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Equiconvergence theorems for Chébli-Trimèche hypergroups

LUCA BRANDOLINI AND GIACOMO GIGANTE

Abstract. We consider a Sturm-Liouville operator of the kind d2

dt2 + A′(t)
A(t)

d
dt

on (0, +∞) and the related eigenfunction expansion. We prove that, under suit-
able assumptions on A (t), the partial sums of the Fourier integral associated to
such expansion behave like the partial sums of the classical Fourier-Bessel trans-
form. This implies an almost everywhere convergence result for L p (A (t) dt)
functions. Our methods rely on asymptotic expansions for the eigenfunctions and
the Harish-Chandra function that we prove under very weak hypotheses.

Mathematics Subject Classification (2000): 43A62 (primary); 43A32, 34L10
(secondary).

Differential operators of the kind

L = d2

dt2
+ A′ (t)

A (t)

d

dt
(0.1)

and the associated spectral decompositions arise naturally in harmonic analysis. For
example when A (t) = tn−1, the operator L is the radial part of the Laplacian in
Rn and in this case the associated spectral decomposition is the so called Fourier-
Bessel expansion that corresponds to the harmonic analysis of radial functions in
Rn . This transform is defined for any α � − 1

2 by

Fα f (λ) =
∫ +∞

0
f (t) 2α� (α + 1)

Jα (λt)

(λt)α
t2α+1dt

but of course it can be interpreted as a Fourier transform of a radial function only
when α = (n − 2)/2. The inversion formula associated to this transform is given
by

f (t) =
∫ +∞

0
Fα f (λ) 2α� (α + 1)

Jα (λt)

(λt)α
λ2α+1dλ

4α�2 (α + 1)
. (0.2)

In a non compact symmetric space of rank one there are values of α and β such
that, setting A (t) = (sinh t)2α+1 (cosh t)2β+1, one obtains the radial part of the
Laplace-Beltrami operator and in this case the associated spectral decomposition is
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the harmonic analysis of spherical functions. More precisely in this setting one has
the Fourier-Jacobi transform

Hα,β f (λ) =
∫ +∞

0
f (t) ϕλ (t) (sinh t)2α+1 (cosh t)2β+1 dt

and the inversion formula

f (t) =
∫ +∞

0
Hα,β f (λ) ϕλ (t)

dλ

2π |c (λ)|2

where

ϕλ (t) = 2 F1

(
α + β + 1 − iλ

2
,
α + β + 1 + iλ

2
; α + 1; − sinh2 (t)

)
is the Jacobi function (see e.g. [6] or [8]) and

c (λ) =
� (α + 1) � (iλ/2) �

(
(1 + iλ)

2

)
2
√

π�

(
α + β + 1 + iλ

2

)
�

(
α − β + 1 + iλ

2

)
is the Harish-Chandra function.

In this paper we will study the convergence properties of the inversion of the
expansion associated to the operator L, under suitable assumption on the function
A (t).

Our starting point is a theorem of Colzani, Crespi, Travaglini and Vignati (see
[6]) that can be stated in the following way.

Let α � − 1
2 and let

T α
R f (t) =

∫ R

0
Fα f (λ) 2α� (α + 1)

Jα (λt)

(λt)α
λ2α+1dλ

4α�2 (α + 1)

be the R-th partial sum of the Fourier-Bessel integral. When α = − 1
2 we obtain the

classical cosine expansion and in this case we set CR = T
− 1

2
R .

Theorem 0.1. Let f ∈ L1
(

R+, tα+ 1
2

1+t dt

)
and let 0 < t < +∞, then

lim
R→+∞

∣∣∣T α
R f (t) − t−α− 1

2 CR[(·)α+ 1
2 f (·)] (t)

∣∣∣ = 0.

Moreover the convergence is uniform in every interval 0 < ε < t < η < +∞.
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In [6] the authors also sketch a similar equiconvergence result for the Fourier-
Jacobi expansion Hα,β in the case α = 1

2 and β = 1
2 .

One of the main results of this paper is an equiconvergence theorem for the par-

tial sums associated to the spectral decomposition of operator of the kind L = d2

dt2 +
A′(t)
A(t)

d
dt . More precisely we will show that such partial sums behave like the par-

tial sums of the Fourier-Bessel transform for a suitable value of the dimensional
parameter α.

0.1. Assumptions

We now introduce the main hypotheses on the function A (t).
Let A : [0, +∞) → R and assume that

(H1) A ∈ C∞ (0, +∞) and it is continuous in 0.
(H2) A is positive in (0, +∞) .

(H3) There exists α > − 1
2 and an odd function B ∈ C∞ (R) such that

A′ (t)
A (t)

= 2α + 1

t
+ B (t) for t ∈ (0, +∞) .

(H4) A′
A is nonnegative, decreasing on (0, +∞) and lim

t→+∞ A (t) = +∞.

By (H3) we have A (t) ∼ ct2α+1 as t → 0+. From now on we assume that A (t) is
normalized in such a way that c = 1. We also set

2ρ = lim
t→+∞

A′ (t)
A (t)

. (0.3)

The above assumptions allow to define in the half-line the so called Chébli-Trimèche
hypergroup (see [1, Section 3.5] for the details). The harmonic analysis associated
to the differential operator L and the corresponding hypergroup have been studied
by several authors. We refer the reader to [1] and [16].

Let λ ∈ C, by Bôcher [3] the Cauchy problem
Lu + (

λ2 + ρ2
)

u = 0
u (0) = 1
u′ (0) = 0,

has a unique solution ϕλ defined in [0, +∞). It is an easy task to see that |ϕλ (x)| �
1 for λ2 + ρ2 � 0. Indeed, multiplying by ϕ′

λ the above equation and integrating
one obtains ∫ x

0
ϕ′

λLϕλdt +
(
λ2 + ρ2

) ∫ x

0
ϕλϕ

′
λdt = 0,
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and a direct computation shows that the first term is positive and the second one
equals 1

2

(
λ2 + ρ2

) [
ϕλ (x)2 − ϕλ (0)2]. It follows that |ϕλ (x)| � 1.

Let now f ∈ L1 (A (t) dt). The Fourier transform of f is defined by

f̂ (λ) =
∫ +∞

0
f (t) ϕλ (t) A (t) dt.

For this Fourier transform an inversion formula is given by

f (t) =
∫ +∞

0
f̂ (λ) ϕλ (t)

dλ

2π |c (λ)|2
where c (λ) is associated the Harish-Chandra function (see Section 1.3 below).

By means of the classical Liouville transformation

v (t) = √
A (t)u (t)

the equation Lu + (
λ2 + ρ2

)
u = 0 can be written as

v′′ + λ2v = q (t) v

where

q (t) = 1

4

(
A′ (t)
A (t)

)2

+ 1

2

(
A′ (t)
A (t)

)′
− ρ2. (0.4)

Since A′(t)
A(t) = 2α+1

t + B (t) by (H3) the above equation takes the form

v′′ +
λ2 −

α2 − 1

4
t2

 v = G (t) v (0.5)

where

G (t) = 1

2
B ′ (t) +

(
α + 1

2

)
B (t)

t
+ B (t)2

4
− ρ2. (0.6)

Being G (t) smooth, equation (0.5) can be seen as a perturbation of Bessel equation
and one can expect that its solutions can be approximated at the origin by Bessel
functions. This is indeed the case, at least for large λ, as we will show in Theo-
rem 1.2. To deal with the case λ small we need more precise information on the
behavior of q (t) at infinity. We make the following extra assumption.

(H5) There exists a � 0 such that

q (t) = a2 − 1/4

t2
+ ζ (t)

for some ζ ∈ L1 ((1, +∞) , tdt) for a > 0 or ζ ∈ L1 ((1, +∞) , t log t dt)
for a = 0.
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We will show in Remark 1.15 that under the above assumption for t → +∞√
A (t)ϕ0 (t) ∼ ct

1
2 +b

where b > − 1
2 and |b| = a or√

A (t)ϕ0 (t) ∼ ct
1
2 log t .

This last singular case may occur only for a = 0. In this case we set b = 0.
In some cases we need a stronger integrability condition on the function ζ (t).

Namely

(H6) When − 1
2 < b < 0 and

√
A (t)ϕ0 (t) ∼ ct

1
2 +b we assume that ζ (t) ∈

L1
(
(1, +∞) , t2|b|+1dt

)
. When b = 0 and

√
A (t)ϕ0 (t) ∼ ct

1
2 we assume

ζ (t) ∈ L1
(
(1, +∞) , t log2 t dt

)
.

We will show that this case can be given only when ρ = 0, so that ϕ0 (t) ≡ 1.

0.2. Main results

In order to state our main results let us define the following partial sum operators

SR f (t) =
∫ R

0
f̂ (λ) ϕλ (t)

dλ

2π |c (λ)|2 ,

and

FR f (t) = tα+ 1
2√

A (t)
T α

R

( √
A

(·)α+ 1
2

f

)
(t) .

Our main result is the following

Theorem 0.2. Assume (H1) to (H6) hold and let ζ ′ (t) ∈ L1 ((1, +∞) , dt). Then

for every f ∈ L1
(
R+,

√
A(t)

1+t dt
)

, SR f (t) and FR f (t) are well defined and for

every t ∈ [0, +∞)

lim
R→+∞ |SR f (t) − FR f (t)| = 0.

Corollary 0.3. Assume (H1) to (H6) hold and let ζ ′ (t) ∈ L1 ((1, +∞) , dt). As-
sume ρ = 0 and 4α+4

2α+3 < q < 4b+4
2b+1 , or ρ > 0 and 4α+4

2α+3 < q � 2. Then for every
f ∈ Lq

(
R+, A (t) dt

)
lim

R→+∞ SR f (t) = f (t) a.e.



216 LUCA BRANDOLINI AND GIACOMO GIGANTE

In the case of noncompact symmetric spaces of rank one, the above Corollary was
obtained by Meaney and Prestini in [12] and [13], using the boundedness of the
related maximal operator.

The next Theorem shows that the above results are essentially sharp.

Theorem 0.4. Assume (H1) to (H5) hold. If ρ > 0 the operator SR cannot be
defined from L p

(
R+, A (t) dt

)
into the space of tempered distributions for any p >

2. If ρ = 0 the operator SR cannot be defined from L p
(
R+, A (t) dt

)
into the space

of tempered distributions for any p � 4b+4
2b+1 .

Theorem 0.5. Assume (H1) to (H5) hold. There exists f ∈ L
4α+4
2α+3

(
R+, A (t) dt

)
supported in (0, 1) such that SR f (x) diverges as R → +∞ for every x ∈ (0, +∞).

As we pointed out before, the equiconvergence Theorem 0.2 is based upon the
asymptotic expansions of the eigenfunctions ϕλ (x) and the Harish-Chandra func-
tion c (λ) . Some of this kind of results are well known, some are not. In particular,
our techniques require to know the behaviour of the function c (λ) for Im λ � 0 and
|λ| small. In [2], Bloom and Xu solve this problem, apart from the case which, in
our notation, corresponds to ρ = 0, −1/2 < b � 0, A (t) recessive (see Definition
1.11). This case has been studied by O. Bracco in his Ph. D. thesis [4], but only in
the case λ ∈ R. In this paper we completely solve the problem, with weaker hy-
potheses than those required in [2] (see Theorem 2.4 here). In an effort to make the
paper more accessible, even for the reader unfamiliar with this subject, we decided
to state all these approximation results, both old and new, with complete proofs.
Sections 1 and 2 are therefore devoted to these matters, and are essentially self-
contained. In Section 3 we prove the convergence and divergence results. In the
Appendix we state some general results on asymptotic approximation of eigenvalue
problems, that we use repeatedly in Sections 1 and 2.

As a final remark, we would like to emphasize that the proof of the equicon-
vergence result does not require the Fourier inversion formula (0.2). This, in fact,
is an immediate consequence of Corollary 0.3.

Corollary 0.6 (Inversion formula (see [2])). Assume (H1) to (H6) hold and let
ζ ′ (t) ∈ L1 ((1, +∞) , dt). Let f ∈ L1

(
R+, A (t) dt

) ⋂ C
(
R+)

and assume that

f̂ ∈ L1
(
R+, dλ

2π |c(λ)|2
)

, then

f (t) =
∫ +∞

0
f̂ (λ) ϕλ (t)

dλ

2π |c (λ)|2 .

0.3. Notation and preliminary estimates

In this section we introduce the notation that will be used throughout the paper. We
will also recall some definitions and well known estimates for Bessel functions.
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By f (t) ∼ g (t) as t → t0 we mean

lim
t→t0

f (t)

g (t)
= 1.

By f (t) = o (g (t)) as t → t0 we mean

lim
t→t0

f (t)

g (t)
= 0.

By f (t) = O (g (t)) we mean that there is a positive constant c such that∣∣∣∣ f (t)

g (t)

∣∣∣∣ � c.

By f (t) ≈ g (t) we mean that there are positive constants c1 and c2 such that

c1 � f (t)

g (t)
� c2.

The symbol C∗ denotes the non zero complex numbers, R+ denotes the positive
real numbers and R− denotes the negative real numbers.

The Wronskian determinant of the functions f and g is the function W( f, g)=
f g′ − f ′g.

The Bessel function of the first kind of order ν will be as usual denoted by
Jν (x), the Bessel function of the second kind of order ν by Yν (x) and the Bessel
functions of third kind (Hankel functions) of order ν by H (1)

ν (x) and H (2)
ν (x),

H (1)
ν (x) = Jν (x) + iYν (x)

H (2)
ν (x) = Jν (x) − iYν (x) .

We will use the notation

Jν (x) = √
x Jν (x)

Yν (x) = √
xYν (x)

H(1)
ν (x) = √

x H (1)
ν (x)

H(2)
ν (x) = √

x H (2)
ν (x) .

