by (2.5).

Lemma 5.1. Assume that n is even, and that ξ is a complex, non-real algebraic
number of degree > n such that 1, ξ + ξ and ξ · ξ are linearly dependent over Q.
Then

tn(ξ) = n + 2

2
.

Proof. We use the easy observation that tn(ξ + c) = tn(ξ) for any c ∈ Q.
Put β := ξ + ξ , γ := ξ · ξ . Our assumption on ξ implies that either β ∈ Q, or

γ = a + bβ for some a, b ∈ Q. By our observation, the first case can be reduced
to β = 0 by replacing ξ by ξ − 1

2β. Then ξ = √−γ with γ > 0. Likewise,
the second case can be reduced to γ = a ∈ Q by replacing ξ by ξ − b. Then

ξ = 1
2

(
β ± √

β2 − 4a
)

with a ∈ Q and a > β2/4.

Case I. ξ = √−γ with γ > 0.
In this case,

Vn(1, ξ)={ f ∈ Q[X ] : deg f ≤ n, f (ξ) ∈ R}=
{

n/2∑
i=0

ci X2i : c0, . . . , cn/2 ∈ Q

}
.

So tn(ξ) ≥ dim Vn(1, ξ) = n+2
2 . Hence by Lemma 4.2 we have tn(ξ) = n+2

2 .
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Case II. γ = ξ · ξ = a ∈ Q∗.
Put µ := ξ−n/2. Then for a polynomial f = ∑n

i=0 ci Xi ∈ Q[X ] we have,
recalling our assumption that ξ has degree larger than n,

µ f (ξ) ∈ R ⇐⇒ ξ−n/2 f (ξ) = ξ
(−n/2)

f (ξ) ⇐⇒ ξ−n/2 f (ξ) = (a/ξ)−n/2 f (a/ξ)

⇐⇒ an/2 f (ξ) = ξn f (a/ξ) ⇐⇒ an/2 f (X) = Xn f (a/X)

⇐⇒ an/2ci = an−i cn−i for i = 0, . . . , n.

This implies tn(ξ) ≥ dim Vn(µ, ξ) = n+2
2 . Hence tn(ξ) = n+2

2 in view of Lem-
ma 4.2.

Lemma 5.2. Let n be an even positive integer, and ξ a complex algebraic number
of degree n + 2. Suppose that [Q(ξ) : Q(ξ) ∩ R] = 2. Then

tn(ξ) = n + 2

2
.

Proof. Write k := n/2. Then Q(ξ) ∩ R has degree k + 1. We prove that there
exists µ ∈ Q(ξ)∗ such that dim Vn(µ, ξ) ≥ k + 1 = n+2

2 . Then from Lemma 4.2 it
follows that tn(ξ) = n+2

2 .
Let{ω1,. . . ,ωk+1} be aQ-basis of Q(ξ)∩R.Then ω1,. . . ,ωk+1, ξω1,. . . ,ξωk+1

form a Q-basis of Q(ξ), every element of Q(ξ) can be expressed uniquely as a Q-
linear combination of these numbers, and a number in Q(ξ) thus expressed belongs
to Q(ξ) ∩ R if and only if its coefficients with respect to ξω1, . . . , ξωk+1 are 0.

For i, j = 0, . . . , 2k + 1 we have

ξ i+ j =
k+1∑
l=1

a(l)
i j ωl +

k+1∑
l=1

b(l)
i j ξωl with a(l)

i j , b(l)
i j ∈ Q.

Write µ ∈ Q(ξ) as µ = ∑2k+1
i=0 uiξ

i with u0, . . . , u2k+1 ∈ Q and write f ∈
Vn(µ, ξ) as f = ∑2k

j=0 x j X j with x0, . . . , x2k ∈ Q. Then

µ f (ξ) =
k+1∑
l=1

ωl

{
2k∑
j=0

(
2k+1∑
i=0

a(l)
i j ui

)
x j

}
+

k+1∑
l=1

ξωl

{
2k∑
j=0

(
2k+1∑
i=0

b(l)
i j ui

)
x j

}
.

So f = ∑2k
j=0 x j X j ∈ Vn(µ, ξ), i.e., µ f (ξ) ∈ Q(ξ) ∩ R, if and only if

L(l)
µ (x) :=

2k∑
j=0

(
2k+1∑
i=0

b(l)
i j ui

)
x j = 0 for l = 1, . . . , k + 1, (5.1)

where x = (x0, . . . , x2k).
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We choose µ ∈ Q(ξ)∗ to make one of the linear forms in (5.1), for in-
stance L(k+1)

µ , vanish identically. This amounts to choosing a non-zero vector
u = (u0, . . . , u2k+1) ∈ Q2k+2 such that

2k+1∑
i=0

b(k+1)
i j ui = 0 for j = 0, . . . , 2k.

This is possible since a system of 2k + 1 linear equations in 2k + 2 unknowns
has a non-trivial solution. Thus, (5.1) becomes a system of k equations in 2k + 1
unknowns over Q, and the solution space of this system has dimension at least
k + 1. Consequently, Vn(µ, ξ) has dimension at least k + 1 = n+2

2 . This proves
Lemma 5.2.

Now Theorem 2.2 follows at once by combining Theorem 2.5 with Lemma-
ta 5.1 and 5.2.

6. Deduction of Theorem 2.3 from Theorem 2.5

We prove some results about the quantity tn(ξ) which, in combination with Theo-
rem 2.5, will yield Theorem 2.3.

Lemma 6.1. Let n be an even positive integer and ξ a complex, non-real algebraic
number of degree > n. Assume that tn(ξ) > n+1

2 .

(i) [Q(ξ) : Q(ξ) ∩ R] = 2.
(ii) If moreover deg ξ > 2n − 2, then 1, ξ + ξ , ξ · ξ are linearly dependent over Q.

Proof. Put β := ξ + ξ , γ := ξ · ξ . Choose µ0 such that dim Vn(µ0, ξ) = tn(ξ).
By part (i) of Lemma 4.2, every polynomial in Q[X ] of degree at most n + 1 can
be expressed uniquely as a sum of a polynomial in Vn(µ0, ξ) and a polynomial in
X ·Vn(µ0, ξ). In particular, for every non-zero polynomial f ∈ Vn(µ0, ξ) of degree
≤ n − 1, there are polynomials g, h ∈ Vn(µ0, ξ), uniquely determined by f , such
that

X2 f = Xg + h. (6.1)

This implies that ξ is a zero of the polynomial X2 − (g(ξ)/ f (ξ))X − (h(ξ)/ f (ξ)).
On the other hand, there is a unique monic quadratic polynomial with real coeffi-
cients having ξ as a zero, namely X2 − β X + γ , and

g(ξ)

f (ξ)
= µ0g(ξ)

µ0 f (ξ)
∈ R,

h(ξ)

f (ξ)
= µ0h(ξ)

µ0 f (ξ)
∈ R.

Therefore,
g(ξ)

f (ξ)
= β,

h(ξ)

f (ξ)
= −γ . (6.2)

So β, γ ∈ Q(ξ) ∩ R. This implies (i).
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To prove (ii), we proceed by induction on n. First let n = 2. By assumption,
there is µ0 ∈ C∗ such that V2(µ0, ξ) has dimension larger than 1. This means that
there are non-zero polynomials f1, f2 ∈ V2(µ0, ξ) with deg f1 < deg f2 ≤ 2. We
have f1(ξ) f2(ξ) ∈ (µ0µ0)

−1R = R, hence

f1(ξ) f2(ξ) − f1(ξ) f2(ξ) = 0.

First suppose that f2 has degree 1. Then f1 has degree 0, therefore, f1 = c1,
f2 = c2 + c3 X with c1c3 �= 0. Hence

0 = f1(ξ) f2(ξ) − f1(ξ) f2(ξ) = c1c3(ξ − ξ) ,

which is impossible since ξ �∈ R. Now suppose that f2 has degree 2. Then f1 =
c1 + c2 X , f2 = c3 + c4 X + c5 X2 with c1, . . . , c5 ∈ Q, hence

0 = f1(ξ) f2(ξ) − f1(ξ) f2(ξ) = (ξ − ξ)(c1c4 − c2c3 + c1c5β + c2c5γ ).

We have (c1, c2) �= (0, 0) since f1 �= 0, while c5 �= 0 since f2 has degree 2, and
further ξ �∈ R. Hence 1, β, γ are Q-linearly dependent.

Now let n be an even integer with n ≥ 4. Assume part (ii) of Lemma 6.1 is
true if n is replaced by any positive even integer smaller than n. There is µ0 ∈ C∗
such that dim Vn(µ0, ξ) =: t > n+1

2 . Let f1, . . . , ft be a basis of Vn(µ0, ξ) with
deg f1 < deg f2 < · · · < deg ft ≤ n. So in particular, deg ft−1 ≤ n − 1.

First assume that a := gcd( f1, . . . , ft−1) is a polynomial of degree at least 1.
Let f̃i := fi/a for i = 1, . . . , t − 1. Put µ̃0 := µ0a(ξ). Then f̃1, . . . , f̃t−1 are
linearly independent polynomials of degree at most n − 2 with µ̃0 f̃i (ξ) ∈ R for
i = 1, . . . , t − 1. Hence

tn−2(ξ) ≥ dim Vn−2(µ̃0, ξ) ≥ t − 1 >
(n − 2) + 1

2
.

So by the induction hypothesis, 1, β, γ are linearly dependent over Q.
Now assume that gcd( f1, . . . , ft−1) = 1. By (6.1), for i = 1, . . . , t − 1 there

are polynomials gi , hi ∈ Vn(µ0, ξ) such that X2 fi = Xgi + hi for i = 1, . . . , t − 1
and by (6.2) we have

gi (ξ)

fi (ξ)
= β,

hi (ξ)

fi (ξ)
= −γ for i = 1, . . . , t − 1.

The polynomials hi are all divisible by X . Therefore, ξ is a common zero of the
polynomials

fi · h j

X
− f j · hi

X
(1 ≤ i, j ≤ t − 1).

Each of these polynomials has degree at most 2n − 2 and, by assumption, ξ has
degree > 2n − 2. Therefore, these polynomials are all identically 0. Since by
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assumption gcd( f1, . . . , ft−1) = 1, this implies that there is a polynomial a ∈
Q[X ] with hi/X = a fi for i = 1, . . . , t − 1.

Now a cannot be equal to 0 since otherwise γ = ξ · ξ would be 0 which is
impossible. Further, a cannot be a constant c ∈ Q∗ since otherwise, we would have
ξ = hi (ξ)/c fi (ξ) = −γ /c ∈ R which is impossible. Hence a has degree at least 1.
But then deg fi ≤ deg hi − 2 ≤ n − 2 for i = 1, . . . , t − 1. This implies

tn−2(ξ) ≥ dim Vn−2(µ, ξ) ≥ t − 1 >
n − 2 + 1

2
.

Now again the induction hypothesis can be applied, and we infer that 1, β, γ are
linearly dependent over Q. This completes our proof.

Theorem 2.3 follows at once by combining Theorem 2.5 with Lemma 6.1.

7. Consequences of the parametric subspace theorem

In this section we have collected some applications of the Parametric Subspace
Theorem which are needed in both the proofs of Theorem 2.5 and Theorem 3.1.
Our arguments are a routine extension of [23, Chapter VI, Sections 1, 2, Schmidt’s
Lecture Notes], but for lack of a convenient reference we have included the proofs.

We start with some notation. For a linear form L = ∑n
i=1 αi Xi with complex

coefficients, we write Re (L) := ∑n
i=1(Re αi )Xi and Im (L) := ∑n

i=1(Im αi )Xi .
For a linear subspace U of Qn , we denote by RU the R-linear subspace of Rn

generated by U . We say that linear forms L1, . . . , Ls in X1, . . . , Xn with complex
coefficients are linearly dependent on a linear subspace U of Qn if there are complex
numbers a1, . . . , as , not all zero, such that a1L1 + · · · + as Ls vanishes identically
on U . Otherwise, L1, . . . , Ls are said to be linearly independent on U .

Our main tool is the so-called Parametric Subspace Theorem which is stated in
Proposition 7.1 below. We consider symmetric convex bodies

	(H) := {x ∈ Rn : |Li (x)| ≤ H−ci (i = 1, . . . , r)} (7.1)

where r ≥ n, L1, . . . , Lr are linear forms with real algebraic coefficients in the n
variables X1, . . . , Xn , c1, . . . , cr are reals, and H is a real ≥ 1. We will refer to ci
as the H-exponent corresponding to Li .

Proposition 7.1. Assume that there are indices i1, . . . , in ∈ {1, . . . , r} such that

rank(Li1, . . . , Lin ) = n, ci1 + · · · + cin > 0. (7.2)

Then there is a finite collection of proper linear subspaces {T1, . . . , Tt } of Qn such
that for every H ≥ 1 there is Ti ∈ {T1, . . . , Tt } with

	(H) ∩ Zn ⊂ Ti .
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Proof. This is a special case of [11, Theorem 1.1], where a quantitative version was
given with an explicit upper bound for the number of subspaces t . In fact, in its
qualitative form this result was already proved implicitly by Schmidt.

Lemma 7.2. Let L1, . . . , Lr be linear forms in X1, . . . , Xn with real algebraic
coefficients and with rank(L1, . . . , Lr ) = n, let c1, . . . , cr be reals, and let
{M1, . . . , Ms} be a (possibly empty) collection of linear forms in X1, . . . , Xn with
complex coefficients. Assume that for every non-zero linear subspace U of Qn

on which none of M1, . . . , Ms vanishes identically there are indices i1, . . . , im ∈
{1, . . . , r} (m = dim U ) such that

Li1, . . . , Lim are linearly independent on U, ci1 + · · · + cim > 0. (7.3)

Then there is H0 > 1 such that if there is x with

x ∈ 	(H) ∩ Zn, x �= 0, M j (x) �= 0 for j = 1, . . . , s,

then H ≤ H0.

Proof. Denote by 
(H) the set of points x ∈ 	(H)∩Zn with x �= 0 and M j (x) �= 0
for j = 1, . . . , s. We first prove by decreasing induction on m (n ≥ m ≥ 1) that
there is a finite collection Um of m-dimensional linear subspaces of Qn such that
for every H ≥ 1 there is a subspace U ∈ Um with


(H) ⊂ U.

For m = n this is of course obvious. Suppose our assertion has been proved for
some integer m with n ≥ m ≥ 2. We proceed to prove it for m − 1 instead of
m. Take U from the collection Um , and consider those H ≥ 1 for which 
(H) is
non-empty and contained in U . Assuming that such H exist, it follows that none of
M1, . . . , Ms vanishes identically on U . By a suitable linear transformation we can
bijectively map U to Qm , U ∩Zn to Zm and 	(H)∩RU to a convex body similar to
(7.1) of dimension m. Our hypothesis (7.3) implies that this convex body satisfies
the analogue of condition (7.2) in Proposition 7.1. By applying Proposition 7.1 and
then mapping back to U , we infer that there is a finite collection VU of (m − 1)-
dimensional linear subspaces of U , such that for every real H under consideration,
there is V ∈ VU with


(H) ⊂ V .

Now it follows that our assertion holds for m − 1 instead of m, with for Um−1 the
union of the collections VU with U ∈ Um . This completes our induction step.

By applying the above with m = 1, we infer that there is a finite collection
U1 = {W1, . . . , Ww} of one-dimensional linear subspaces of Qn , such that for every
H ≥ 1 there is Wi ∈ U1 with


(H) ⊂ Wi .

Let W be one of the subspaces from U1. Choose a non-zero vector x0 ∈ W ∩ Zn

whose coefficients have gcd 1. Such a vector is up to sign uniquely determined by
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W . Suppose that there exists H ≥ 1 for which 
(H) is non-empty and contained
in W . By dividing any point in 
(H) by the gcd of its coordinates we obtain
x0 ∈ 
(H). This implies M j (x0) �= 0 for j = 1, . . . s, and so by assumption (7.3),
there is i ∈ {1, . . . , r} such that Li (x0) �= 0 and ci > 0. Further,

|Li (x0)| ≤ H−ci .

Hence H ≤ HW for some finite constant HW depending only on W .
Now Lemma 7.2 is satisfied with H0 = maxi=1,...,w HWi .

Denote by λ1(H), . . . , λn(H) the successive minima of 	(H). Recall that
λi (H) is the minimum of all positive reals λ such that λ	(H) contains i linearly
independent points from Zn .

Lemma 7.3. Let L1, . . . , Lr be linear forms in X1, . . . , Xn with real algebraic
coefficients and with rank(L1, . . . , Lr ) = n and let c1, . . . , cr be reals. Put

E := 1

n
max{ci1 + · · · + cin } (7.4)

where the maximum is taken over all tuples i1, . . . , in such that Li1, . . . , Lin are
linearly independent.

(i) There is a constant c > 0 depending only on n, L1, . . . , Lr such that for every
H ≥ 1 we have λ1(H) ≤ cH E .