All these are multivalued holomorphic functions on C∗, and we will consider their
principal branch on the complex plane cut along the ray (−∞, 0]. For a negative x
we will agree to define

H(2)
ν (x) = lim

z→x
Im z<0

H(2)
ν (z) .
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In other words we will take the principal branch of H(2)
ν (z) for all z ∈ C∗ with

−π � arg (z) < π .

In the sequel we will use the notation 〈x〉 = |x |
1+|x | . Observe that for small value

of x , 〈x〉 ≈ |x | while for large x , 〈x〉 ≈ 1.

Proposition 0.7. For all ν > − 1
2 the following estimates hold uniformly in t > 0,

λ ∈ C∗.

|Jν (λt)| � C 〈λt〉ν+1/2 e|Im λ|t ,∣∣∣∣ ∂

∂t
(Jν (λt))

∣∣∣∣ � C |λ| 〈λt〉ν−1/2 e|Im λ|t .

For ν �= 0,

|Yν (λt)| � C 〈λt〉−|ν|+1/2 e|Im λ|t ,∣∣∣∣ ∂

∂t
(Yν (λt))

∣∣∣∣ � C |λ| 〈λt〉−|ν|−1/2 e|Im λ|t .

Also

|Y0 (λt)| � C 〈λt〉1/2 log

(
2

〈λt〉
)

e|Im λ|t ,∣∣∣∣ ∂

∂t
(Y0 (λt))

∣∣∣∣ � C |λ| 〈λt〉−1/2 log

(
2

〈λt〉
)

e|Im λ|t .

For ν �= 0, ∣∣∣H(2)
ν (λt)

∣∣∣ � C 〈λt〉−ν+1/2 eIm λt,∣∣∣∣ ∂

∂t

(
H(2)

ν (λt)
)∣∣∣∣ � C |λ| 〈λt〉−ν−1/2 eIm λt.

Also

∣∣∣H(2)
0 (λt)

∣∣∣ � C 〈λt〉1/2 log

(
2

〈λt〉
)

eIm λt,∣∣∣∣ ∂

∂t

(
H(2)

0 (λt)
)∣∣∣∣ � C |λ| 〈λt〉−1/2 log

(
2

〈λt〉
)

eIm λt.

See [10, Chapter 5] for the details.
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1. Asymptotic expansion of the eigenfunctions

1.1. Estimates for ϕλ for large λ

In [7] Fitouhi and Hamza obtained an asymptotic expansion of the kind

√
A (t)ϕλ (t) =

M∑
m=0

am (t)
Jα+m (λt)

λm+α+1/2
+ RM (λ, t)

and suitable estimate for the remainder valid for λ ∈ R and t > 0. This expansion
essentially quantifies the effect of the perturbation B (t) of assumption (H3) by
showing that the eigenfunction ϕλ can be approximated using Bessel functions.
In the case of noncompact symmetric spaces this expansion has been previously
obtained by Stanton and Tomas (see [14]).

For the proof of Theorem 0.2 we need estimates for the remainder valid for
λ ∈ C. This estimates will be proved in Theorem 1.2 using a technique similar to
that of Fitouhi and Hamza.

Lemma 1.1. Let G be a smooth even function. Define recursively

b0 = 2α� (α + 1)

bm+1 (t) = − 1

2tm+1

∫ t

0
sm

(
b′′

m (s) + b′
m (s)

s
(1 − 2α) − G (s) bm (s)

)
ds.

Then bm is smooth and even. Also, calling am (t) = tmbm (t) we have

a′′
m + 1 − 2α − 2m

t
a′

m + 2αm + m2

t2
am − G (t) am + 2a′

m+1 = 0. (1.1)

Furthermore, assume that for all 0 � k � M one has

G(k) ∈ L1 ((1, +∞) , dt) .

Then for every 0 � m � M + 1 and 1 � k � M − m + 2 one has

a(k)
m ∈ L1 ((1, +∞) , dt) . (1.2)

Proof. Assume by induction that bm is smooth and even, then

sm
(

b′′
m (s) + b′

m (s)

s
(1 − 2α) − G (s) bm (s)

)
has the parity of m, it is smooth and is O (sm) near zero. Therefore its integral has
the parity of m + 1 and is O

(
tm+1

)
near zero. Multiplication by t−m−1 gives an

even smooth function. Equation (1.1) follows directly from the recursive definition
of bm+1.
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Assume now
G(k) ∈ L1 ((1, +∞) , dt)

for all 0 � k � M . To prove (1.2) assume by induction (on m) that a(k)
m ∈ L1 for

1 � k � M − m + 2.
Observe that since

am+1 (t) = −1

2

∫ t

0

(
smb′′

m + sm−1b′
m (1 − 2α) − G (s) am

)
ds

= −1

2

∫ t

0
a′′

m + 1 − 2α − 2m

s
a′

m + am

(
m2 + 2αm

s2
− G (s)

)
ds,

a(k)
m+1is a linear combination of expressions of the form t−k−1+
a(
)

m for
=0,. . . ,k+
1 or G(k−1−
)a(
)

m for 
 = 0, . . . k − 1, all integrable by the induction hypothesis if
1 � k � M − m + 1.

Theorem 1.2. Assume that (H1) to (H4) hold. Let G as in (0.6), let M � 0 and
assume G(k) ∈ L1 ((1, +∞) , dt) for 0 � k � M. Then for λ ∈ C∗ and t � 0

√
A (t)ϕλ (t) =

M∑
m=0

am (t)
Jα+m (λt)

λm+α+1/2
+ RM (λ, t)

where the coefficients am are as in Lemma 1.1 and the remainder satisfies the fol-
lowing estimates. If α �= 0

|RM (λ, t)| � C
〈λt〉α+M+ 3

2 〈t〉M+1

|λ|α+3/2+M
e|Im (λ)|t� (t)

and ∣∣∣∣ ∂

∂t
RM (λ, t)

∣∣∣∣ � C
〈λt〉α+M+ 1

2 〈t〉M+1

|λ|α+1/2+M
e|Im (λ)|t� (t)

where � (t) = e
C
|λ|

∫ t
0 |G(v)| dv . If α = 0

|RM (λ, t)| � C
〈λt〉M+ 3

2 〈t〉M+1 log
2

〈λt〉
|λ|3/2+M

e|Im (λ)|t� (t)

and ∣∣∣∣ ∂

∂t
RM (λ, t)

∣∣∣∣ � C
〈λt〉M+ 1

2 〈t〉M+1 log
2

〈λt〉
|λ|1/2+M

e|Im (λ)|t� (t) .
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Proof. Observe that, ϕλ ≡ ϕ−λ and that, being Jα+m(λt)
λm+α+1/2 entire and even in λ, the

above expansion only needs to be proved for λ ∈ C∗\R
−. Replacing the expression

M∑
m=0

am (t)
Jα+m (λt)

λm+α+1/2
+ RM (λ, t)

in equation (0.5) we obtain

1

λα+1/2

M∑
m=0

{
a′′

m

λm
Jα+m (λt) + 2

a′
m

λm−1
J ′

α+m (λt) + am

λm−2
J ′′

α+m (λt)

+
λ2 −

α2 − 1

4
t2

 am

λm
Jα+m (λt) − G (t)

am

λm
Jα+m (λt)


+ d2

dt2
RM (λ, t) +

λ2 −
α2 − 1

4
t2

− G (t)

 RM (λ, t) = 0.

Using the well known identities

J ′
α (t) =

(
1

2
− α

)
t

Jα (t) + Jα−1 (t)

J ′′
α (t) =

α2 − 1

4
t2

− 1

Jα (t) ,

and the recurrence relation defining the coefficients am (t) , we obtain

d2 RM

dt2
+

λ2 −
α2 − 1

4
t2

 RM = G (t) RM + 2a′
M+1

Jα+M (λt)

λM+α+1/2
. (1.3)

The associated homogeneous equation

v′′ +
λ2 −

α2 − 1

4
t2

 v = 0
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has the linearly independent solutions Jα (λt) and Yα (λt) , with Wronskian

W (Jα (λt) , Yα (λt)) = 2λ

π

(see [10, Section 5.9]). In view of Lemma A.1, a solution of the integral equation

RM (λ, t) = −π

∫ t

0

Jα (λt)Yα (λs) − Yα (λt)Jα (λs)

2λ

×
{

G (s) RM (λ, s) + 2a′
M+1 (s)

Jα+M (λs)

λM+α+1/2

}
ds,

(1.4)

also satisfies equation (1.3). We will clarify later that there is a solution of the
above integral equation which satisfies the required Cauchy conditions, and there-
fore there is no ambiguity in calling RM (λ, s) the solution of (1.4). We now apply
Theorem A.2 with kernel

k (t, s) = −π
Jα (λt)Yα (λs) − Yα (λt)Jα (λs)

2λ
. (1.5)

In order to estimate the above kernel we point out that it can also be represented in
the following forms

k (t, s) = −π
J−α (λt)Jα (λs) − Jα (λt)J−α (λs)

2λ sin (πα)
(1.6)

k (t, s) = −π i
H(1)

α (λt)H(2)
α (λs) − H(1)

α (λs)H(2)
α (λt)

4λ
. (1.7)

Classical estimates on Bessel and Hankel functions applied to (1.5) when |λt | � 1
and α � 0, to (1.6) when |λt | � 1 and − 1

2 < α < 0 and to (1.7) when |λt | > 1
give (see in [4, Lemma 1.5]), for 0 < s � t ,

|k (t, s)| �


C

1

|λ| 〈λt〉|α|+1/2 e|Im (λ)|(t−s) 〈λs〉−|α|+1/2 , if α �= 0

C
1

|λ| 〈λt〉1/2 e|Im (λ)|(t−s) 〈λs〉1/2 log
2

〈λs〉 , if α = 0

∣∣∣∣∂k

∂t
(t, s)

∣∣∣∣ �


C 〈λt〉|α|−1/2 e|Im (λ)|(t−s) 〈λs〉−|α|+1/2 , if α �= 0

C 〈λt〉−1/2 e|Im (λ)|(t−s) 〈λs〉1/2 log
2

〈λs〉 , if α = 0
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and the hypotheses of Theorem A.2 are satisfied with

P0 (t) = C
1

|λ| 〈λt〉|α|+1/2 e|Im (λ)|t

P1 (t) = C 〈λt〉|α|−1/2 e|Im (λ)|t

Q (s) =


〈λs〉−|α|+1/2 e−|Im (λ)|s, if α �= 0

〈λs〉1/2 log

(
2

〈λs〉
)

e−|Im (λ)|s, if α = 0

φ (s) = 2a′
M+1 (s)

Jα+M (λs)

λM+α+1/2
Q (s)

J (s) = Q (s)−1 .

Observe that

κ0 = sup
t>0

P0 (t) Q (t) = C

|λ|
and

κ = sup
t>0

Q (t) |J (t)| = 1.

The integral

� (t) =
∫ t

0
|φ (s)| ds

converges, since

|φ (s)| �


C |λ|−α−1/2−M

∣∣a′
M+1 (s)

∣∣ 〈λs〉α−|α|+M+1 , if α �= 0

C |λ|−1/2−M
∣∣a′

M+1 (s)
∣∣ 〈λs〉M+1 log

(
2

〈λt〉
)

, if α = 0.

Actually, noticing that ∣∣a′
M+1 (s)

∣∣ � Cs M

for s < 1 and that a′
M+1 ∈ L1 ((1, +∞) , dt) a simple computation shows that

� (t) �


C |λ|−α−1/2−M 〈λt〉α−|α|+M+1 〈t〉M+1 for α �= 0

C |λ|−1/2−M 〈λt〉M+1 〈t〉M+1 log
2

〈λt〉 for α = 0.

Therefore there is a continuously differentiable solution RM (λ, t) satisfying the
estimates given in the statement of Theorem A.2.

Since
√

A (t) = tα+1/2 (1 + o (t)) as t → 0+ (by (H3)) the initial conditions

ϕλ (0) = 1, ϕ′
λ (0) = 0,
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become after the Liouville transformation√
A (t)ϕλ (t) = tα+1/2 (1 + o (t)) as t → 0.

The expression
M∑

m=0

am (t)

λm+α+1/2
Jα+m (λt) + RM (λ, t)

trivially satisfies this condition, as

M∑
m=0

am (t)

λm+α+1/2
Jα+m (λt) = tα+1/2 + o

(
tα+3/2

)
,

while |RM (λ, t)| � Cλtα+5/2
∣∣∣log

( |λ|t
4

)∣∣∣ = o
(
tα+3/2

)
as t → 0.

Remark 1.3. The quantity C
|λ| that appears in � (t) blows up as λ → 0. It is not

difficult to improve such estimate in order to solve this problem. Indeed, in the
above proof κ0 has been computed assuming that t ∈ [0, +∞). Taking t ∈ [0, η]

gives κ0 = supt∈[0,η] P0 (t) Q (t) = Cη
1+η|λ| and therefore � (t) = e

Cη
1+η|λ|

∫ t
0 |G(v)| dv .

Since, for every given t ∈ (0, +∞), we can take η = t , we obtain

� (t) = e
Ct

1+t |λ|
∫ t

0 |G(v)| dv
.

1.2. Estimates for ϕλ for small λ

In this section we will show that the equation v′′ =qvthat is satisfied by
√

A(t)ϕ0(t),
has two independent solutions W1 and W2 that have different behavior at infinity.

Namely W1 (t) ≈ t−a+ 1
2 and W2 (t) ≈ ta+ 1

2 . Consequently
√

A (t)ϕ0 (t) has one of
these two possible behaviors. In the following we will study under which conditions
these two behaviors occur. This will play a key role in the study of the Harish-
Chandra function as we will see in Chapter 2.

In the next Lemma we obtain a bound from below for ϕiη(t) when −ρ �η�0.