(ii) Assume that for every non-zero linear subspace U of Qn there are indices
i1, . . . , im ∈ {1, . . . , r} (m = dim U) such that

Li1, . . . , Lim are linearly independent on U,
1

m
(ci1 +· · ·+ cim ) ≥ E . (7.5)

Then for every ε > 0 there is Hε > 1 such that for every H > Hε we have

H E−ε < λ1(H) ≤ · · · ≤ λn(H) < H E+ε.

Proof. In what follows, the constants implied by�and�may depend on L1,. . . ,Lr ,
c1, . . . , cr , n, ε, but are independent of H . Without loss of generality, L1, . . . , Ln
are linearly independent and c1 ≥ · · · ≥ cr .

We first prove (i). Let 	′(H) be the set of x ∈ Rn with |Li (x)| ≤ H−ci for
i = 1, . . . , n (so with only n instead of r inequalities). There is a constant λ0 > 0
such that 	(H) ⊇ λ0	

′(H) and this implies at once

Vol(	(H)) � Vol(	′(H)) � H−(c1+···+cn) = H−nE .

So by Minkowski’s Theorem on successive minima,

n∏
i=1

λi (H) � HnE . (7.6)

This implies (i).
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We now prove (ii), and assume that for every non-zero linear subspace U of
Qn there are indices i1, . . . , im with (7.5). Let ε > 0. We first show that for every
sufficiently large H we have

λ1(H) > H E−ε/n, (7.7)

in other words, that for every sufficiently large H the convex body

H E−ε/n	(H) = {x ∈ Rn : |Li (x)| ≤ H E−ci −ε/n (i = 1, . . . , r)}
does not contain non-zero points x in Zn .

We apply Lemma 7.2 with ci − E + ε/n instead of ci for i = 1, . . . , r . From
our assumption it follows that for every non-zero linear subspace U of Qn there are
indices i1, . . . , im (m = dim U ) such that Li1, . . . , Lim are linearly independent on
U and

m∑
j=1

(ci j − E + ε/n) =
(

m∑
j=1

ci j

)
− m E + mε/n > 0.

So condition (7.3) is satisfied, and therefore we have H E−ε/n	(H) ∩ Zn = {0} for
every sufficiently large H . This proves (7.7).

Now a combination of (7.7) with (7.6) immediately gives (ii).

Let n be a positive integer and ξ a complex, non-real algebraic number of
degree larger than n. Define the linear forms

L1 := Re

(
n∑

i=0

ξ i Xi

)
, L2 := Im

(
n∑

i=0

ξ i Xi

)
, (7.8)

and the symmetric convex body

K (ξ, n, w, H) := {x ∈ Rn+1 : |L1(x)| ≤ H−w, |L2(x)| ≤ H−w,

|x0| ≤ H, . . . , |xn| ≤ H}, (7.9)

where x = (x0, . . . , xn) and w ∈ R. We denote by λi (ξ, n, w, H) (i = 1, . . . , n+1)
the successive minima of this body.

Recall that Vn(µ, ξ) consists of the polynomials f ∈ Q[X ] of degree at most
n for which µ f (ξ) ∈ R. We start with a simple lemma.

Lemma 7.4.

(i) Let U be a non-zero linear subspace of Qn+1. Then at least one of the linear
forms L1, L2 does not vanish identically on U.

(ii) Let U be a linear subspace of Qn+1. Then L1, L2 are linearly dependent on U
if and only if there is µ ∈ C∗ such that

U ⊂
{

x ∈ Qn+1 :
n∑

i=0

xi Xi ∈ Vn(µ, ξ)

}
.
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Proof.

(i) If L1, L2 would both vanish identically on U , then so would L1 + √−1 · L2 =∑n
i=0 xiξ

i . But this is impossible since ξ has degree larger than n.
(ii) The linear forms L1, L2 are linearly dependent on U if and only if there are

α, β ∈ R such that αL1 + βL2 is identically zero on U . Using

αL1(x) + βL2(x) = Im

(
µ

n∑
i=0

xiξ
i

)
with µ = β + √−1 · α,

one verifies at once that L1, L2 are linearly dependent on U if and only if for
every x ∈ U the polynomial

∑n
i=0 xi Xi belongs to Vn(µ, ξ).

Let tn(ξ) be the quantity defined by (2.5). By Lemma 4.2, we have either tn(ξ) ≤
n+1

2 or tn(ξ) = n+2
2 . In what follows we have to distinguish between these two

cases. In the proofs below, constants implied by � and � may depend on ξ , n, w,
and on an additional parameter ε, but are independent of H .

Lemma 7.5. Assume that tn(ξ) ≤ (n + 1)/2 and let w ≥ −1.

(i) There is a constant c = c(ξ, n) > 0 such that for every H ≥ 1 we have

λ1(ξ, n, w, H) ≤ cH
2w−n+1

n+1 .
(ii) For every ε > 0 there is H1,ε > 1 such that for every H > H1,ε we have

H
2w−n+1

n+1 −ε < λ1(ξ, n, w, H)≤· · ·≤λn+1(ξ, n, w, H) < H
2w−n+1

n+1 +ε. (7.10)

Proof. In the situation being considered here, for the quantity E defined by (7.4)
we have E = 2w−n+1

n+1 . Thus, part (i) of Lemma 7.5 follows at once from part (i) of
Lemma 7.3.

We deduce part (ii) of Lemma 7.5 from part (ii) of Lemma 7.3. and to this
end we have to verify the conditions of the latter. First let U be a linear subspace
of Qn+1 of dimension m > tn(ξ). By part (ii) of Lemma 7.4, the linear forms
L1, L2 are linearly independent on U . Pick m − 2 linear forms from X0, . . . , Xn
which together with L1, L2 are linearly independent on U . Then the sum of the
H -exponents corresponding to these linear forms is equal to 2w − m + 2, and

2w − m + 2

m
≥ 2w − n + 1

n + 1
= E .

Now let U be a non-zero linear subspace of Qn+1 of dimension m ≤ tn(ξ). By
part (i) of Lemma 7.4, there is a linear form Li ∈ {L1, L2} which does not vanish
identically on U . Pick m − 1 linear forms from X0, . . . , Xn which together with Li
are linearly independent on U . Then the sum of the H -exponents corresponding to
these linear forms is w − m + 1, and again

w − m + 1

m
≥ w − 1

2 (n + 1) + 1
1
2 (n + 1)

= E
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where we have used m ≤ tn(ξ) ≤ n+1
2 . Hence, indeed, the conditions of part (ii) of

Lemma 7.3 are satisfied. This proves part (ii) of Lemma 7.5.

We now deal with the case that tn(ξ) = n+2
2 . Choose µ0 ∈ C∗ such that

dim Vn(µ0, ξ) = tn(ξ) and define

U0 : =
{

x ∈ Qn+1 :
n∑

i=0

xi Xi ∈ Vn(µ0, ξ)

}

=
{

x ∈ Qn+1 : µ0

n∑
i=0

xiξ
i ∈ R

}
.

(7.11)

Then dim U0 = tn(ξ) and by Lemma 4.1 the vector space U0 does not depend on
the choice of µ0. Recall that we can choose µ0 from Q(ξ). Thus, µ0 is algebraic.

Lemma 7.6. Assume that tn(ξ) = n+2
2 and let w ≥ −1.

(i) There is a constant c = c(ξ, n) > 0 such that for every H ≥ 1 we have

λ1(ξ, n, w, H) ≤ cH
2w−n
n+2 .

(ii) For every ε > 0 there is H2,ε > 0 such that for every H > H2,ε we have

H
2w−n
n+2 −ε <λ1(ξ, n, w, H)≤· · ·≤λ(n+2)/2(ξ, n, w, H)< H

2w−n
n+2 +ε. (7.12)

H
2w−n+2

n −ε <λ(n+4)/2(ξ,n, w,H)≤· · ·≤λn+1(ξ,n,w,H)< H
2w−n+2

n +ε. (7.13)

H
2w−n+2

n −ε K (ξ, n, w, H) ∩ Zn+1 ⊂ U0. (7.14)

Proof. We first prove part (ii). The idea is to apply Lemma 7.3 first to a convex body
defined on the quotient space Rn+1/RU0, and then to K (ξ, n, w, H) restricted to
RU0.

Let µ0 = α0 + √−1 · β0, where α0, β0 ∈ R and define the linear form

M1 := 1

|α0| + |β0| · (β0L1 + α0L2) .