Lemma 1.4. Assume (H1) to (H4) hold and let −ρ � η < 0. Then

ϕiη (t) � e−(ρ+η)t .

Also
ϕ0 (t) � e−ρt (1 + ρt) .

Remark 1.5. The first estimate of the above Lemma follows readily from the La-
place representation of ϕiη (see e.g. [5]). The second estimate seems to be new. We
give a direct proof of both.
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Proof. When η = −ρ the estimate is trivial since ϕ−iρ ≡ 1. Assume ρ > 0 and
−ρ < η � 0 and let g (t) = e(ρ+η)tϕiη (t). A simple computation shows that g
satisfies the problem

g′′ +
(

A′ (t)
A (t)

− 2 (ρ + η)

)
g′ − (ρ + η)

(
A′ (t)
A (t)

− 2ρ

)
g = 0

g (0) = 1
g′ (0) = ρ + η.

Consider first η = 0. We only need to show that g′ (t) � ρ for every t � 0. By
contradiction assume g′ (t) < ρ for some t and let

t0 = inf
{
t � 0 : g′ (t) < ρ

}
.

Our assumptions imply that ϕ
′′
0 (0) = − ρ2

2α+2 so that g′′ (0) = 2α+1
2α+2ρ2 > 0, since

g′ (0) = ρ we have t0 > 0. Also g′ (t0) = ρ and g′′ (t0) � 0. Being g′ (t) � ρ on
[0, t0] we have g (t0) � 1 + ρt0. By the definition of t0 there exists t1 > t0 such
that g′′ (t1) < 0, g′ (t1) < ρ and g (t1) � 1.

Substituting into the differential equations yields

g′′ (t1) +
(

A′ (t1)
A (t1)

− 2ρ

) (
g′ (t1) − ρg (t1)

) = 0

which contradicts g′′ (t1) < 0.
Let now −ρ < η < 0. In this case it is enough to show that g′ (t) � 0 for

every t � 0. By contradiction assume g′ (t) < 0 for some t and let

t0 = inf
{
t � 0 : g′ (t) < 0

}
.

Since g′ (0) = ρ+η > 0 we have t0 > 0 so that g′′ (t0) � 0. As in the previous case
there exists t1 > t0 such that g′′ (t1) < 0, g′ (t1) < 0 and g (t1) > 1. Substituting
into the differential equation we obtain

g′′ (t1) +
(

A′ (t1)
A (t1)

− 2 (ρ + η)

)
g′ (t1) = (ρ + η)

(
A′ (t1)
A (t1)

− 2ρ

)
g (t1)

that contradicts g′′ (t1) < 0.

Remark 1.6. A close look at the proof shows that ϕiη (t) = e−ρt g (t) where g is
a increasing function for −ρ < η < 0 and g′ (t) � ρ for η = 0. In both cases
g (0) = 1.

The following lemma shows that under our assumptions, ρ > 0 implies a � 1
2 .

This fact will be useful in the sequel.

Lemma 1.7. Let assumptions (H1) to (H4) be satisfied and let ρ > 0. Then (H5)

cannot hold for any a < 1
2 .
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Proof. Assume, by contradiction that (H5) holds for some 0 � a < 1
2 . Let

A′ (t)
A (t)

= 2ρ + h (t) ,

by (0.4) and assumption (H5) we have

q (t) = ρh (t) + 1

4
h (t)2 + 1

2
h′ (t) =

a2 − 1

4
t2

+ ζ (t)

where ζ ∈ L1 ((1, +∞) , tdt). Then

ρh (t) + 1

2
h′ (t) � ρh (t) + 1

4
h (t)2 + 1

2
h′ (t) =

a2 − 1

4
t2

+ ζ (t) ,

so that

2ρth (t) + th′ (t) � 2
a2 − 1

4
t

+ 2tζ (t) .

Therefore∫ t

z

(
2ρsh (s) + sh′ (s)

)
ds � 2

(
a2 − 1

4

)
log

t

z
+ 2

∫ +∞

z
s |ζ (s)| ds.

Integrating by parts we obtain

th (t) − zh (z) +
∫ t

z
(2ρs − 1) h (s) ds � 2

(
a2 − 1

4

)
log

t

z
+ 2

∫ +∞

z
s |ζ (s)| ds.

Taking z > 1
2ρ

we have

−zh (z) � 2

(
a2 − 1

4

)
log

t

z
+ 2

∫ +∞

z
s |ζ (s)| ds

and letting t → +∞ we get a contradiction.

We now consider the behavior of ϕ0 (t) as t → +∞. We will show that under
assumption (H5) the differential equation Lu +ρ2u = 0, satisfied by ϕ0 (t) has two

linearly independent solutions that behave like A (t)− 1
2 t±a+ 1

2 when a > 0 and like

A (t)− 1
2 t

1
2 and A (t)− 1

2 t
1
2 log t when a = 0.

The next result can be found in the proof of [2, Proposition 3.17]. See also [4].
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Theorem 1.8. Assume (H1) to (H5) hold and let

k (t, s) = t−a+ 1
2 sa+ 1

2 − ta+ 1
2 s−a+ 1

2

2a
ζ (s) (1.8)

when a > 0 or

k (t, s) =
(

t
1
2 s

1
2 log (s) − t

1
2 log (t) s

1
2

)
ζ (s)

when a = 0. Then the equation
v′′ = qv (1.9)

has a unique solution W1 that satisfies the integral equation

W1 (t) = t−a+ 1
2 +

∫ +∞

t
k (t, s) W1 (s) ds (1.10)

and such that, setting

W1 (t) = t−a+ 1
2 + E (t) ,

the error term E (t) satisfies

|E (t)| � t−a+ 1
2

(
ec

∫ +∞
t s|ζ (s)|ds − 1

)
,∣∣E ′ (t)

∣∣ � t−a− 1
2

(
ec

∫ +∞
t s|ζ (s)|ds − 1

)
for a > 0 and

|E (t)| � t
1
2

(
ec

∫ +∞
t s log(1+s)|ζ (s)|ds − 1

)
,∣∣E ′ (t)

∣∣ � t−
1
2

(
ec

∫ +∞
t s log(1+s)|ζ (s)|ds − 1

)
for a = 0.

Proof. We write the equation (1.9) in the form

v′′ −
a2 − 1

4
t2

v = ζ (t) v

and we observe that the associated homogeneous equation has for a > 0 the so-

lutions ta+ 1
2 and t−a+ 1

2 while for a = 0 the solutions are t
1
2 and t

1
2 log t . The

fact that a solution W1 (t) of (1.10) is also a solution of (1.9) is a consequence
of Lemma A.1. The existence and uniqueness of W1 satisfying the estimates for

E (t) = W1 (t) − t−a+ 1
2 follow from Theorem A.2.
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Corollary 1.9. Assume (H1) to (H5) hold. Then the equation

v′′ = qv (1.11)

has a solution V satisfying V (t) ≈ ta+ 1
2 as t → +∞ for a > 0 and V (t) ≈

t
1
2 log (t) as t → +∞ for a = 0.

Proof. Let t0 be large enough and let

V (t) =
∫ t

t0

W1 (t)

(W1 (s))2
ds.

It is not difficult to check that V satisfies (1.11) and the required estimates.

Remark 1.10. Since
√

Aϕ0 is a solution of equation (1.11) we have
√

Aϕ0 =
c1W1 (t) + c2V (t). If follows that

√
Aϕ0 has two possible behaviors at infinity.

If c2 �= 0 we have
√

Aϕ0 ≈ V (t) otherwise
√

Aϕ0 = c1W1 (t).

In order to distinguish these two possible behaviors we introduce the following
terminology.

Definition 1.11. Assume (H1) to (H5) hold for some a � 0. If
√

Aϕ0 (t) =
c1W1 (t) for some c1 �= 0 we say that A (t) is recessive. Otherwise we say that
A (t) is dominant.

Lemma 1.12. Assume (H1) to (H5) hold with ρ > 0 then A (t) is dominant.

Proof. By Lemma 1.7 we must have a � 1
2 . By contradiction assume that A (t)

is recessive. By (H3) and (0.3) we have
√

A (t) � ceρt for large t . Applying
Lemma 1.4 we have

Ceρt (1 + ρt) e−ρt �
√

A (t)ϕ0 (t) = cW1 (t) ≈ t−a+ 1
2

that letting t → +∞ gives a contradiction.

Lemma 1.13. Assume (H1) to (H5) hold with ρ = 0 and a � 1
2 then A (t) is

dominant.

Proof. Assume by contradiction that A (t) is recessive. When ρ = 0 we have
ϕ0 (t) ≡ 1. Therefore √

A (t) = cW1 (t) ≈ t−a+ 1
2

that contradicts the fact that A (t) → +∞ as t → +∞.

Lemma 1.14. Assume (H1) to (H5) hold with ρ = 0 and 0 � a < 1
2 then A (t) is

dominant if and only is A(t)
t is unbounded as t → +∞.
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Proof. Assume A (t) is recessive, then
√

A (t) = cW1 (t) ≈ t−a+ 1
2 so that A(t)

t ≈
t−2a . If instead A (t) is dominant then

√
A (t) ≈ t

1
2 +a for a > 0 or

√
A (t) ≈

t
1
2 log t .

Remark 1.15. We have shown that, if (H1) to (H5) hold, there is a b > −1/2,
|b| = a, such that

√
A (t)ϕ0 (t) ≈ t

1
2 +b, except when A is dominant and a = 0,

in which case
√

A (t)ϕ0 (t) ≈ t
1
2 log t. In the former case the values − 1

2 < b � 0
correspond to A (t) recessive while the values b > 0 correspond to A (t) dominant.
In the latter case we will say that A is singular.

To deal with the recessive case we need a solution of equation (1.9) constructed
in a way similar to the one used to construct W1. This requires the stronger integra-
bility condition on q described in assumption (H6).

Theorem 1.16. Assume (H1) to (H6) hold with A (t) recessive. Let k (t, s) as in
Theorem 1.8. For − 1

2 < b < 0 the equation

v′′ = qv

has a unique solution W2 (t) that satisfies the integral equation

W2 (t) = ta+ 1
2 +

∫ +∞

t
k (t, s) W2 (s) ds, (1.12)

such that, setting W2 (t) = ta+ 1
2 + E (t), we have

|E (t)| � t−a+ 1
2

(
ec

∫ +∞
t s2a+1|ζ (s)|ds − 1

)
,∣∣E ′ (t)

∣∣ � t−a− 1
2

(
ec

∫ +∞
t s2a+1|ζ (s)|ds − 1

)
.

When b = 0 the above equation has a unique solution W2 (t) satisfying the integral
equation

W2 (t) = t
1
2 log (t) +

∫ +∞

t
k (t, s) W2 (s) ds (1.13)

such that, setting W2 (t) = t
1
2 log (t) + E (t) we have

|E (t)| � t
1
2

(
ec

∫ +∞
t s log2(1+s)|ζ (s)|ds − 1

)
,∣∣E ′ (t)

∣∣ � t−
1
2

(
ec

∫ +∞
t s log2(1+s)|ζ (s)|ds − 1

)
.

The proof is similar to the one of Theorem 1.8.
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1.3. Estimates for �λ

The next Theorem is essentially due to Bloom and Xu (see [2, Lemma 3.4]). We
include a proof for reader’s convenience.

Theorem 1.17. Assume that (H1) to (H4) hold and let G ∈ L1 (1, +∞). Then, for
every λ ∈ C∗, the differential equation

Lu =
(
λ2 + ρ2

)
u

has a unique solution �λ (t) over (0, +∞) which is twice continuously differen-
tiable and satisfies

A1/2 (t) �λ (t) = eiλt + eiλtR (λ, t) , (1.14)

with

R (λ, t) → 0 as t → ∞, (1.15)

∂R
∂t

(λ, t) → 0 as t → ∞. (1.16)

Moreover, for Im (λ) � 0, λ �= 0, and t > 0

|R (λ, t)| � e
1
|λ|

∫ ∞
t |q(v)| dv − 1∣∣∣∣ ∂

∂t
R (λ, t)

∣∣∣∣ � |λ|
(

e
1
|λ|

∫ ∞
t |q(v)| dv − 1

)
.

Proof. Let λ �= 0. After the Liouville transformation
√

A (t)u (t) = v (t) , the
above equation becomes equation (0.5)

v′′ +
λ2 −

α2 − 1

4
t2

 v − G (t) v = 0.

Replacing v (t) with eiλt + eiλtR (λ, t), we obtain

d2

dt2
R (λ, t) + 2iλ

d

dt
R (λ, t) = q (t)R (λ, t) + q (t) . (1.17)

The homogeneous equation

d2

dt2
R (λ, t) + 2iλ

d

dt
R (λ, t) = 0
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has the linearly independent solutions 1 and e−2iλt with Wronskian

W
(

1, e−2iλt
)

= −2iλe−2iλt .

Assume now Im (λ) � 0. In view of Lemma A.1, a solution of the integral equation

R (λ, t) =
∫ ∞

t

e−2iλ(t−v) − 1

2iλ
{q (v)R (λ, v) + q (v)} dv,

also satisfies equation (1.17). We now apply Theorem (A.2) with k (t, v) =
e−2iλ(t−v)−1

2iλ , φ (v) = ψ0 (v) = q (v) and J (v) ≡ 1. Since Im (λ) � 0 a stan-
dard computation shows that we can set P0 (t) = 1

|λ| , P1 (t) = 1, Q (v) = 1.
Therefore there is a unique solution R (λ, t) of the integral equation which is twice
continuously differentiable in (0, +∞) and satisfies

R (λ, t) → 0 as t → ∞,

∂

∂t
R (λ, t) → 0 as t → ∞.

Furthermore
|R (λ, t)| � e

1
|λ|

∫ ∞
t |q(v)| dv − 1,

and ∣∣∣∣ ∂

∂t
R (λ, t)

∣∣∣∣ � |λ|
(

e
1
|λ|

∫ ∞
t |q(v)| dv − 1

)
.