By a straightforward computation,

M1 = 1

2
√−1(|α0| + |β0|)

(
µ0

n∑
i=0

ξ i Xi − µ0

n∑
i=0

ξ
i
Xi

)
,

hence
{x ∈ Qn+1 : M1(x) = 0} = U0. (7.15)

Since U0 has dimension n+2
2 , we can choose linear forms M2, . . . , Mn/2 in

X0,. . . ,Xn as follows: M2,. . . ,Mn/2 vanish identically on U0; {M1,M2, . . . , Mn/2}
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is linearly independent; and each Mi (i = 2, . . . , n
2 ) has real algebraic coefficients

the sum of whose absolute values is equal to 1.
There is a surjective linear map ψ from Rn+1 to Rn/2 with kernel RU0, which

induces a surjective Z-linear map from Zn+1 to Zn/2 with kernel U0 ∩ Zn+1. For
i = 1, . . . , n

2 , let M∗
i be the linear form on Rn/2 such that Mi = M∗

i ◦ ψ . Then
M∗

1 , . . . , M∗
n/2 are linearly independent. Now it is clear that for x ∈ K (ξ, n, w, H)

we have

|M∗
1 (ψ(x))| = |M1(x)| ≤ max(|L1(x)|, |L2(x)|) ≤ H−w,

|M∗
i (ψ(x))| = |Mi (x)| ≤ max(|x0|, . . . , |xn|) ≤ H (i = 2, . . . , n/2),

in other words, if x ∈ K (ξ, n, w, H) then ψ(x) belongs to the convex body

	(H) := {y ∈ Rn/2 : |M∗
1 (y)| ≤ H−w, |M∗

i (y)| ≤ H (i = 2, . . . , n/2)}.
Similarly, for any λ > 0 we have

x ∈ λK (ξ, n, w, H) ∩ Zn+1 =⇒ ψ(x) ∈ λ	(H) ∩ Zn/2. (7.16)

Let ε > 0. Denote by ν1(H), . . . , νn/2(H) the successive minima of 	(H). We ap-
ply Lemma 7.3. Let U be a linear subspace of Qn/2 of dimension m > 0. By (7.15),
M∗

1 does not vanish identically on U . Pick m − 1 linear forms from M∗
2 , . . . M∗

n/2
which together with M∗

1 form a system of linear forms linearly independent on U .
The sum of the H -exponents corresponding to these linear forms is w − m + 1 and
we have

w − m + 1

m
≥ 2w − n + 2

n
.

So the conditions of part (ii) of Lemma 7.3 are satisfied. Consequently, for every
sufficiently large H we have

H
2w−n+2

n −ε/2n < ν1(H) ≤ · · · ≤ νn/2(H) < H
2w−n+2

n +ε/2n.

Together with (7.16) this implies

H
2w−n+2

n −ε/2n K (ξ, n, w, H) ∩ Zn+1 ⊂ U0

which implies (7.14).
Further, since dim U0 = n

2 + 1, we have

H
2w−n+2

n −(ε/2n) < λ n+4
2

(ξ, n, w, H) ≤ · · · ≤ λn+1(ξ, n, w, H). (7.17)

For i = 1, . . . , n+2
2 , denote by µi (H) the minimum of all positive reals µ such that

µK (ξ, n, w, H) ∩ U0 ∩ Zn+1 contains i linearly independent points.
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We apply again Lemma 7.3. Let U be a linear subspace of U0 of dimension
m > 0. By part (i) of Lemma 7.4, there is a linear form Li ∈ {L1, L2} which does
not vanish identically on U . Pick m −1 coordinates from x0, . . . , xn which together
with Li form a system of linear forms which is linearly independent on U . Then
the sum of the H -exponents corresponding to these linear forms is w − m + 1 and

w − m + 1

m
≥ 2w − n

n + 2
.

By means of a bijective linear map φ from RU0 to R(n+2)/2 with φ(U0 ∩ Zn+1) =
Z(n+2)/2, we can transform K (ξ, n, w, H) ∩ RU0 into a convex body with suc-
cessive minima µ1(H), . . . , µ(n+2)/2(H) satisfying the conditions of part (ii) of
Lemma 7.3. It follows that for every sufficiently large H ,

H
2w−n
n+2 −ε/2n < µ1(H) ≤ · · · ≤ µ n+2

2
(H) < H

2w−n
n+2 +ε/2n. (7.18)

By combining (7.18) with (7.17) and the already proved (7.14) we obtain (assuming
that ε is sufficiently small), that µi (H) = λi (ξ, n, w, H) for i = 1, . . . , n+2

2 . By
inserting this into (7.18) we obtain (7.12).

By Minkowski’s theorem,

n+1∏
i=1

λi (ξ, n, w, H) � Vol(K (ξ, n, w, H))−1 � H
2w−n+1

n+1 .

Together with (7.12), (7.17) this implies that for every sufficiently large H we have

H
2w−n+2

n −ε/2n < λ n+4
2

(ξ, n, w, H) ≤ · · · ≤ λn+1(ξ, n, w, H) < H
2w−n+2

n +ε.

This implies (7.13), and completes the proof of part (ii).
It remains to prove part (i). Applying part (i) of Lemma 7.3 to the image under

φ of K (ξ, n, w, H) ∩ RU0 we obtain that there is a constant c = c(ξ, n) > 0 such

that for every H ≥ 1 we have µ1(H) ≤ H
2w−n
n+2 . Since obviously, λ1(ξ, n, w, H) ≤

µ1(H), part (i) follows.

8. Proof of Theorem 2.5

Let again n be a positive integer, and ξ a complex, non-real algebraic number of
degree > n. Let L1, L2 denote the linear forms defined by (7.8) and K (ξ, n, w, H)

the convex body defined by (7.9). Put

un(ξ) := max

{
n − 1

2
, tn(ξ) − 1

}
. (8.1)

In view of Lemma 4.4, in order to prove Theorem 2.5, it suffices to prove that
wn(ξ) ≤ un(ξ), ŵn(ξ) ≥ un(ξ), w∗

n(ξ) ≥ un(ξ).
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Lemma 8.1. We have wn(ξ) ≤ un(ξ).

Proof. Let w ∈ R. Suppose there are infinitely many polynomials P = x0 + x1 X +
· · · + xn Xn ∈ Z[X ] satisfying

0 < |P(ξ)| ≤ H(P)−w. (8.2)

For such a polynomial P , put H := H(P), x = (x0, . . . , xn). Then clearly,
|L1(x)| = |Re P(ξ)| ≤ H−w, |L2(x)| = |Im P(ξ)| ≤ H−w, |xi | ≤ H for
i = 0, . . . , n, and so

x ∈ K (ξ, n, w, H) ∩ Zn+1. (8.3)

Since (8.2) is supposed to hold for infinitely many polynomials P ∈ Z[X ] of degree
≤ n, there are arbitrarily large H such that there is a non-zero x with (8.3). That
is, there are arbitrarily large H such that the first minimum λ1 = λ1(ξ, n, w, H) of
K (ξ, n, w, H) is ≤ 1.

First suppose that tn(ξ) ≤ n+1
2 . Then un(ξ) = n−1

2 . By Lemma 7.5, for every

ε > 0 there is Hε > 1 such that λ1 ≥ H
2w−n+1

n+1 −ε for every H > Hε. Hence
w ≤ n−1

2 = un(ξ). Now suppose that tn(ξ) = n+2
2 ; then un(ξ) = n

2 . By Lemma

7.6, for every ε > 0 there is Hε > 1 such that λ1 ≥ H
2w−n
n+2 −ε for every H > Hε.

Hence w ≤ n
2 = un(ξ). This implies Lemma 8.1.

Lemma 8.2. We have ŵn(ξ) ≥ un(ξ), w∗
n(ξ) ≥ un(ξ).

Proof. We prove the following stronger assertion: For every ε > 0 there is Hε > 1
such that for every H > Hε there is a non-zero irreducible polynomial P ∈ Z[X ]
of degree n with

0 < |P(ξ)| ≤ H−un(ξ)+ε, |P ′(ξ)| ≥ H1−ε, H(P) ≤ H , (8.4)

where P ′ denotes the derivative of P .
By ignoring the lower bound for |P ′(ξ)| in (8.4) we obtain that for every H >

Hε there is a non-zero irreducible polynomial P ∈ Z[X ] of degree n such that
0 < |P(ξ)| ≤ H−un(ξ)+ε. This implies ŵn(ξ) ≥ un(ξ).

To prove that w∗
n(ξ) ≥ un(ξ) we have to show that for every ε > 0 there are in-

finitely many algebraic numbers α of degree at most n with |ξ−α|≤ H(α)−un(ξ)−1+ε.
We prove the existence of infinitely many such α of degree equal to n. Take an ir-
reducible polynomial P ∈ Z[X ] with (8.4) and let α be a zero of P closest to ξ .
Then using the inequalities |ξ − α| � |P(ξ)/P ′(ξ)| (see [2, (A.11) on page 228])
and H(α) � H(P) � H , we obtain

|ξ − α| � H−un(ξ)−1+2ε � H(α)−un(ξ)−1+2ε, (8.5)

where the constants implied by � depend only on n, ε. Since deg ξ > n, the num-
ber α cannot be equal to ξ so equation (8.5) cannot hold for fixed α and arbitrarily
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large H . Hence by letting H → ∞, we obtain infinitely many distinct algebraic
numbers α of degree n with (8.5).

We proceed to prove the assertion stated above. Constants implied by � and �
will depend on ξ , n and ε. Write the polynomial P as P = x0 + x1 X + · · · + xn Xn

and put x := (x0, . . . , xn). As before, let L1, L2 be the linear forms given by
L1(x) = Re P(ξ), L2(x) = Im P(ξ). Further, define the linear forms L ′

1, L ′
2 by

L ′
1(x) = Re P ′(ξ) = Re

(
n∑

j=1

j x jξ
j−1

)
,

L ′
2(x) = Im P ′(ξ) = Im

(
n∑

j=1

j x jξ
j−1

)
.

We have to distinguish between the cases tn(ξ) ≤ n+1
2 and tn(ξ) = n+2

2 .
First suppose that tn(ξ) ≤ n+1

2 . Then un(ξ) = n−1
2 . We prove that for every

ε > 0 there is Hε > 1 with the property that for every H > Hε there is x ∈ Zn+1

with

|L1(x)| ≤ H− n−1
2 +ε/3, |L2(x)| ≤ H− n−1

2 +ε/3, |x0| ≤ H, . . . , |xn| ≤ H , (8.6)

max
{|L ′

1(x)|, |L ′
2(x)|} > H1−ε, (8.7)

2 � |xn, 2|xi for i = 0, . . . , n − 1, 4 � |x0. (8.8)

Then the polynomial P = ∑n
i=0 xi Xi satisfies (8.4) and by Eisenstein’s criterion it

is irreducible.
Let H ≥ 1, ε > 0. Consider vectors x ∈ Zn+1 satisfying (8.6) but not (8.7),

i.e., with 
|L1(x)| ≤ H− n−1

2 +ε/3, |L2(x)| ≤ H− n−1
2 +ε/3,

|L ′
1(x)| ≤ H1−ε, |L ′

2(x)| ≤ H1−ε,

|x0| ≤ H, . . . , |xn| ≤ H.

(8.9)

By considering the coefficients of X0, X1, X2 one infers that the linear forms L1,
L2 and L ′

2 are linearly independent. Pick n −2 coordinates from X0, . . . , Xn which
together with L1, L2, L ′

2 form a system of n + 1 linearly independent linear forms.
The sum of the corresponding H -exponents is

(n − 1 − 2ε/3) + (ε − 1) − (n − 2) = ε/3 > 0.

So by Proposition 7.1, there is a finite collection of proper linear subspaces
T1,. . . ,Tm of Qn+1, with the property that for every H ≥1, there is Ti ∈{T1,. . . ,Tm}
such that the set of solutions x ∈ Zn+1 of (8.9) is contained in Ti . Consequently, if
x satisfies (8.6) but does not lie in T1 ∪ · · · ∪ Tm then it also satisfies (8.7).

We apply Lemma 7.5 with w = n−1
2 . Let η > 0 be a parameter depending

on n, ε to be chosen later, and Y a parameter depending on H and η, also chosen
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later. For brevity we write K (Y ) for the convex body K (ξ, n, n−1
2 , Y ) and denote

by λn+1(Y ) the largest of the successive minima of this body. According to a result
of Mahler (see Cassels [6, Lemma 8, page 135]) there is a constant c1 = c1(n)

such that the convex body c1λn+1(Y )K (Y ) contains a basis of Zn+1. By applying
Lemma 5.2 with η

2 instead of ε we obtain that for every sufficiently large Y we have
λn+1(Y ) < Y η/2. Then for every Y large enough to satisfy also c1Y η/2 < Y η, the
convex body Y ηK (Y ), that is, the body given by

|L1(x)| ≤ Y − n−1
2 +η, |L2(x)| ≤ Y − n−1

2 +η, |x0| ≤ Y 1+η, . . . , |xn| ≤ Y 1+η

contains a basis of Zn+1, {x(0), . . . , x(n)}, say. Consider the vectors

x = (x0, . . . , xn) =
n∑

i=0

ai x(i) with ai ∈ Z, |ai | ≤ Y η for i = 0, . . . , n. (8.10)

Assuming again that Y is sufficiently large, each vector (8.10) satisfies

|L1(x)|≤Y − n−1
2 +3η, |L2(x)|≤Y − n−1

2 +3η, |x0|≤Y 1+3η, . . . , |xn|≤Y 1+3η. (8.11)

Since x(0), . . . , x(n) span Zn+1, the number of vectors (8.10) with the additional
property (8.8) is � Y (n+1)η. On the other hand, the number of vectors (8.10) lying
in T1 ∪· · ·∪ Tm is � Y nη. Hence if Y is sufficiently large, there exist vectors x with
(8.10), (8.8) and with x �∈ T1 ∪ · · · ∪ Tm . Now by choosing η and then Y such that

n − 1

2
− 3η

1 + 3η
= n − 1

2
− ε

3
, Y 1+3η = H ,

system (8.11) translates into (8.6). Thus, we infer that for every sufficiently large
H , there exist vectors x ∈ Zn+1 with (8.6), (8.8) which do not lie in T1 ∪ · · · ∪ Tm .
But as we have seen above, such vectors satisfy (8.7). This settles the case that
tn(ξ) ≤ n+1

2 .
Now assume that tn(ξ) = n+2

2 . Then un(ξ) = n
2 . We first show that it suffices

to prove that for every ε > 0 and every sufficiently large H there exists a polynomial
P ∈ Z[X ] of degree ≤ n with (8.4), without the requirements that P be irreducible
and have degree equal to n. Indeed suppose that for every sufficiently large H there
is a polynomial P ∈ Z[X ] satisfying (8.4) such that deg P < n or P is reducible.
By the same argument as above, it follows that there are infinitely many algebraic
numbers α of degree < n with (8.5). Then there is m < n such that (8.5) has
infinitely many solutions in algebraic numbers α of degree m. By Lemma 4.2 and
our assumption tn(ξ) = n+2

2 , the number n is even, so n − 1 is odd and hence
tn−1(ξ) ≤ n

2 . So un−1(ξ) = n−2
2 < un(ξ). Now by Lemmata 4.4 and 8.1,

w∗
m(ξ) ≤ wm(ξ) ≤ wn−1(ξ) < un(ξ),
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which contradicts that (8.5) has infinitely many solutions in algebraic numbers α of
degree m. So for every sufficiently large H , the polynomials P ∈ Z[X ] of degree
≤ n that satisfy (8.4) necessarily have degree equal to n and are irreducible.

Let ε > 0. Let U0 be the vector space defined by (7.11). Recall that U0 has
dimension n+2

2 . We show that for every sufficiently large H there is a non-zero
x ∈ U0 ∩ Zn+1 with

|L1(x)| ≤ H− n
2 +ε/3, |L2(x)| ≤ H− n

2 +ε/3, |x0| ≤ H, . . . , |xn| ≤ H, (8.12)

max{|L ′
1(x)|, |L ′

2(x)|} > H1−ε. (8.13)

Let H > 1 and consider those vectors x ∈ U0 ∩ Zn+1 satisfying (8.12) but not
(8.13), i.e., 

|L1(x)| ≤ H− n
2 +ε/3, |L2(x)| ≤ H− n

2 +ε/3,

|L ′
1(x)| ≤ H1−ε, |L ′

2(x)| ≤ H1−ε,

|x0| ≤ H, . . . , |xn| ≤ H.

(8.14)

Claim. There are Li ∈ {L1, L2}, L ′
j ∈ {L ′

1, L ′
2} that are linearly independent on

U0.

Assume the contrary. By Lemma 7.4, the linear forms L1, L2 are linearly
dependent on U0 and at least one of L1, L2 does not vanish identically on U0.
Hence M := L1 + √−1 · L2 does not vanish identically on U0, and so M and
M ′ := L ′

1 + √−1 · L ′
2 are linearly dependent on U0.

Since dim U0 = n+2
2 , there are two linearly independent vectors a=(a0,. . .,an),

b = (b0, . . . , bn) ∈ U0 ∩ Zn+1 such that if k is the largest index with ak �= 0 and l
the largest index with bl �= 0, then k < l ≤ n− n+2

2 +2 = n+2
2 . Let A = ∑k

i=0 ai Xi ,

B = ∑l
j=0 b j X j .

Then by the linear dependence of M , M ′ we have

A(ξ)B ′(ξ) − A′(ξ)B(ξ) = M(a)M ′(b) − M ′(a)M(b) = 0.