When Im (λ) < 0, we consider the integral equation

R (λ, t) = −
∫ t

b

e−2iλ(t−v) − 1

2iλ
{q (v)R (λ, v) + q (v)} dv

instead. Its solution also satisfies equation (1.17). Applying Theorem A.2 as before
we obtain a unique solution R̃ (λ, t) continuously differentiable in (b, +∞) and
satisfying

R̃ (λ, t) → 0 as t → b,

∂

∂t
R̃ (λ, t) → 0 as t → b.

Furthermore ∣∣∣R̃ (λ, t)
∣∣∣ � e

1
|λ|

∫ t
b |q(v)| dv − 1,

and ∣∣∣∣ ∂

∂t
R̃ (λ, t)

∣∣∣∣ � |λ|
(

e
1
|λ|

∫ t
b |q(v)| dv − 1

)
.
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Observe that R̃ (λ, ∞) = limt→∞ R̃ (λ, t) exists and is finite. Indeed,

R̃ (λ, ∞) = lim
t→∞

∫ t

b

1 − e−2iλ(t−v)

2iλ

[
q (v) R̃ (λ, v) + q (v)

]
dv

= 1

2iλ
lim

t→∞


∫ t

b

[
q (v) R̃ (λ, v) + q (v)

]
dv

−
∫ t/2

b
e−2iλ(t−v)

[
q (v) R̃ (λ, v) + q (v)

]
dv

−
∫ t

t/2
e−2iλ(t−v)

[
q (v) R̃ (λ, v) + q (v)

]
dv

 ,

and this limit exists because R̃ (λ, v) is bounded, q (v) is integrable near infinity,
and∣∣∣∣∣

∫ t/2

b
e−2iλ(t−v)

{
q (v) R̃ (λ, v) + q (v)

}
dv

∣∣∣∣∣ � Ce2Im λt/2
∫ t/2

b
|q (v)| dv → 0∣∣∣∣∫ t

t/2
e−2iλ(t−v)

{
q (v) R̃ (λ, v) + q (v)

}
dv

∣∣∣∣ � C
∫ t

t/2
|q (v)| dv → 0

as t → ∞. Thus R̃ (λ, ∞) = 1
2iλ

∫ ∞
b

{
q (v) R̃ (λ, v) + q (v)

}
dv. It is easy to

show that the function

R (λ, t) = R̃ (λ, t) − R̃ (λ, ∞)

1 + R̃ (λ, ∞)

(the denominator is different from 0 as long as b is big enough) is a solution of (1.17)
too. Furthermore,

R (λ, t) → 0 as t → ∞
and

∂R
∂t

(λ, t) = 1

1 + R̃ (λ, ∞)

∂R̃
∂t

(λ, t) =

= 1

1 + R̃ (λ, ∞)

{∫ t

b
e2iλ(v−t)

{
q (v) R̃ (λ, v) + q (v)

}
dv

}
→ 0,

as t → ∞.

We have shown that the equation Lu = (
λ2 + ρ2

)
u has a solution �λ that

satisfies (1.14), (1.15) and (1.16). Observe now that �−λ is an independent solu-
tion of the same equation (see the next corollary for an explicit computation of the
Wronskian). It follows that any solution can be written as c1�λ + c2�−λ. This
immediately implies the uniqueness of �λ.
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Corollary 1.18. Assume (H1) to (H4) be satisfied and let G ∈ L1 (1, +∞). If
λ ∈ C∗ then the functions �λ (t) and �−λ (t) are linearly independent solutions of
the equation

Lu =
(
λ2 + ρ2

)
u

and their Wronskian is given by

W (�λ, �−λ) (t) = −2iλA (t)−1 .

Proof. It is enough to show that W
(

A1/2�λ, A1/2�−λ

) = −2iλ. First observe
that W

(
A1/2�λ, A1/2�−λ

)
is constant in t , since the coefficient of u′ in equation

(0.5) vanishes. Thus,

W
(

A1/2�λ, A1/2�−λ

)
= lim

t→∞W
(

A1/2 (t) �λ (t) , A1/2 (t) �−λ (t)
)

= lim
t→∞W

(
eiλt (1 + R (λ, t)) , e−iλt (1 + R (−λ, t))

)
= lim

t→∞ −2iλ (1 + R (λ, t)) (1 + R (−λ, t)) + W (1 + R (λ, t) , 1 + R (−λ, t))

= −2iλ.

Following, and partially modifying [2], we define

�̃−λ (t) =


λa−1/2�−λ (t) when a > 0,

λ−1/2
(

log
2

λ

)−1

�−λ (t) when a = 0,

C1 (a) =


2a− 1

2 � (a)√
π

e−i(2a−1) π
4 when a > 0,

√
2

π
ei π

4 when a = 0,

and

C2 (a) =


ei (2a−3)π

4 � (1 − a)

2a+ 1
2 a

√
π

when 0 < a < 1
2 ,

√
π

2
e−i π

4

(
1 − 2γ

π
i

)
when a = 0

where γ = 0.57721566 . . . denotes the Euler constant. Also let W1 as in Theorem
1.8 and W2 as in Theorem 1.16.

The next three theorems describe the analyticity properties of λ 
→ �̃−λ (t)
and its behavior as λ → 0. The first one is contained in [2].
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Theorem 1.19. Assume (H1) to (H5) hold. Then for each t > 1 we can write√
A (t)�̃−λ (t) = C1 (a) W1 (t) + Zλ (t)

with λ 
→ Zλ (t) and λ 
→ d
dt Zλ (t) analytic in {Im (λ) < 0} and continuous in

{Im (λ) � 0}. Moreover
lim
λ→0

Im λ�0

Zλ (t) = 0 (1.18)

and

lim
λ→0

Im λ�0

d

dt
Zλ (t) = 0. (1.19)

In the case A (t) recessive we will need more precise information on the behavior
of Zλ (t) as λ → 0. This situation happens only if − 1

2 < b � 0. We address this
case in the following two theorems. Recall that a = |b|.
Theorem 1.20. Assume (H1) to (H6) hold with − 1

2 < b < 0. Then√
A (t)�̃−λ (t) = C1 (a) W1 (t) + C2 (a) λ2aW2 (t) + λ2a Zλ (t)

and for every t > 1, the functions λ 
→ Zλ (t) and λ 
→ d
dt Zλ (t) are analytic in

Im λ < 0 and continuous in Im λ � 0. Moreover

lim
λ→0

Im λ�0

Zλ (t) = 0 (1.20)

and

lim
λ→0

Im λ�0

d

dt
Zλ (t) = 0.

Theorem 1.21. Assume (H1) to (H6) with b = 0 and A (t) recessive. Then√
A (t)�̃−λ (t) = C1 (0) W1 (t) + C2 (0) W1 (t) − C1 (0) W2 (t)

log
2

λ

+ Zλ (t)

log
2

λ

and for every t > 1, the functions λ 
→ Zλ (t) and λ 
→ d
dt Zλ (t) are analytic in

Im λ < 0 and continuous in Im λ � 0. Moreover

lim
λ→0

Im λ�0

Zλ (t) = 0 (1.21)

and

lim
λ→0

Im λ�0

d

dt
Zλ (t) = 0.
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Proof of Theorem 1.19. Observe that, by (0.5),
√

A (t)�−λ (t) is a solution of

v′′ (t) +
(

λ2 − a2 − 1
4

t2

)
v (t) = ζ (t) v (t) . (1.22)

The associated homogeneous equation

v′′ (t) +
(

λ2 − a2 − 1
4

t2

)
v (t) = 0

has the two linearly independent solutions H(2)
a (λt) and Ja (λt) with Wronskian

W
(
H(2)

a (λt) ,Ja (λt)
)

= 2iλ

π
.

By Lemma A.1, a solution of the integral equation

v (t) = C (a)H(2)
a (λt) +

∫ ∞

t
k1 (t, s, λ) eiλ(s−t)v (s) ds (1.23)

where

k1 (t, s, λ) = π

2iλ

(
H(2)

a (λt)Ja (λs) − Ja (λt)H(2)
a (λs)

)
ζ (s) eiλ(t−s)

also solves (1.22).
We will show later that for a suitable choice of C (a),

√
A (t)�−λ (t) is a solu-

tion of (1.23).
Assume now a > 0 and let ṽλ (t) = λa− 1

2 v (t) eiλt . With this notation the
above equation reads

ṽλ (t) = C (a) λa− 1
2H(2)

a (λt) eiλt +
∫ ∞

t
k1 (t, s, λ) ṽλ (s) ds. (1.24)

When t � s and Im λ � 0 the expansions for Bessel and Hankel functions give

|k1 (t, s, λ)| � C
〈λt〉−a+1/2

|λ| 〈λs〉a+1/2 |ζ (s)|∣∣∣∣∂k1

∂t
(t, s, λ)

∣∣∣∣ � C 〈λt〉−a−1/2 〈λs〉a+1/2 |ζ (s)| .
(1.25)

Theorem A.3 applied to the integral equation

ṽλ (t) = C (a) λa− 1
2H(2)

a (λt) eiλt +
∫ ∞

t

k1 (t, s, λ)

sζ (s)
sζ (s) ṽλ (s) ds (1.26)
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with

φ (s) = sζ (s)

J (s) = C (a) λa− 1
2H(2)

a (λt) eiλt

Q (s) = Cs−1 〈λs〉a+1/2

P0 (t) = |λ|−1 〈λt〉−a+1/2

P1 (t) = 〈λt〉−a−1/2

κ = C |λ|a+ 1
2

κ0 = C

shows that there is one solution ṽλ (t) such that

ṽλ (t) − C (a) λa− 1
2H(2)

a (λt) eiλt → 0,

∂

∂t

(
ṽλ (t) − C (a) λa− 1

2H(2)
a (λt) eiλt

)
→ 0

as t → ∞. Let now

C (a) =
√

π

2
e−i (2a+1)π

4 (1.27)

so that C (a)H(2)
a (λt) eiλt ∼ 1 as t → +∞. Theorem (1.17) and the decay prop-

erties of ṽλ (t) give
ṽλ (t) = A1/2 (t) �̃−λ (t) eiλt .

Theorem A.3 also gives∣∣∣̃vλ (t) − C (a) λa− 1
2H(2)

a (λt) eiλt
∣∣∣

� C

(
t

1 + |λ| t

)−a+1/2 (
eC

∫ ∞
t |ζ (s)||s| ds − 1

) (1.28)

and ∣∣∣∣ ∂

∂t

(
ṽλ (t) − C (a) λa− 1

2H(2)
a (λt) eiλt

)∣∣∣∣
� C

(
t

1 + |λ| t

)−a−1/2 (
eC

∫ ∞
t |ζ (s)||s| ds − 1

)
.

(1.29)

More precisely

ṽλ =
∞∑
j=0

(
v j+1 (t, λ) − v j (t, λ)

)
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where

v j+1 (t, λ) = C (a) λa− 1
2H(2)

a (λt) eiλt +
∫ ∞

t

k1 (t, s, λ)

sζ (s)
sζ (s) v j (s, λ) ds

and v0 (t, λ) ≡ 0. Then for Im λ � 0,

∣∣v j+1 (t, λ) − v j (t, λ)
∣∣ � C

(
t

1 + |λ| t

)−a+1/2 (
C

∫ ∞
t s |ζ (s)| ds

) j+1

j !
and∣∣∣∣∂v j+1

∂t
(t, λ) − ∂v j

∂t
(t, λ)

∣∣∣∣ � C

(
t

1 + |λt |
)−a−1/2 (

C
∫ ∞

t |ζ (s)| s ds
) j+1

j ! .

This shows that ṽλ (t) and ṽ′
λ (t) are analytic in {Im λ < 0} and continuous in

{Im λ � 0} .

In order to show (1.18) and (1.19) we observe that the estimates for ṽλ and ṽ′
λ

allow to apply the dominated convergence theorem in 1.26. Since

lim
λ→0

λa− 1
2H(2)

a (λt) = i2a� (a)

π
t

1
2 −a,

letting λ → 0 gives

ṽ0 (t) = C1 (a) t
1
2 −a +

∫ ∞

t
k (t, s) ṽ0 (s) ds

where k (t, s) is defined by (1.8) and C1 (a) = C (a)
i2a�(a)

π
.

Also by (1.28) and (1.29) we have∣∣∣̃v0 (t) − C1 (a) t
1
2 −a

∣∣∣ � Ct−a+1/2
(

eC
∫ ∞

t |ζ (s)||s| ds − 1
)

,∣∣∣∣̃v′
0 (t) −

(
1

2
− a

)
C1 (a) t−a− 1

2

∣∣∣∣ � Ct−a−1/2
(

eC
∫ ∞

t |ζ (s)||s| ds − 1
)

.

By Theorem 1.8 we see that ṽ0(t)
C1(a)

satisfies the same integral equation as W1 (t).
The above estimates guarantee the uniqueness of the solution of the integral equa-
tion and we finally obtain ṽ0 (t) = C1 (a) W1 (t) and therefore (1.18). Differentiat-
ing (1.26) and letting λ → 0 gives

lim
λ→0

Im λ�0

ṽ′
λ (t) =

(
1

2
− a

)
C1 (a) t−a− 1

2 +
∫ ∞

t

∂k

∂t
(t, s) C1 (a) W1 (s) ds

= C1 (a) W ′
1 (t) .
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Assume now a = 0, and let ṽλ (t) = λ− 1
2

(
log 2

λ

)−1
v (t) eiλt . With this notation

equation (1.23) reads

ṽλ (t) = C (0) λ− 1
2

(
log

2

λ

)−1

H(2)
0 (λt) eiλt +

∫ ∞

t
k1 (t, s, λ) ṽλ (s) ds.