But the polynomial AB ′ − A′B is not identically 0 (since A, B are linearly inde-
pendent) and has degree at most

k + l − 1 ≤ 2(n + 1 − (n + 2)/2) = n.

This leads to a contradiction since by assumption, deg ξ > n. This proves our
claim.

Choose n−2
2 coordinates from X0, . . . , Xn which together with Li , L ′

j form a

system of n+2
2 linear forms which are linearly independent on U0. Then the sum of

the corresponding H -exponents is(n

2
− ε/3

)
+ (−1 + ε) − n − 2

2
= 2ε/3 > 0.
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So by Proposition 7.1, there are proper linear subspaces T1, . . . , Tm of U0 with
the property that for every H > 1 there is Ti ∈ {T1, . . . , Tm} such that the set of
x ∈ U0∩Zn+1 with (8.14) is contained in Ti . This implies that vectors x ∈ U0∩Zn+1

that satisfy (8.12) and for which x �∈ T1 ∩· · ·∩Tm necessarily have to satisfy (8.13).
To show that there are vectors x ∈ U0 ∩ Zn+1 with x �∈ T1 ∪ · · · ∪ Tm one

proceeds similarly as above, but applying Lemma 7.6 with w = n
2 instead of

Lemma 7.5: For appropriate η, Y , depending on ε, H , one may choose a basis

x(1), . . . , x( n+2
2 ) of U0 ∩ Zn+1 in c2λ(n+2)/2(Y )K (Y ), where c2 = c2(n) depends

only on n, and λ(n+2)/2(Y ) is the n+2
2 -th minimum of K (Y ) := K (ξ, n, n

2 , Y ). Then
one takes linear combinations as in (8.10), and by a counting argument arrives at a
vector x with (8.12) which does not lie in T1 ∪· · ·∪Tm , hence satisfies (8.13). Here,
we don’t have to impose (8.8). This completes the proof of Lemma 8.2.

9. Proof of Theorem 3.1

We first prove the following analogue of Theorem 2.5.

Proposition 9.1. Let n be a positive integer and ξ a complex, non-real algebraic
number of degree > n. Then

w̃n(ξ) = w̃∗
n(ξ) = ˆ̃wn(ξ) = n − 1 − max

{
n − 1

2
, tn(ξ) − 1

}
.

Put vn(ξ) := n − 1 − max{ n−1
2 , tn(ξ) − 1}. Completely similarly as in Lemma 4.4

we have
w̃∗

n(ξ) ≤ w̃n(ξ), ˆ̃wn(ξ) ≤ w̃n(ξ).

Therefore, in order to prove Proposition 9.1, it suffices to prove the inequalities

w̃∗
n(ξ) ≥ vn(ξ), ˆ̃wn(ξ) ≥ vn(ξ), w̃n(ξ) ≤ vn(ξ).

These inequalities are proved in Lemmata 9.2 and 9.3 below. The integer n and the
algebraic number ξ will be as in the statement of Proposition 9.1.

Lemma 9.2. We have

w̃∗
n(ξ) ≥ vn(ξ), ˆ̃wn(ξ) ≥ vn(ξ).

Proof. We proceed as in Bugeaud and Teulié [5], using a method developed by Dav-
enport and Schmidt [9] (see also [2, Theorem 2.11]). As in Section 7, we consider
the symmetric convex body

K (ξ, n, w, H) := {x ∈ Rn+1 : |xnRe (ξn) + . . . + x1Re (ξ) + x0| ≤ H−w,

|xnIm (ξn) + . . . + x1Im (ξ) + x0| ≤ H−w,

|x0| ≤ H, . . . , |xn| ≤ H},
where x = (x0, . . . , xn) and w ∈ R.
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Set w := vn(ξ). For brevity, we denote the convex body K (ξ, n, w, H) by
K (H).

Let ε > 0 be a real number. Then in both the cases tn(ξ) ≤ (n + 1)/2 and
tn(ξ) = (n + 2)/2 we have, by Lemmata 7.5 and 7.6, respectively, that for every
sufficiently large real number H ,

λn+1(H) < H ε,

where λn+1(H) denotes the largest successive mimimum of K (H).
There is a constant c1 = c1(n) such that the convex body c1λn+1(H)K (H)

contains a basis of Zn+1,

x(i) = (x (i)
0 , . . . , x (i)

n ) (i = 1, . . . , n + 1),

say. This means that there exist n + 1 integer polynomials

Pi = x (i)
n Xn + . . . + x (i)

1 X + x (i)
0 , (i = 1, . . . , n + 1),

that form a basis of the Z-module of polynomials in Z[X ] of degree at most n and
for which

H(Pi ) ≤ c1 H1+ε, (1 ≤ i ≤ n + 1), (9.1)

and

max{|Re (Pi (ξ))|, |Im (Pi (ξ))|} ≤ c1 H−w+ε, (1 ≤ i ≤ n + 1). (9.2)

There is a unique polynomial Q = Xn+1 + ∑n
i=0 yi Xi ∈ R[X ] such that{

Re Q(ξ) = H−w+2ε, Im Q(ξ) = H−w+2ε, Im Q′(ξ) = H1+2ε,

y3 = · · · = yn = 0.
(9.3)

Indeed, if we express Re Q(ξ), Im Q(ξ) and Im Q′(ξ) as linear forms in y0, . . . , yn
they form together with y3, . . . , yn a linearly independent system of rank n +1, and
so (9.3) gives rise to a system of linear equations with a unique solution y0, . . . , yn .

By expressing y0, y1, y2 as a linear combination of these linear forms, we ob-
tain

|yi | � H1+2ε for i = 0, 1, 2, (9.4)

where here and below, constants implied by � depend on n, ξ, ε only. Since
P1, . . . , Pn+1 span the vector space of polynomials with real coefficients of degree
at most n, there are reals θ1, . . . , θn+1 such that

Q = Xn+1 + 2
n+1∑
i=1

θi Pi .
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Now choose integers t1, . . . , tn with

|θi − ti | ≤ 1 (i = 1, . . . , n + 1), (9.5)

and define the polynomial

P := Xn+1 + 2
n+1∑
i=1

ti Pi .

Write P = Xn+1 + ∑n
i=1 xi Xi .

For a suitable choice of t1, . . . , tn+1, the polynomial P is irreducible. In-
deed, since P1, . . . , Pn+1 span the Z-module of all integer polynomials of degree
at most n, at least one of the constant terms x (1)

0 , . . . , x (n+1)
0 of P1, . . . , Pn+1, re-

spectively, must be odd. Without loss of generality we assume this to be x (1)
0 .

For a fixed n-tuple (t2, . . . , tn+1), there are two choices for t1, that we denote by
t1,0 and t1,1 = t1,0 + 1. Since x (1)

0 is odd, we can choose t1 ∈ {t1,0, t1,1} such

that t1x (1)
0 + · · · + tn+1x (n+1)

0 is odd. Then the constant coefficient of P , namely

2(t1x (1)
0 + . . .+ tn+1x (n+1)

0 ), is not divisible by 4, and the irreducibility of P follows
from the Eisenstein criterion applied with the prime number 2.

From (9.5), (9.1), it follows that the absolute values of the coefficients of P−Q
are � H1+ε. Further, by (9.2), (9.1) we have

|Re P(ξ) − Re Q(ξ)| � H−w+ε, |Im P(ξ) − Im Q(ξ)| � H−w+ε,

|Im P ′(ξ) − Im Q′(ξ)| � H1+ε.

Together with (9.3), (9.4) this implies, assuming that H is sufficiently large,

H(P) ≤ H1+3ε, (9.6)

and moreover,

|P(ξ)| ≤ |Re P(ξ)| + |Im P(ξ)| ≤ H−w+3ε, |P ′(ξ)| ≥ |Im P ′(ξ)| ≥ H1+ε.

Ignoring the lower bound for |P ′(ξ)|, we infer that

ˆ̃wn(ξ) ≥ (w − 3ε)/(1 + 3ε).

Since ε is arbitrary, we get the second statement of the lemma. Furthermore, we
deduce that the monic polynomial P has a complex root α with

|ξ − α| � |P(ξ)|
|P ′(ξ)| � H(α)−(w+1−2ε)/(1+3ε).

Since ε is arbitrary, this shows that

w̃∗
n(ξ) ≥ w = vn(ξ),

and the proof of Lemma 9.2 is complete.

We now prove an upper bound for w̃n(ξ).
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Lemma 9.3. We have

w̃n(ξ) ≤ vn(ξ). (9.7)

Proof. It suffices to show that for every w > vn(ξ), the inequality

0 < |P(ξ)| ≤ H(P)−w (9.8)

has only finitely many solutions in monic polynomials P ∈ Z[X ] of degree at most
n + 1. By replacing any monic polynomial P of degree k < n + 1 satisfying (9.8)
by Xn−k P and modifying w a little bit, one easily observes that it suffices to show
that for every w > vn(ξ), inequality (9.8) has only finitely many solutions in monic
polynomials P ∈ Z[X ] of degree precisely n + 1.

We have again to distinguish between the cases tn(ξ) ≤ n+1
2 and tn(ξ) = n+2

2 .
The first case is dealt with by a modification of the proof of Lemma 7.5, and the
second by a modification of the proof of Lemma 7.6.

First assume that tn(ξ) ≤ n+1
2 . Then vn(ξ) = n−1

2 . Consider the inequality
(9.8) to be solved in monic polynomials P ∈ Z[X ] of degree n + 1. Define the
polynomial P = ∑n+1

i=0 xi Xi where xn+1 = 1 and put x = (x0, . . . , xn, xn+1),
H := H(P). Define the linear forms

L̃1 := Re

(
n+1∑
i=0

ξ i Xi

)
, L̃2 := Im

(
n+1∑
i=0

ξ i Xi

)
, M̃ :=

n+1∑
i=0

ξ i Xi .

Then we can translate (9.8) into{|L̃1(x)| ≤ H−w, |L̃2(x)| ≤ H−w,

|x0| ≤ H, . . . , |xn| ≤ H, |xn+1| ≤ 1, xn+1 �= 0, M̃(x) �= 0.
(9.9)

We prove that for every w > n−1
2 there is Hw > 1 such that if (9.9) has a solution

x ∈ Zn+2 then H < Hw. This implies at once that for every w > n−1
2 there are

only finitely many monic polynomials P ∈ Z[X ] of degree ≤ n + 1 with (9.8), and
hence that w̃n(ξ) ≤ n−1

2 = vn(ξ).

We apply Lemma 7.2. Let w > n−1
2 . We have to verify (7.3). First, let U be

a linear subspace of Qn+2 of dimension m > n+3
2 on which Xn+1 and M̃ are not

identically 0. Then L̃1, L̃2, Xn+1 are linearly independent on U . For if not, then
the linear forms

L1 := Re

(
n∑

i=0

ξ i Xi

)
, L2 := Im

(
n∑

i=0

ξ i Xi

)
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are linearly dependent on U ∩ {xn+1 = 0} which has dimension larger than n+1
2 .

But by part (ii) of Lemma 7.4 this is impossible. Now choose m − 3 coordinates
from X0, . . . , Xn which together with L̃1, L̃2, Xn+1 are linearly independent on U .
Then the H -exponents corresponding to these linear forms have sum

2w + 0 + (3 − m) > n + 2 − m ≥ 0.

Now let U be a linear subspace of Qn+2 of dimension m with 2 ≤ m ≤ n+3
2 on

which Xn+1, M̃ do not vanish identically. Then there is L̃i ∈ {L̃1, L̃2} such that
L̃i and Xn+1 are linearly independent on U . For if not then both L1 and L2 vanish
identically on U ∩{xn+1 = 0} which is impossible by part (i) of Lemma 7.4. Choose
m − 2 coordinates from X0, . . . , Xn which together with L̃i and Xn+1 are linearly
independent on U . Then the H -exponents corresponding to these linear forms have
sum

w + 0 + (2 − m) >
n − 1

2
+ 2 − m ≥ 0.

Finally, let U be a one-dimensional linear subspace of Qn+2 on which none of
Xn+1, M̃ , vanishes identically. Then there is L̃i ∈ {L̃1, L̃2} not vanishing identi-
cally on U , and the H -exponent corresponding to this linear form is w > 0. We
conclude that condition (7.3) of Lemma 7.2 is satisfied. So indeed there is Hw > 0
such that if (9.9) is satisfied by some x ∈ Zn+1 then H < Hw. This settles the case
that tn(ξ) ≤ n+1

2 .

Now assume that tn(ξ) = n+2
2 . Then vn(ξ) = n−2

2 . Further, by Lemmata 4.2
and 4.3, n is even, n + 1 < deg ξ , and

tn+1(ξ) = tn(ξ) = n + 2

2
. (9.10)

Choose µ0 = α0 + √−1 · β0 with α0, β0 ∈ R such that dim Vn(µ0, ξ) = tn(ξ) =
n+2

2 . Define the linear form

M̃1 = 1

|α0| + |β0| ·
(
β0 L̃1 + α0 L̃2

)
= 1

2
√−1(|α0| + |β0|)

(
µ0

n+1∑
i=0

xiξ
i − µ0

n+1∑
i=0

xiξ
i

)
.

Let

Ũ0 = {x ∈ Qn+2 : M̃1(x) = 0}.

Then x = (x0, . . . , xn+1) ∈ Ũ0 if and only if
∑n+1

i=0 xi Xi ∈ Vn+1(µ0, ξ).
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We claim that Xn+1 = 0 identically on Ũ0. Suppose Ũ0 contains a vector
x = (x0, . . . , xn+1) with xn+1 �= 0. Then the polynomial

∑n+1
i=0 xi Xi belongs to

Vn+1(µ0, ξ) but not to Vn(µ0, ξ) which is impossible by (9.10). This argument
shows also that dim Ũ0 = dim Vn(µ0, ξ) = n+2

2 .

There are linear forms M̃2, . . . , M̃n/2 in X0,. . . ,Xn+1 with the following prop-
erties: M̃2, . . . , M̃n/2 vanish indentically on Ũ0; {M̃1, M̃2, . . . , M̃n/2, Xn+1} is lin-
early independent; and each M̃i (i = 2, . . . , n

2 ) has real algebraic coefficients whose
absolute values have sum equal to 1.

Let ψ be a surjective linear mapping from Rn+2 to R
n+2

2 with kernel RŨ0 such

that the restriction of ψ to Zn+2 maps surjectively to Z
n+2

2 and has kernel Ũ0∩Zn+2.

For i = 1, . . . n
2 , let M̃∗

i be the linear form on R
n+2

2 with M̃i = M̃∗
i ◦ ψ . Further, let

M̃∗
0 be the linear form on R

n+2
2 such that Xn+1 = M̃∗

0 ◦ ψ . Then M̃∗
0 , . . . , M̃∗

n/2 are
linearly independent.

Let w > vn(ξ) = n−2
2 . Let P ∈ Z[X ] be a monic polynomial of degree n + 1

satisfying (9.8). Write P = ∑n+1
i=0 xi Xi , xn+1 = 1, x = (x0, . . . , xn+1), H :=

H(P). Then x satisfies (9.9). By an easy computation it follows that y := ψ(x)

satisfies {|M̃∗
1 (y)| ≤ H−w, |M̃∗

i (y)| ≤ H (i = 2, . . . , n/2),

|M̃∗
0 (y)| ≤ 1, M∗

0 (y) �= 0.
(9.11)

We show that system (9.11) satisfies condition (7.3) of Lemma 7.2. First let U =
Q

n+2
2 . As observed before, the linear forms M̃∗

0 , . . . , M̃∗
n/2 are linearly independent,

and the H -exponents corresponding to these linear forms have sum

w − (n − (n/2) − 1) + 0 > 0.

Now let U be a linear subspace of Q
n+2

2 of dimension m with 0 < m ≤ n
2 on which

M̃∗
0 does not vanish identically. The linear form M̃1 can not vanish identically on

ψ−1(U ) since ψ−1(U ) is strictly larger than U0, therefore, M̃∗
1 does not vanish

identically on U . Choose m − 1 linear forms among M̃∗
0 , M̃∗

2 , . . . , M̃∗
n/2 which

together with M̃∗
1 are linearly independent on U . Then the sum of the H -exponents

corresponding to these linear forms is at least

w − (m − 1) ≥ w − ((n/2) − 1) > 0.

Hence condition (7.3) of Lemma 7.2 is satisfied. It follows that there is Hw > 0
such that if system (9.11) is solvable in y ∈ Z

n+2
2 then H ≤ Hw. Hence for every

monic polynomial P ∈ Z[X ] of degree n + 1 with (9.8) we have H(P) ≤ Hw,
implying that (9.8) has only finitely many solutions.

As observed above, Proposition 9.1 follows from Lemmata 9.2 and 9.3.
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Proof of Theorem 3.1. We first prove (3.1). Assume that deg ξ =: d ≤ n + 1. By
Liouville’s inequality (4.1) we have w̃n(ξ) ≤ d−2

2 . By Proposition 9.1 and Lemma

4.3 we have w̃∗
d−1(ξ) = ˆ̃wd−1(ξ) = d−2

2 . Hence

w̃∗
n(ξ) ≥ w̃∗

d−1(ξ) = d − 2

2
, ˆ̃wn(ξ) ≥ ˆ̃wd−1(ξ) = d − 2

2
.