When |λ| s � 1 and Im λ � 0, the standard expansions for Bessel and Hankel
functions give

|k1 (t, s, λ)| � C |λ|−1 〈λt〉1/2 log

(
2

〈λt〉
)

〈λs〉1/2 |ζ (s)|∣∣∣∣∂k1

∂t
(t, s, λ)

∣∣∣∣ � C 〈λt〉−1/2 log

(
2

〈λt〉
)

〈λs〉1/2 |ζ (s)| .
(1.30)

For the remaining case, |λ| t � |λ| s � 1, observe that

H(2)
0 (λt)J0 (λs)−J0 (λt)H(2)

0 (λs) = −iλ
√

ts (Y0 (λt) J0 (λs) − Y0 (λs) J0 (λt))

and

Y0 (z) = 2

π
J0 (z) log

z

2
− 2

π
F (z)

where

F (z) =
+∞∑
k=0

(−1)k
( z

2

)2k

(k!)2

(
−γ +

k∑
j=1

1

j

)

and γ = 0, 577 . . . is Euler’s constant (see [10, Chapter 5]). Thus

H(2)
0 (λt)J0 (λs) − J0 (λt)H(2)

0 (λs)

= −iλ
√

ts

[(
2

π
J0 (λt) log

λt

2
− 2

π
F (λt)

)
J0 (λs)

−
(

2

π
J0 (λs) log

λs

2
− 2

π
F (λs)

)
J0 (λt)

]
= − 2

π
iλ

√
ts

(
J0 (λt) J0 (λs) log

t

s
− F (λt) J0 (λs) + F (λs) J0 (λt)

)
.
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It is easy to see that, for |λ| t � 1,

∣∣∣√λt F (λt)
∣∣∣ � C

√
λt and

∣∣∣ ∂
∂t

(√
λt F (λt)

)∣∣∣ �
C |λ| (√|λ| t

)−1
. Therefore, for |λ| t � |λ| s � 1, we trivially have∣∣∣H(2)

0 (λt)J0 (λs) − J0 (λt)H(2)
0 (λs)

∣∣∣
� C |λ| √ts log

2s

t
≈ 〈λt〉 1

2 〈λs〉 1
2 log

2s

t∣∣∣∣ ∂

∂t

[
H(2)

0 (λt)J0 (λs) − J0 (λt)H(2)
0 (λs)

]∣∣∣∣
� C |λ|

√
s

t
log

2s

t
≈ |λ| 〈λt〉− 1

2 〈λs〉 1
2 log

2s

t
.

In the overall we have, for t � s and Im λ � 0,

|k1 (t, s, λ)| � C |λ|−1 〈λt〉1/2 〈λs〉1/2 log
2 〈λs〉
〈λt〉 |ζ (s)|

and ∣∣∣∣∂k1

∂t
(t, s, λ)

∣∣∣∣ � C 〈λt〉−1/2 〈λs〉1/2 log
2 〈λs〉
〈λt〉 |ζ (s)| .

Since

log
2 〈λs〉
〈λt〉 � c log

2

〈λt〉

〈
log (2s)

(
log

2

|λ|
)−1

〉
we can write

|k1 (t, s, λ)| � c |λ|−1 〈λt〉1/2 log
2

〈λt〉 〈λs〉1/2

〈
log (2s)

log
2

|λ|

〉
|ζ (s)| ,

∣∣∣∣∂k1

∂t
(t, s, λ)

∣∣∣∣ � c 〈λt〉−1/2 log
2

〈λt〉 〈λs〉1/2

〈
log (2s)

log
2

|λ|

〉
|ζ (s)| .

(1.31)

The proof now follows applying Theorem A.3 to

ṽ (t) = C (0)H(2)
0 (λt) λ−1/2

(
log

2

λ

)−1

eiλt

+
∫ ∞

t

k1 (t, s, λ)

s log (2s) ζ (s)
(s log (2s) ζ (s) ṽ (s)) ds.

as in the case a > 0.

In order to prove Theorem 1.20 we need the following technical lemma.



240 LUCA BRANDOLINI AND GIACOMO GIGANTE

Lemma 1.22. Assume (H1) to (H6) hold with − 1
2 < b < 0, let

C (a) =
√

π

2
e−i (2a+1)π

4

and let

�λ (t) = C (a)H(2)
a (λt) λ−a− 1

2 eiλt − C1 (a) λ−2at
1
2 −a − C2 (a) t

1
2 +a

+
∫ +∞

t

k1 (t, s, λ) − k (t, s)

λ2a

(
C1 (a) W1 (s) + C2 (a) λ2aW2 (s)

)
ds

where k1 is as in the proof of Theorem 1.19 and k is as in Theorem 1.8. Then
uniformly in Im λ � 0,

|�λ (t)| � ct
1
2 +a .

Also for every fixed t � 1 we have

lim
λ→0

Im λ�0

�λ (t) = 0

and
lim
λ→0

Im λ�0

�′
λ (t) = 0.

Proof. Since H (2)
a (z) = eaπ i Ja(z)−J−a(z)

i sin πa (see [15, Chapter III, Section 3.61]), from
the asymptotic expansions of Ja we have

H(2)
a (λt) =

eiπa (λt)a+ 1
2

2a� (a + 1)
− (λt)−a+ 1

2

2−a� (−a + 1)

i sin πa
+ O

(
(λt)

5
2 −a

)
when |λ| t � 1. A few computations give

C (a) λ−a− 1
2H(2)

a (λt) eiλt − C1 (a) λ−2at
1
2 −a − C2 (a) t

1
2 +a

= O
(
λ1−2at

3
2 −a

)
= O

(
t

1
2 +a

)
.

Observe that since a < 1
2 the estimate O

(
λ1−2at

3
2 −a

)
implies that the above ex-

pression goes to zero as λ → 0.
In the case |λt | � 1, the standard estimates on the Hankel function give∣∣∣C (a) λ−a− 1

2H(2)
a (λt) eiλt − C1 (a) λ−2at

1
2 −a − C2 (a) t

1
2 +a

∣∣∣
�

∣∣∣C (a) λ−a− 1
2H(2)

a (λt) eiλt
∣∣∣ +

∣∣∣C1 (a) λ−2at
1
2 −a

∣∣∣ +
∣∣∣C2 (a) t

1
2 +a

∣∣∣
� ct

1
2 +a .
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We now estimate the integral part in the definition of �λ (t). When |λt | < 1 we
estimate separately the integral on (t, 1/ |λ|) and the integral on (1/ |λ| , +∞).

The standard expansions for Ja and J−a along with the identity H (2)
a (z) =

eaπ i Ja(z)−J−a(z)
i sin(aπ)

, give for |λt | � |λs| � 1

∣∣∣∣k1 (t, s, λ) − k (t, s)

λ2a

∣∣∣∣ � ct−a+ 1
2 sa+ 5

2 |λ|2−2a |ζ (s)|

so that∫ 1/|λ|

t

∣∣∣∣k1 (t, s, λ) − k (t, s)

λ2a

∣∣∣∣ ∣∣∣C1 (a) W1 (s) + C2 (a) λ2aW2 (s)
∣∣∣ ds

� ct−a+ 1
2

∫ 1/|λ|

t
s2−2a |λ|2−2a s1+2a |ζ (s)| ds � ct−a+ 1

2

∫ +∞

t
s1+2a |ζ (s)| ds.

Since a < 1
2 we have

k1 (t, s, λ) − k (t, s)

λ2a
→ 0

as λ → 0 in Im λ � 0, and the dominated convergence theorem shows that

∫ 1/|λ|

t

k1 (t, s, λ) − k (t, s)

λ2a

[
C1 (a) W1 (s) + C2 (a) λ2aW2 (s)

]
ds → 0.

When |λs| � 1 by (1.25) we have

|k1 (t, s, λ) − k (t, s)| � |k1 (t, s, λ)| + |k (t, s)|
� ct−a+ 1

2

(
|λ|−a− 1

2 + s
1
2 +a

)
|ζ (s)|

� ct−a+ 1
2 s

1
2 +a |ζ (s)|

and therefore∫ +∞

1/|λ|

∣∣∣∣k1 (t, s, λ) − k (t, s)

λ2a

∣∣∣∣ ∣∣∣C1 (a) W1 (s) + C2 (a) λ2aW2 (s)
∣∣∣ ds

� ct
1
2 −a

∫ +∞

1/|λ|
|ζ (s)| s1+2ads

that vanishes as λ → 0 so that lim λ→0
Im λ�0

�λ (t) = 0.
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In the case |λt | � 1 we have∫ +∞

t

∣∣∣∣k1 (t, s, λ) − k (t, s)

λ2a

∣∣∣∣ ∣∣∣C1 (a) W1 (s) + C2 (a) λ2aW2 (s)
∣∣∣ ds

� c
∫ +∞

t

(
|λ|−1 + t

1
2 −as

1
2 +a

)
|ζ (s)| s

1
2 +ads

� ct
1
2 −a

∫ +∞

t
|ζ (s)| s1+2ads.

In the overall∣∣∣∣∫ ∞

t

k1 (t, s, λ) − k (t, s)

λ2a

(
C1 (a) W1 (s) + C2 (a) λ2aW2 (s)

)
ds

∣∣∣∣
� ct

1
2 −a

∫ +∞

t
|ζ (s)| s1+2ads � ct

1
2 +a .

The fact that lim λ→0
Im λ�0

�′
λ (t) = 0 follows similarly.

Proof of Theorem 1.20. Since �̃−λ (t) is analytic in Im λ < 0 and continuous in
Im λ � 0 it suffices to consider the case |λ| < 1. Let

ṽλ (t) = √
A (t)�̃−λ (t) eiλt

and

Z̃λ (t) = ṽλ (t) − C1 (a) W1 (t) − C2 (a) λ2aW2 (t)

λ2a
.

We will show that the functions λ 
→ Z̃λ (t) and λ 
→ Z̃ ′
λ (t) are analytic in

{Im λ < 0} and continuous in {Im λ � 0}, and that

lim
λ→0

Im λ�0

Z̃λ (t) = 0

and
lim
λ→0

Im λ�0

Z̃ ′
λ (t) = 0.

The analogous results for the function Zλ follow easily.
By (1.24), (1.10) and (1.12)

Z̃λ (t) = �λ (t) +
∫ +∞

t
k1 (t, s, λ) Z̃λ (s) ds, (1.32)

where �λ is as in Lemma 1.22.
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We now apply Theorem A.2 to the equation (1.32) that we rewrite in the fol-
lowing form

Z̃λ (t) = �λ (t) +
∫ +∞

t

k1 (t, s, λ)

ζ (s) s2a+1
ζ (s) s2a+1 Z̃λ (s) ds.

For the kernel we have the estimates (see (1.25))∣∣∣∣ k1 (t, s, λ)

ζ (s) s2a+1

∣∣∣∣ � c
〈λt〉−a+ 1

2 〈λs〉a+ 1
2

|λ| s2a+1
= P0 (t) Q (s)

and ∣∣∣∣∣∣∣
∂k1

∂t
(t, s, λ)

ζ (s) s2a+1

∣∣∣∣∣∣∣ � c
〈λt〉−a− 1

2 〈λs〉a+ 1
2

s2a+1
= P1 (t) Q (s)

where Q (s) = c 〈λs〉a+ 1
2

s2a+1 , P0 (t) = 〈λt〉−a+ 1
2

|λ| and P1 (t) = 〈λt〉−a− 1
2 . A simple

computation shows that κ = c |λ|a+ 1
2 and κ0 = c. By Theorem A.3 equation (1.32)

has a unique solution uλ (t) such that

lim
t→+∞ [uλ (t) − �λ (t)] = 0

and
lim

t→+∞
[
u′

λ (t) − �′
λ (t)

] = 0.

Such a solution is given by

uλ (t) =
+∞∑
j=0

[
u j+1 (t, λ) − u j (t, λ)

]
(1.33)

where

u j+1 (t, λ) = �λ (t) +
∫ +∞

t
k1 (t, s, λ) u j (s, λ) ds

and u0 ≡ 0. Moreover

∣∣u j+1 (t, λ) − u j (t, λ)
∣∣ � c

t−a+ 1
2

(1 + |λ| t)−a+ 1
2

(
c
∫ +∞

t
|ζ (s)| s2a+1ds

) j+1

j !
and

∣∣∣∣∂u j+1

∂t
(t, λ) − ∂u j

∂t
(t, λ)

∣∣∣∣ � c
t−a− 1

2

(1 + |λt |)−a− 1
2

(
c
∫ +∞

t
|ζ (s)| s2a+1ds

) j+1

j ! .
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Therefore the above series and its derivative converge uniformly in λ and we have
the estimates

|uλ (t) − �λ (t)| � t−a+ 1
2

(1 + |λt |)−a+ 1
2

(
ec

∫ +∞
t |ζ (s)|s1+2ads − 1

)
and ∣∣u′

λ (t) − �′
λ (t)

∣∣ � t−a− 1
2

(1 + |λt |)−a− 1
2

(
ec

∫ +∞
t |ζ (s)|s1+2ads − 1

)
.

By (1.32) we have

Z̃λ (t) − �λ (t) =
∫ +∞

t
k1 (t, s, λ) Z̃λ (s) ds

=

∫ +∞

t
k1(t, s, λ)(̃vλ(s) − C1(a)W1(s) − C2(a)λ2aW2(s))ds

λ2a
.

Using the estimates on k1, �−λ, W1 and W2 we obtain that for large t∣∣Z̃λ (t) − �λ (t)
∣∣

� 1

|λ|2a

∫ +∞

t

∣∣∣k1 (t, s, λ)
(
ṽλ (s) − C1 (a) W1 (s) − C2 (a) λ2aW2 (s)

)∣∣∣ ds

� C
1

|λ|1+2a

∫ +∞

t
s2a+1 |ζ (s)| ds.