These facts together imply (3.1).
The equalities (3.2) and (3.3) follow at once by combining Proposition 9.1

with part (ii) of Lemma 4.2. The last assertion of Theorem 3.1 follows at once from
Theorem 2.5 and Proposition 9.1. This completes the proof of Theorem 3.1.

10. A refined question

The exponents wn, ŵn, . . . are defined as suprema of certain sets of real numbers.
We may further ask whether the suprema are also maxima. In other words, for a
given complex number ξ , a positive integer n, do there exist a constant c(ξ, n) and
infinitely many integer polynomials P(H) of degree at most n such that

0 < |P(ξ)| ≤ c(ξ, n) H(P)−wn(ξ) ?

This is Problem P.1 on [2, page 210].
When ξ is algebraic and real, the answer is clearly positive, by Dirichlet’s

theorem. When ξ is algebraic and non-real, we have already seen that wn(ξ) can
be much larger than expected; however, the answer to the above question is also
positive.

Proposition 10.1. For any positive integer n and any complex, non-real algebraic
number ξ , there exist a constant c(ξ, n) > 0 and infinitely many integer polynomials
P(H) of degree at most n such that

0 < |P(ξ)| ≤ c(ξ, n) H(P)−wn(ξ). (10.1)

Proof. This follows from (the proof of) Satz 1 from Schmidt [21]; however, we feel
that it is better to include a complete proof. Constants implied by � , � depend
only on n, ξ .

First assume that d := deg ξ > n. We apply part (i) of Lemmata 7.5 and 7.6,
respectively, with w = wn(ξ). Then in view of Theorem 2.5, in both the cases
tn(ξ) ≤ n+1

2 , tn(ξ) = n+2
2 , we have that for every H ≥ 1 the first minimum

λ1(ξ, n, w, H) of the convex body K (ξ, n, w, H) defined by (7.9) is � 1. Conse-
quently, for every H ≥ 1, there is a non-zero polynomial P = ∑n

i=0 xi Xi ∈ Z[X ]
such that

|Re P(ξ)| = |L1(x)| � H−w, |Im P(ξ)| = |L2(x)| � H−w,

H(P) = max{|x0|, . . . , |xn|} � H.
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This clearly implies |P(ξ)| � H−w � H(P)−w. Arbitrarily large H cannot give
rise to the same polynomial P since otherwise we would have P(ξ) = 0, against
our assumption that deg ξ > n. This proves Proposition 10.1 in the case that d > n.

To treat the case n ≥ d we simply have to observe that by Theorem 2.1 we
have wn(ξ) = wd−1(ξ) = d−2

2 and that by what we have proved above, (10.1) has
already infinitely many solutions in polynomials P of degree at most d − 1.

Actually, the above proof yields that the analogue of Proposition 10.1 is true
for the uniform exponent of approximation ŵn . However, it is a very interesting, but
presumably very difficult, question to decide whether the analogue of Proposition
10.1 holds for the exponent w∗

n .
We briefly summarize what is known on this question.

Proposition 10.2. For any positive integer n and any complex algebraic number ξ

of degree n + 1, there exist a constant c(ξ) and infinitely many algebraic numbers
α of degree at most n such that

0 < |ξ − α| ≤ c(ξ) H(α)−w∗
n(ξ)−1.

Proof. When ξ is real, Proposition 10.2 has been established by Wirsing [25] (see
also [2, Theorem 2.9], which reproduces an alternative proof, due to Bombieri and
Mueller [1]). Without any additional complication, the same method gives the re-
quired result when ξ is complex and non-real.

Furthermore, Davenport and Schmidt [7] proved that for every real algebraic
number ξ of degree at least 3, there exist a constant c(ξ) and infinitely many alge-
braic integer α of degree at most 2 such that

0 < |ξ − α| ≤ c(ξ) H(α)−w∗
2(ξ)−1 = c(ξ) H(α)−3.

This is a consequence of a more general result of theirs on linear forms [8, 10],
which is the key tool for the proof of the second assertion of the next proposition.

Proposition 10.3.

(i) For any complex algebraic number ξ of degree greater than 2, there exist a
constant c(ξ) and infinitely many algebraic numbers α of degree at most 2 such
that

0 < |ξ − α| ≤ c(ξ) H(α)−w∗
2(ξ)−1.

(ii) For any complex algebraic number ξof degree greater than 4 satisfyingw∗
4(ξ)=

2, there exist a constant c(ξ) and infinitely many algebraic numbers α of degree
at most 4 such that

0 < |ξ − α| ≤ c(ξ) H(α)−w∗
4(ξ)−1.
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Proof. Let ξ be a complex non-real number of degree greater than 2. By the proof
of Proposition 10.1, there are infinitely many integer quadratic polynomials P sat-
isfying

|P(ξ)| � H(P)−w2(ξ), |P(ξ)| � H(P)−w2(ξ).

Such a polynomial P has a root very near to ξ and another very near to ξ .
Consequently, it satisfies |P ′(ξ)| � H(P) and its root α near to ξ is such that
|ξ − α| � H(α)−w2(ξ)−1. This proves the first part of the proposition since
w2(ξ) = w∗

2(ξ).
Let ξ be a complex (non-real) algebraic number of degree > 4 satisfying

w∗
4(ξ) = 2. By Theorem 2.5, this means that t4(ξ) = 3, i.e., there is µ0 such

that dim V4(µ0, ξ) = 3. Let U0 be the vector space of x = (x0, . . . , x4) ∈ Q5 such
that

∑4
i=0 xi Xi ∈ V4(µ0, ξ). Define the linear forms L1, L2, L ′

1, L ′
2 by

L1(x) = Re P(ξ), L2(x) = Im P(ξ), L ′
1(x) = Re P ′(ξ), L ′

2(x) = Im P ′(ξ),

where P = ∑4
i=0 xi Xi . By Lemma 7.4, the linear forms L1, L2 are linearly

dependent on U0. On the other hand, by the claim in the proof of Lemma 8.2,
there are i, j ∈ {1, 2} such that Li , L ′

j are linearly independent on U0. Choose
linearly independent polynomials P1, P2, P3 from V4(µ0, ξ) with integer coeffi-
cients. By Lemma 4.2 we may assume deg P1 < deg P2 < deg P3 = 4. Express
P ∈ V4(µ0, ξ) as y1 P1 + y2 P2 + y3 P3 with y = (y1, y2, y3) ∈ Q3. Thus, Re P(ξ),
Im P(ξ), Re P ′(ξ), Im P ′(ξ) can be expressed as linear forms in y,

Re P(ξ) = M1(y), Im P(ξ) = M2(y), Re P ′(ξ) = M ′
1(y), Im P ′(ξ) = M ′

2(y)

say, and by the above, M1, M2 are linearly dependent and there are i, j ∈ {1, 2}
such that Mi , M ′

j are linearly independent.

By [8, Theorem 2.1], there are infinitely many integer triples y = (y1, y2, y3)

with

|Mi (y)| � |M ′
j (y)| × ‖y‖−3,

where ‖y‖ = max{|y1|, |y2|, |y3|}. This implies that there are infinitely many inte-
ger polynomials P of degree 4 of the shape y1 P1 + y2 P2 + y3 P3 with y1, y2, y3 ∈ Z
such that

|P(ξ)|
|P ′(ξ)| � H(P)−3.

Consequently, there are infinitely many algebraic numbers α of degree at most 4
such that |ξ − α| � H(α)−3. This completes the proof of Proposition 10.3.
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briques de degré donné, Acta Arith. 93 (2000), 77–86.

[6] J. W. S. CASSELS, “An Introduction to the Geometry of Numbers”, Springer Verlag, 1997.
[7] H. DAVENPORT and W. M. SCHMIDT, Approximation to real numbers by quadratic irra-

tionals, Acta Arith. 13 (1967), 169–176.
[8] H. DAVENPORT and W. M. SCHMIDT, A theorem on linear forms, Acta Arith. 14

(1967/1968), 209–223.
[9] H. DAVENPORT and W. M. SCHMIDT, Approximation to real numbers by algebraic inte-

gers, Acta Arith. 15 (1969), 393–416.
[10] H. DAVENPORT and W. M. SCHMIDT, Dirichlet’s theorem on Diophantine approximation

II, Acta Arith. 16 (1970), 413–423.
[11] J.-H. EVERTSE and H.P. SCHLICKEWEI, A quantitative version of the Absolute Parametric

Subspace Theorem, J. Reine Angew. Math. 548 (2002), 21–127.
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