It follows that
lim

t→+∞
[
Z̃λ (t) − �λ (t)

] = 0.

A similar estimate shows that

lim
t→+∞

[
Z̃ ′

λ (t) − �′
λ (t)

] = 0

and by the uniqueness of the solution of (1.32) we have uλ (t) = Z̃λ (t). To show
lim λ→0

Im λ�0
Z̃λ (t) = 0 observe that

∣∣u j (t, λ)
∣∣ � c j t

1
2 +a

and
lim
λ→0

Im λ�0

u j (t, λ) = 0.

Indeed, since
u1 (t, λ) = �λ (t)
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we have, by induction,

∣∣u j+1 (t, λ)
∣∣ � O

(
t

1
2 +a

)
+ c j

∫ +∞

t
|k1 (t, s, λ)| s

1
2 +ads

� O
(

t
1
2 +a

)
+ c j t

−a+ 1
2

∫ +∞

t
|ζ (s)| s2a+1ds

= O
(

t
1
2 +a

)
.

By the dominated convergence theorem we have

lim
λ→0

Im λ�0

u j+1 (t, λ) = 0.

Since the series in (1.33) converges uniformly we have

lim
λ→0

Im λ�0

Z̃λ (t) = 0.

The fact that lim λ→0
Im λ�0

Z̃ ′
λ (t) = 0 follows similarly.

We now study the case b = 0 and A (t) recessive. As before, we need a
technical lemma.

Lemma 1.23. Assume (H1) to (H6) with b = 0 and A (t) recessive, let

C (0) =
√

π

2
e−i π

4 ,

and let

�λ (t) = C (0)H(2)
0 (λt) λ− 1

2 eiλt − t
1
2

(
C1 (0) log

2

λ
+ C2 (0) − C1 (0) log t

)
+

∫ +∞

t

k1 (t, s, λ) − k (t, s)(
log

2

λ

)−1

[
C1 (0) W1 (s) +

+
(

log
2

λ

)−1

(C2 (0) W1 (s) − C1 (0) W2 (s))

]
ds.

Then for any t � 1, uniformly in Im λ � 0,

|�λ (t)| �
{

ct
1
2 log t for |λ| t � 1

ct
1
2 for |λ| t � 1.
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Also for any fixed t � 1, we have

lim
λ→0

Im λ�0

�λ (t) = 0

and

lim
λ→0

Im λ�0

�′
λ (t) = 0.

Proof. Since for |λ| t � 1

H(2)
0 (λt) = 2i

π

√
λt

(
log

2

λ
− log t

)
+

(
1 − 2γ i

π

) √
λt + O

(
(λt)

3
2

)
we have

C (0)H(2)
0 (λt) λ− 1

2 eiλt − t
1
2

(
C1 (0) log

2

λ
+ C2 (0) − C1 (0) log t

)
= O

(
λt

3
2

)
log

2

|λt | = O
(

t
1
2

)
.

In particular the above quantity vanishes as λ → 0.
In the case |λt | � 1, the standard estimates on the Hankel function give

∣∣∣∣C (0)H(2)
0 (λt) λ− 1

2 eiλt − t
1
2

(
C1 (0) log

2

λ
+ C2 (0) − C1 (0) log t

)∣∣∣∣
�

∣∣∣C (0)H(2)
0 (λt) λ− 1

2 eiλt
∣∣∣ + t

1
2

(
|C1 (0)| log

2

λ
+ |C2 (0)| + |C1 (0)| log t

)
� ct

1
2 log t.

We now estimate the integral part in the definition of �λ (t). When |λt | < 1 we
estimate separately the integral on (t, 1/ |λ|) and the integral on (1/ |λ| , +∞).

The standard expansions for H(2)
0 and J0 give for |λt | � |λs| � 1

∣∣∣∣∣∣∣∣∣
k1 (t, s, λ) − k (t, s)(

log
2

λ

)−1

∣∣∣∣∣∣∣∣∣ � c |λ| log
2

|λ| t
1
2 s

3
2 log

2s

t
|ζ (s)|
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so that

∫ 1/|λ|

t

∣∣∣∣∣∣∣∣∣
k1 (t, s, λ) − k (t, s)(

log
2

λ

)−1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣C1 (0) W1 (s) + C2 (0) W1 (s) − C1 (0) W2 (s)

log
2

λ

∣∣∣∣∣∣∣ ds

� c
∫ 1/|λ|

t
c |λ| log

2

|λ| t
1
2 s

3
2 log

2s

t
|ζ (s)|

[
s

1
2 +

(
log

2

|λ|
)−1

s
1
2 log s

]
ds

� ct
1
2

∫ 1/|λ|

t
|ζ (s)| s log2 sds.

Since
k1 (t, s, λ) − k (t, s)(

log
2

λ

)−1
→ 0

as λ → 0 in Im λ � 0 and ζ (s) is integrable in s log2 sds, the dominated conver-
gence theorem shows that the integral on the interval (t, 1/ |λ|) vanishes as λ → 0
in Im λ � 0.

When |λs| � 1 by (1.30) we have

|k1 (t, s, λ) − k (t, s)| � |k1 (t, s, λ)| + |k (t, s)|

� C |λ|− 1
2 t

1
2 log

(
2

|λt |
)

|ζ (s)| + t
1
2 s

1
2 log s |ζ (s)|

� Ct
1
2

(
|λ|− 1

2 log

(
2

|λt |
)

+ s
1
2 log s

)
|ζ (s)|

� Ct
1
2 s

1
2 log s |ζ (s)|

and therefore

∫ +∞

1/|λ|

∣∣∣∣∣∣∣∣∣
k1 (t, s, λ) − k (t, s)(

log
2

λ

)−1

C1 (0) W1 (s)+ C2 (0) W1 (s) − C1 (0) W2 (s)

log
2

λ


∣∣∣∣∣∣∣∣∣ ds

� Ct
1
2

∫ +∞

1/|λ|
|ζ (s)| s log2 sds

that vanishes as λ → 0. It follows that lim λ→0
Im λ�0

�λ (t) = 0. The fact that

lim λ→0
Im λ�0

�′
λ (t) = 0 follows similarly.
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In the case |λt | � 1 the integral part in the definition of �λ (t) is bounded by

ct
1
2

∫ +∞

t
|ζ (s)| s log2 sds.

The estimates on �λ (t) follow.

Proof of Theorem1.21. The proof follows the same lines as in the proof of Theorem
1.20. In this case we define

Z̃λ (t) =
ṽλ (t) − C1 (0) W1 (t) +

(
log

2

λ

)−1

(C2 (0) W1 (t) − C1 (0) W2 (t))(
log

2

λ

)−1

and we apply Theorem A.3 to the equation

Z̃λ (t) = �λ (t) +
∫ +∞

t

k1 (t, s, λ)

ζ (s) s log2 s
ζ (s) s log2 s Z̃λ (s) ds.

For the kernel we have the estimates (see (1.31)∣∣∣∣ k1 (t, s, λ)

ζ (s) s log2 s

∣∣∣∣ � P0 (t) Q (s)

and ∣∣∣∣∣
∂k1
∂t (t, s, λ)

ζ (s) s log2 s

∣∣∣∣∣ � P1 (t) Q (s)

where Q (s)=C
〈λs〉1/2

〈
log(2s)

(
log 2

|λ|
)−1

〉
∣∣s log2 s

∣∣ , P0 (t)=|λ|−1 〈λt〉1/2 log 2
〈λt〉 and P1 (t) =

〈λt〉−1/2 log 2
〈λt〉 . A simple computation shows that κ � c |λ| 1

2

(
log 2

|λ|
)−1

and

κ0 = c. The proof follows as in the case − 1
2 < b < 0.

2. The Harish-Chandra function

Since for λ ∈ C∗
W (�λ, �−λ) �= 0,

the eigenfunction ϕλ is a linear combination of �λ and �−λ. We define the Harish-
Chandra function c (λ) by

ϕλ (t) = c (λ) �λ (t) + c (−λ) �−λ (t) . (2.1)
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By Corollary 1.18 we have

W
(

A1/2 (t) ϕλ (t) , A1/2 (t) �−λ (t)
)

= c (λ)W
(

A1/2 (t) �λ (t) , A1/2 (t) �−λ (t)
)

= −2iλc (λ) ,

so that

c (λ) = i
W

(
A1/2 (t) ϕλ (t) , A1/2 (t) �−λ (t)

)
2λ

. (2.2)

Since the Wronskian is independent of t we also have

c (λ) = i
lim

t→∞W
(

A1/2 (t) ϕλ (t) , A1/2 (t) �−λ (t)
)

2λ
. (2.3)

In the next theorem we obtain an asymptotic expansion for c (λ) based on the
asymptotic expansion for A1/2 (t) ϕλ (t).

Theorem 2.1. Assume (H1) to (H4) be satisfied and let G and am be defined re-
spectively by (0.6) and Lemma 1.1. Let M � 0 and assume G(k) ∈ L1((1,+∞), dt)
for k = 0, . . . , M. Then, for every λ ∈ C∗, Im (λ) � 0 we have

c (λ) =
√

1

2π

M∑
m=0

am (∞)
ei(− π

2 (α+m)− π
4 )

λm+α+1/2
+ EM (λ) , (2.4)

where

|EM (λ)| � C
e

C
|λ|

|λ|M+α+3/2

and
am (∞) = lim

t→+∞ am (t) .

Proof. By Theorem 1.2 and Theorem 1.17 we have

lim
t→+∞W

(
A1/2 (t) ϕλ (t) , A1/2 (t) �−λ (t)

)
= lim

t→+∞W
(

M∑
m=0

am (t)

λm+α+1/2
Jα+m (λt) + RM (λ, t) , e−iλt + e−iλtR (−λ, t)

)

=
M∑

m=0

lim
t→+∞W

(
am (t)

λm+α+1/2
Jα+m (λt) , e−iλt

)

+
M∑

m=0

lim
t→+∞W

(
am (t)

λm+α+1/2
Jα+m (λt) , e−iλtR (−λ, t)

)
+ lim

t→+∞W
(

RM (λ, t) , e−iλt
)

+ lim
t→+∞W

(
RM (λ, t) , e−iλtR (−λ, t)

)
.
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Let us begin with the principal part. By Lemma 1.1 a′
m, a′′

m ∈ L1 ((1, +∞) , dt).
This easily implies a

′
m (t) → 0 as t → +∞, so that

1

λm+α+1/2
lim

t→∞W
(

am (t)Jα+m (λt) , e−iλt
)

= 1

λm+α+1/2
lim

t→∞
{

am (t)Jα+m (λt) (−iλ) e−iλt − a′
m (t)Jα+m (λt) e−iλt

−am (t) (Jα+m (λt))′ e−iλt
}

= 1

λm+α+1/2
lim

t→∞ am (t) e−iλt (
Jα+m (λt) (−iλ) − (Jα+m (λt))′

)
.

The standard expansions for Jα+m (λt) and the well known identity

(Jα+m (λt))′ =
(

1
2 − α − m

)
t

Jα+m (λt) + λJα+m−1 (λt) ,

give

lim
t→+∞W

(
am (t)

λm+α+1/2
Jα+m (λt) , e−iλt

)
= −

√
2

π

ei(− π
2 (α+m)+ π

4 )

λm+α−1/2
lim

t→+∞ am (t) .

Observe that limt→+∞ am (t) exists since a′
m ∈ L1 ((1, +∞) , dt). The remainder

terms

W
(

am (t)

λm+α+1/2
Jα+m (λt) , e−iλtR (−λ, t)

)
and

W
(

RM (λ, t) , e−iλtR (−λ, t)
)

tend to 0 as t → +∞, as the functions am(t)
λm+α+1/2Jα+m (λt) and their derivatives are

all bounded by c e|Im λ|t (and so do RM (λ,t) and its derivative) while e−iλtR (−λ, t)
and its derivative are bounded by eIm (λ)t times a term that tends to 0 as t → +∞.

As for the other term, by Theorem 1.2

lim
t→+∞

∣∣∣W (
RM (λ, t) , e−iλt

)∣∣∣ � Ce
C
|λ|

|λ|M+α+1/2
.

By (2.3) the theorem follows.

In the sequel we will need the following expansion for |c (λ)|2.
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Theorem 2.2. Assume (H1) to (H4) be satisfied. Let M � 0 and assume G(k) ∈
L1 ((1, +∞) , dt) for k = 0, . . . , 2M + 1. Then for every λ > 0 we have

|c (λ)|2 = 1

2πλ2α+1

M∑
s=0

ds

λ2s
+ Ẽ2M+1 (λ) ,

where

ds = (−1)s
2s∑

m=0

(−1)m am (∞) a2s−m (∞)

and ∣∣Ẽ2M+1 (λ)
∣∣ � C

e
C
|λ|

|λ|2M+2α+3
.

Furthermore, if G, G ′ ∈ L1 ((1, +∞) , dt) then for every λ ∈ C∗, Im (λ) � 0, we
have

|c (λ)|2 = a2
0

2π |λ|2α+1
+ a1 (∞) a0

π |λ|2α+1
Im

1

λ
+ Ẽ1 (λ) ,

and ∣∣Ẽ1 (λ)
∣∣ � C

e
C
|λ|

|λ|2α+3
.

Finally, if G ∈ L1 ((1, +∞) , dt) then for every λ ∈ C∗, Im (λ) � 0, we have

|c (λ)|2 = a2
0

2π |λ|2α+1
+ Ẽ (λ) ,

and ∣∣Ẽ (λ)
∣∣ � C

e
C
|λ|

|λ|2α+2
.

Proof. By Theorem 2.1

c (λ) c (λ) = 1

2π

(
2M+1∑
m=0

ei(− π
2 (α+m)− π

4 )

λm+α+ 1
2

am (∞) + E2M+1 (λ)

)

×
(

2M+1∑
n=0

ei( π
2 (α+n)+ π

4 )

λn+α+ 1
2

an (∞) + E2M+1 (λ)

)

= 1

2π

2M+1∑
s=0

s∑
m=0

ei π
2 (s−2m)

λs+2α+1
am (∞) as−m (∞) + Ẽ2M+1 (λ)

= 1

2π

2M+1∑
s=0

i s

λs+2α+1

s∑
m=0

(−1)m am (∞) as−m (∞) + Ẽ2M+1 (λ) .



252 LUCA BRANDOLINI AND GIACOMO GIGANTE

Since for s odd,
∑s

m=0 (−1)m am (∞) as−m (∞) = 0 we have

|c (λ)|2 = 1

2π

M∑
s=0

(−1)s

λ2s+2α+1

2s∑
m=0

(−1)m am (∞) a2s−m (∞) + Ẽ2M+1 (λ)

= 1

2π

M∑
s=0

1

λ2s+2α+1
ds + Ẽ2M+1 (λ) .

The estimate for Ẽ2M+1 (λ) follows from the analogous estimate for the remainder
in Theorem 2.1. The rest of the theorem follows in a similar way.

Corollary 2.3. Assume (H1) to (H4) and let G ∈ L1 ((1, +∞) , dt). Then if |λ| →
+∞, Im λ � 0 one has

1

|c (λ)| ≈ |λ|α+ 1
2 .

Theorem 2.4. Assume (H1) to (H6) hold for some b > −1/2. If A is non singular
(see Remark 1.15) then if λ → 0, Im λ � 0

1

|c (λ)| ≈ |λ|b+ 1
2

and λ−b− 1
2 c (λ)−1 is analytic in Im λ < 0 and continuous in Im λ � 0. If A (t) is

singular then if λ → 0, Im λ � 0

1

|c (λ)| ≈ |λ|1/2
(

log
2

|λ|
)−1

and λ−1/2 log 2
λ

c (λ)−1 is analytic in Im λ < 0 and continuous in Im λ � 0.

Remark 2.5. When b > 0, or b = 0 and A (t) is singular the above result is due to
Bloom and Xu (see [2, Proposition 3.16]). Using the expansions of �−λ proved in
the previous section we complete their arguments in order to obtain the estimates
for b > − 1

2 . For the sake of completeness we give the proof in all cases.

Proof. Using the method of successive approximations it is not difficult to prove
that ϕλ and ϕ′

λ are entire functions in λ. By Theorem 1.19 and equation (2.2) it
follows that c (λ) is continuous for Im λ � 0, λ �= 0 and analytic in Im λ < 0.

We now prove that c (λ) �= 0 for λ �= 0 and Im λ � 0. Observe that since
ϕλ �≡ 0, then c (λ) and c (−λ) cannot vanish simultaneously. Hence if λ ∈ R, since
c (λ) = c (−λ) we have c (λ) �= 0.
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Assume now λ = ξ + iη, η < 0, by Theorem 1.17 we have �−λ, �′−λ ∈
L2

(
R+, A (t) dt

)
. Thus∫ +∞

0

(
λ2 + ρ2

)
|�−λ (t)|2 A (t) dt

= −
∫ +∞

0
�−λ (t)L�−λ (t) A (t) dt = −

∫ +∞

0
�−λ (t)

(
�′−λ (t) A (t)

)′
dt

= − [
�−λ (t)�′−λ (t) A (t)

]+∞
0 +

∫ +∞

0

∣∣�′−λ (t)
∣∣2

A (t) dt.

If c (λ) = 0 then ϕλ = c (−λ) �−λ and therefore limt→0+ �−λ (t)�′−λ (t) A (t) =
0. Also by Theorem 1.17 limt→+∞ �−λ (t)�′−λ (t) A (t) = 0. It follows that(
λ2 + ρ2

)
� 0 and therefore c (λ) �= 0 for ξ �= 0 or η < −ρ.

Assume now −ρ � η < 0 and observe that by Theorem 1.17 and (2.1) we
have

c (iη) = lim
t→+∞ eηt

√
A (t)ϕiη (t) .

Since A (t) � Ce2ρt with C > 0, by Lemma 1.4 we have

c (iη) � C > 0.

We now assume A (t) dominant and we set

c1 (λ) =


λa+ 1

2 c (λ) b > 0

λ
1
2

(
log

2

λ

)−1

c (λ) b = 0.

By (2.2) we have

c1 (λ) = i

2
W

(√
Aϕλ,

√
A�̃−λ

)
.

By Theorem 1.19 we know that c1 (λ) is continuous in Im λ � 0 and analytic in
Im λ < 0. It follows that

lim
λ→0

Im λ�0

c1 (λ) = c1 (0)

exists. Being A (t) dominant
√

Aϕ0 and W1 behave differently at infinity and there-
fore they are linearly independent. Since

c1 (0) = i

2
W

(√
Aϕ0, C1 (a) W1

)
we have c1 (0) �= 0 and in this case we obtain the required estimates for 1

|c(λ)| .
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Assume A (t) recessive, so that ρ = 0 and − 1
2 < b � 0 and

√
A (t) =√

A (t)ϕ0 (t) = cW1 (t). Consider first − 1
2 < b < 0. Since λ 
→ ϕλ is even we

have ϕλ = 1 + O
(
λ2

)
, also ϕ′

λ = O
(
λ2

)
. Applying Lemma 1.20 we have

W
(√

Aϕλ,
√

A�̃−λ

)
=W

(
cW1+O

(
λ2

)
, C1 (a) W1+C2 (a) λ2aW2+λ2a Zλ

)
= λ2ac C2 (a)W (W1, W2) + o

(
|λ|2a

)
,

since
lim
λ→0

Im λ�0

Zλ (t) = 0

and

lim
λ→0

Im λ�0

d

dt
Zλ (t) = 0.

Therefore

c (λ) = λa− 1
2

(
c C2 (a)

i

2
W (W1, W2) + o (1)

)
and since W1 and W2 are linearly independent we have

|c (λ)| ≈ |λ|−b− 1
2 .

It remains to consider the case A (t) recessive and b = 0.
Applying Theorem 1.21 we have

W
(√

Aϕλ,
√

A�̃−λ

)
=W

(
cW1+O(λ2),C1(0)W1+

(
log

2

λ

)−1

(C2(0)W1−C1(0)W2)+
(

log
2

λ

)−1

Zλ

)

= −C1 (0) c

(
log

2

λ

)−1

W (W1, W2) + o

((
log

2

λ

)−1
)

since
lim
λ→0

Im λ�0

Zλ (t) = 0

and

lim
λ→0

Im λ�0

d

dt
Zλ (t) = 0.

Therefore

c (λ) = λ− 1
2

(
− i

2
C1 (0) cW (W1, W2) + o (1)

)
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and since W1 and W2 are linearly independent we have

|c (λ)| ≈ |λ|− 1
2 .

3. Convergence and divergence results

Let us define the operators.

S̃R f = A
1
2 SR

(
f A− 1

2

)
(3.1)

and
F̃R f = A

1
2 FR

(
f A− 1

2

)
. (3.2)

A simple computation shows that

S̃R f (x) =
∫ +∞

0
S̃R (x, t) f (t) dt

F̃R f (x) =
∫ +∞

0
F̃R (x, t) f (t) dt,

with

S̃R (x, t) =
∫ R

0

√
A (t)ϕλ (t)

√
A (x)ϕλ (x)

dλ

2π |c (λ)|2
and

F̃R (x, t) =
∫ R

0
Jα (λt)Jα (λx) dλ.

In the next lemma we estimate the difference of the kernels of the above two oper-
ators. This is the main step to prove Theorem 0.2.

Lemma 3.1. Assume that A(t) satisfies (H1)to (H6) and let ζ ′(t)∈ L1((1,+∞),dt).
Let η > 0. Then there exists a positive constant cη such that

∣∣S̃R (x, t) − F̃R (x, t)
∣∣ �


cη

1 + R |x − t | for x > η or t > η,

cη for x � η and t � η.

Proof. Assume first x > η or t > η. Since both kernels are symmetric it is enough
to consider x > η and x > t . Since

ϕλ (x) = c (λ) �λ (x) + c (−λ) �−λ (x)
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and for λ real c (−λ) = c (λ) we have

S̃R (x, t) =
∫ R

0

√
A (t)ϕλ (t)

√
A (x)c (λ) �λ (x)

dλ

2π |c (λ)|2

+
∫ R

0

√
A (t)ϕλ (t)

√
A (x)c (−λ) �−λ (x)

dλ

2π |c (λ)|2

=
∫ R

−R

√
A (t)ϕλ (t)

√
A (x)�−λ (x)

dλ

2πc (λ)
.

Since F̃R (x, t) is a particular case of S̃R (x, t) when A (t) = t2α+1 we can write

F̃R (x, t) =
∫ R

−R

√
t2α+1ϕλ (t)

√
x2α+1�−λ (x)

dλ

2πc (λ)

where ϕλ (t) = 2α� (α + 1)
Jα(λt)
(λt)α , �−λ (x) =

√
πλ
2 e−i π

4 (2α+1)x−α H (2)
α (λx) and

c (λ) = 2α�(α+1)e−i π
4 (2α+1)

√
2πλ

α+ 1
2

. It follows that

S̃R (x, t) − F̃R (x, t)

=
∫ R

−R

(√
A (t)ϕλ (t)

√
A (x)

�−λ (x)

2πc (λ)
−

√
t2α+1ϕλ (t)

√
x2α+1 �−λ (x)

2πc (λ)

)
dλ.

Observe now that ϕλ (t) and ϕλ (t) are entire functions in λ; that

�−λ (t)

c (λ)
= λa− 1

2 �−λ (t)

λb+ 1
2 c (λ)

λb+1−a

is analytic for Im λ < 0 and continuous for Im λ � 0 by Theorem 1.19 and 2.4 (the
case a = 0 being similar) and that �−λ(x)

c(λ)
is analytic and continuous in the same

domain. Therefore we can change the path of integration in the above integral. Let
γ = {

Reiθ : −π � θ � 0
}
. Then

S̃R (x, t) − F̃R (x, t)

= −
∫

γ

(√
A (t)ϕλ (t)

√
A (x)

�−λ (x)

2πc (λ)
−

√
t2α+1ϕλ (t)

√
x2α+1 �−λ (x)

2πc (λ)

)
dλ.

By Theorem 1.2 we have√
A (t)ϕλ (t) =

√
t2α+1ϕλ (t) + R0 (λ, t)

where, uniformly in |λ| � 1,

|R0 (λ, t)| � C

|λ|α+ 3
2

e|Im λt|.
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By Theorem 1.17, for x > η√
A (x)�−λ (x) = e−iλx (1 + R1 (λ, x))√

x2α+1�−λ (x) = e−iλx (1 + R2 (λ, x))

where ∣∣R j (λ, x)
∣∣ � cη

|λ| .

Finally, by Theorem 2.1,

c (λ)−1 = c (λ)−1 (1 + E (λ))

where, uniformly in |λ| � 1,

|E (λ)| � C

|λ| .

Therefore

S̃R (x, t) − F̃R (x, t) = −1

2π
(I1 + I2 + I3 + I4)

where

I1 =
∫

γ

√
t2α+1ϕλ (t)

e−iλxR1 (λ, x)

c (λ)
dλ

I2 =
∫

γ

√
t2α+1ϕλ (t)

e−iλx (1 + R1 (λ, x))

c (λ)
E (λ) dλ

I3 =
∫

γ

R0 (λ, t)
e−iλx (1 + R1 (λ, x))

c (λ)
(1 + E (λ)) dλ

I4 = −
∫

γ

√
t2α+1ϕλ (t)

e−iλxR2 (λ, x)

c (λ)
dλ.

By the classical estimates for Bessel functions we have

|I1| � cη

∫ 0

−π

eR sin θ(x−t)dθ

� cη

1 + R |x − t |
Similar computations give the same bounds for I2 , I3 and I4.

We now consider the case x � η and t � η.
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Let∣∣S̃R (x, t) − F̃R (x, t)
∣∣

=
∣∣∣∣∫ R

0

(√
A (t)ϕλ (t)

√
A (x)ϕλ (x)

1

2π |c (λ)|2 − Jα (λt)Jα (λx)

)
dλ

∣∣∣∣
�

∣∣∣∣∣
∫ 1

0
. . . dλ

∣∣∣∣∣ +
∣∣∣∣∫ R

1
. . . dλ

∣∣∣∣ .
For the first integral we have∣∣∣∣∣

∫ 1

0

[√
A (x)ϕλ (x)

√
A (t)ϕλ (t)

1

2π |c (λ)|2 − Jα (λx)Jα (λt)

]
dλ

∣∣∣∣∣
�

∫ 1

0

∣∣∣√A (x)ϕλ (x)
√

A (t)ϕλ (t)
∣∣∣ 1

2π |c (λ)|2 dλ +
∫ 1

0
|Jα (λx)Jα (λt)| dλ

� C

since |ϕλ (x)| � 1 and |c (λ)|−2 is bounded for small λ by Theorem 2.4.
Let us consider the second integral. When λ > 1, by Theorem 1.2, we have√

A (t)ϕλ (t) = a0

λα+1/2
Jα (λt) + a1 (t)

λα+3/2
Jα+1 (λt) + O

(
λ−α− 5

2

)
.

Also, by Theorem 2.2, we have

1

2π |c (λ)|2 = 1

a2
0

λ2α+1 + O
(
λ2α−1

)
.

A simple computation then shows that√
A (t)ϕλ (t)

√
A (x)ϕλ (x)

1

2π |c (λ)|2 − Jα (λt)Jα (λx)

= 1

a0λ
(a1 (x)Jα (λt)Jα+1 (λx) + a1 (t)Jα+1 (λt)Jα (λx)) + O

(
λ−2

)
.

We are reduced to showing that∣∣∣∣∫ R

1
(a1 (x)Jα+1 (λx)Jα (λt) + a1 (t)Jα+1 (λt)Jα (λx))

1

λ
dλ

∣∣∣∣ � C.

Without loss of generality, assume x � t. Then∫ η/x

1
|a1 (x)Jα+1 (λx)Jα (λt) + a1 (t)Jα+1 (λt)Jα (λx)| 1

λ
dλ

� C |a1 (x)|
∫ η/x

1
(λx)α+3/2 1

λ
dλ + C |a1 (t)|

∫ η/x

1
(λx)α+1/2 1

λ
dλ � C.
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This proves the inequality when x � ηR−1. When x � ηR−1, all that is left to
show is the boundedness of∣∣∣∣∫ R

η/x
(a1 (x)Jα+1 (λx)Jα (λt) + a1 (t)Jα+1 (λt)Jα (λx))

1

λ
dλ

∣∣∣∣ .
Using the classical asymptotic expansion for Jα (z)

Jα (z) =
√

2

π
cos (z − γα) + O

(
z−1

)
for z → ∞ (here γα = (2α + 1) π/4) it is not difficult to reduce the boundedness
of the above integral to the boundedness of∫ R

η/x
a1 (x) cos (λx−γα+1) cos (λt−γα)+a1 (t) cos (λt − γα+1) cos (λx − γα)

dλ

λ
.

Since

a1 (x) cos (λx − γα+1) cos (λt − γα) + a1 (t) cos (λt − γα+1) cos (λx − γα)

= 1

2
a1 (x)

[
cos (λ (x + t) − (α + 1) π) + cos

(
λ (x − t) − π

2

)]
+ 1

2
a1 (t)

[
cos (λ (x + t) − (α + 1) π) + cos

(
λ (t − x) − π

2

)]
= 1

2
(a1 (x) + a1 (t)) cos (λ (x + t) − (α + 1) π)

+ 1

2
[a1 (t) − a1 (x)] sin (λ (t − x))

we have∫ R

η/x
a1(x) cos (λx−γα+1) cos (λt−γα)+a1(t) cos (λt−γα+1) cos (λx − γα)

dλ

λ

=
∫ R

η/x

1

2
[a1 (x) + a1 (t)] cos (λ (x + t) − (α + 1) π)

dλ

λ

+
∫ R

η/x

1

2
[a1 (t) − a1 (x)] sin (λ (t − x))

dλ

λ
.

Integrating by parts and using the fact that a1 is C1 and satisfies |a1 (t)| � Ct gives
the desired result.
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Proof of Theorem 0.2. By (3.1) and (3.2) the theorem is a simple consequence of

the fact that for f ∈ L1
(

1
1+t dt

)
, F̃R f and S̃R f are well defined and

lim
R→+∞

[
S̃R f (x) − F̃R f (x)

] = 0. (3.3)

To see this observe that F̃R f is well defined by Theorem 0.1, and that

∣∣S̃R f (x) − F̃R f (x)
∣∣ �

∫ +∞

0

∣∣S̃R (x, t) − F̃R (x, t)
∣∣ | f (t)| dt

=
∫ +∞

0
(1 + t)

∣∣S̃R (x, t) − F̃R (x, t)
∣∣ | f (t)|

1 + t
dt.

For every fixed x � 0, by the previous lemma (1 + t)
∣∣S̃R (x, t) − F̃R (x, t)

∣∣ is
bounded in t . For every fixed x � 0 and for every t > 0

lim
R→+∞ (1 + t)

∣∣S̃R (x, t) − F̃R (x, t)
∣∣ = 0,

and by the dominated convergence theorem (3.3) follows.

Proof of Corollary 0.3. Let f ∈ Lq (A (t) dt). It is easy to check that

f ∈ L1
(√

A (t)

1 + t
dt

)
.

By Theorem 0.2 and Theorem 0.1, SR f (x) is equiconvergent with

1√
A (x)

CR

(√
A f

)
(x) .

Since for every 0 < ε < η we have
√

A f ∈ Lq ([ε, η] , dt), by the localization

principle and the Carleson-Hunt theorem we have that 1√
A(x)

CR

(√
A f

)
(x) con-

verges almost everywhere to f (x) in [ε, η] and so does SR f (x).

Proof of Theorem 0.4. Assume ρ > 0 and let g ∈ Lq (A (t) dt) with q < 2. Us-
ing the asymptotic expansion for �λ and c (λ) one can easily check that ϕλ =
c (λ) �λ + c (−λ) �−λ ∈ Lr (A (t) dt) for any r > 2. It follows that ĝ is con-
tinuous. Assume now that for some p > 2, SR maps L p (A (t) dt) into tempered
distributions. By duality SR maps test functions in L p′

(A (t) dt). Since p′ < 2 it
follows that for every test function f , ŜR f is continuous. However the L2 theory
for the Fourier transform (see e.g. [1, Chapter 2]) shows that ŜR f = χ[0,R] f̂ .

Let now ρ = 0 and assume that SR maps L p (A (x) dx) into tempered distri-
bution for some p � 4b+4

2b+1 . By duality SR maps test functions in Lq (A (x) dx) for
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some q � 4b+4
2b+3 . Let f �≡ 0 be smooth, even and compactly supported. Let R such

that f̂ (R) �= 0. We have

SR f (x) =
∫ R

0
f̂ (R) ϕλ (x)

dλ

2π |c (λ)|2 +
∫ R

0

[
f̂ (λ) − f̂ (R)

]
ϕλ (x)

dλ

2π |c (λ)|2
= I + I I.

A change in the path of integration in I (as in the proof of Lemma 3.1) and (2.1)
give

I = f̂ (R)

2π

∫
γ

�−λ (x)
dλ

c (λ)

where γ = {
Reiθ : −π � θ � 0

}
. By Theorem 1.17 we have

�−λ (x) = A− 1
2 (x) e−iλx (1 + R (λ, x))

with
|R (λ, x)| � e

1
|λ|

∫ +∞
x |q(v)|dv − 1.

By (H5), for large values of λ and x we obtain

�−λ (x) = A− 1
2 (x) e−iλx

(
1 + O

(
1

λx

))
.

By Corollary 2.3,

I = f̂ (R)

2π

∫
γ

A− 1
2 (x) e−iλx dλ

c (λ)
+ f̂ (R)

2π

∫
γ

A− 1
2 (x) e−iλx O

(
1

λx

)
dλ

c (λ)

= f̂ (R)

2π
A− 1

2 (x)

∫
γ

e−iλx dλ

c(λ)
+O

(
f̂ (R) A− 1

2 (x)

∫ 0

−π

eRx sin θ 1

Rx
Rα+ 1

2 Rdθ

)

= f̂ (R)

2π
A− 1

2 (x)

∫
γ

e−iλx dλ

c (λ)
+ O

(
f̂ (R)

A− 1
2 (x) Rα− 1

2

x2

)
.

Also, by Theorem 2.1

1

c (λ)
= cλα+ 1

2 + O
(
λα− 1

2

)
and therefore∫

γ

e−iλx dλ

c (λ)
= c

∫
γ

e−iλxλα+ 1
2 dλ + O

(∫
γ

e−iλxλα− 1
2 dλ

)

= c
∫ R

−R
e−iλxλα+ 1

2 dλ + O

(
Rα− 1

2

x

)
.
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Some standard computations show that∫ R

−R
e−iλxλα+ 1

2 dλ = c sin

(
Rx − π

2

(
α + 1

2

))
Rα+ 1

2

x
+ O

(
Rα− 1

2

x2

)
and therefore

I = c f̂ (R) A− 1
2 (x)

Rα+ 1
2

x

[
sin

(
Rx − π

2

(
α + 1

2

))
+ O

(
1

R

)]
.

Let now x such that
∣∣∣sin

(
Rx − π

2

(
α + 1

2

))∣∣∣ > 1
2 and R sufficiently large such

that O
(

1
R

)
< 1

4 . We have

I > c f̂ (R) A− 1
2 (x)

Rα+ 1
2

x
.

We now estimate I I . A similar computation shows that

|I I | =
∣∣∣∣ 1

2π

∫
γ

[
f̂ (λ) − f̂ (R)

]
�−λ (x)

dλ

c (λ)

∣∣∣∣
� c

∫ π

0

∣∣∣ f̂
(

Re−i Rθ
)

− f̂ (R)

∣∣∣ A− 1
2 (x) e−Rx sin θ Rα+ 3

2 dθ.

Since f̂
(
Re−i Rθ

) − f̂ (R) = 0 for θ = 0 and θ = π it is easy to see that

|I I | � cR
A− 1

2 (x)

x2
.

Let now x such that
∣∣∣sin

(
Rx − π

2

(
α + 1

2

))∣∣∣ > 1
2 then

|SR f (x)| = |I + I I | � c f̂ (R) A− 1
2 (x)

Rα+ 1
2

x
− cR

A− 1
2 (x)

x2

= A− 1
2 (x)

x

(
c f̂ (R) Rα+ 1

2 − cR
1

x

)
.

Since A (x) ≈ x2b+1 (A (x) ≈ x log2 x in the singular case), integrating over{
x :

∣∣∣sin
(

Rx − π
2

(
α + 1

2

))∣∣∣ > 1
2

}
shows that SR f (x) /∈ Lq (A (x) dx) for any

q � 4b+4
2b+3 (observe that since f̂ is entire we can always find large values of R such

that f̂ (R) �= 0).

Proof of Theorem 0.5. In the case of the Fourier-Bessel expansion the result is con-
tained in [6]. Using the asymptotic expansion for ϕλ given Theorem 1.2 and the
estimate for |c (λ)| given in Corollary 2.3 one can easily adapt their proof.
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A. Appendix

In this appendix we collect some known facts used repeatedly in the paper.

Lemma A.1. Let u1 and u2 be two linearly independent solutions of the equation

u′′ + p1u′ + p2u = 0.

If ϕ (t) is a C2 solution of the integral equation

u (t) = −
∫ t

t0

u1 (t) u2 (s) − u2 (t) u1 (s)

u1 (s) u′
2 (s) − u2 (s) u′

1 (s)
(ψ0 (s) u (s) + J (s) φ (s)) ds,

then ϕ (t) is a solution of the differential equation

u′′ + p1u′ + p2u = ψ0u + Jφ.

The above integral equation can be solved by the method of successive approxima-
tion. For reader’s convenience, we restate of [11, Theorem 10.1, Chapter VI].

Let us consider a kernel k (t, s) defined for t ∈ (t0, t1) and s ∈ (t0, t] that
satisfies the following conditions

1. k (t, s) and ∂k
∂t (t, s) are continuous,

2. for t ∈ (t0, t1) we have k (t, t) = 0,

3. there exist continuous functions P0, P1 and Q such that, for all s ∈ (t0, t],

|k (t, s)| � P0 (t) Q (s)

and ∣∣∣∣∂k

∂t
(t, s)

∣∣∣∣ � P1 (t) Q (s) ,

4.
κ = sup

t∈(t0,t1)
Q (t) |J (t)| < +∞

and
κ0 = sup

t∈(t0,t1)
Q (t) P0 (t) < +∞.

Theorem A.2. Given an integral equation of the form

u (t) = −
∫ t

t0
k (t, s) (ψ0 (s) u (s) + J (s) φ (s)) ds (A.1)

assume that

1. the functions ψ0, J , and φ are continuous,
2. the following integrals converge∫ t

t0
|φ (s)| ds,

∫ t

t0
|ψ0 (s)| ds,
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then (A.1) has a unique twice continuously differentiable solution u (t) satisfying

u (t)

P0 (t)
→ 0,

u′ (t)
P1 (t)

→ 0 as t → t0.

Furthermore

|u (t)|
P0 (t)

,

∣∣u′ (t)
∣∣

P1 (t)
� κ

∣∣∣∣∫ t

t0
|φ (s)| ds

∣∣∣∣ exp

(
κ0

∣∣∣∣∫ t

t0
|ψ0 (s)| ds

∣∣∣∣) .

If φ (s) = ψ0 (s), then the above estimate can be sharpened

|u (t)|
P0 (t)

,

∣∣u′ (t)
∣∣

P1 (t)
� κ

κ0

(
exp

(
κ0

∣∣∣∣∫ t

t0
|φ (s)| ds

∣∣∣∣) − 1

)
.

Theorem A.3. Let k as above and assume that J is differentiable on (t0, t1) and
φ (s) continuous on (t0, t1), such that

∫ t
t0

|φ (s)| ds converges for every t ∈ (t0, t1).
Let u0 ≡ 0 and define inductively

u j+1 (t) = J (t) −
∫ t

t0
k (t, s) φ (s) u j (s) ds.

Then

∣∣u j+1 (t) − u j (t)
∣∣ � κ

κ0
P0 (t)

(
κ0

∫ t

t0
|φ (s)| ds

) j+1

j !
and

∣∣∣u′
j+1 (t) − u′

j (t)
∣∣∣ � κ

κ0
P1 (t)

(
κ0

∫ t

t0
|φ (s)| ds

) j+1

j ! .

Moreover

u (t) =
+∞∑
j=0

(
u j+1 (t) − u j (t)

)
is the unique solution of the integral equation

u (t) = J (t) −
∫ t

t0
k (t, s) φ (s) u (s) ds

such that

u (t) − J (t)

P0 (t)
→ 0,

u′ (t) − J ′ (t)
P1 (t)

→ 0 as t → t0.
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Furthermore

|u (t) − J (t)| � P0 (t)
κ

κ0

(
exp

(
κ0

∣∣∣∣∫ t

t0
|φ (s)| ds

∣∣∣∣) − 1

)
∣∣u′ (t) − J ′ (t)

∣∣ � P1 (t)
κ

κ0

(
exp

(
κ0

∣∣∣∣∫ t

t0
|φ (s)| ds

∣∣∣∣) − 1

)
.
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