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Convex isoperimetric sets in the Heisenberg group

ROBERTO MONTI AND MATTHIEU RICKLY

Abstract. We characterize convex isoperimetric sets in the Heisenberg group.
We first prove Sobolev regularity for a certain class of R

2-valued vector fields
of bounded variation in the plane related to the curvature equations. Then we
show that the boundary of convex isoperimetric sets is foliated by geodesics of
the Carnot-Carathéodory distance.
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1. Introduction

We identify the Heisenberg group H1 with C × R endowed with the group law

(z, t)(z′, t ′) = (
z + z′, t + t ′ + 2 Im (zz̄′)

)
,

where t, t ′ ∈ R and z = x + iy, z′ = x ′ + iy′ ∈ C. The Lie algebra of left-invariant
vector fields is spanned by

X = ∂

∂x
+ 2y

∂

∂t
, Y = ∂

∂y
− 2x

∂

∂t
and T = ∂

∂t
,

and the distribution of planes spanned by X and Y , called horizontal distribution,
generates the Lie algebra by brackets.

The natural volume in H1 is the Haar measure, which, up to a positive factor,
coincides with Lebesgue measure in R3 = C × R. Lebesgue measure is also the
Riemannian volume of the left-invariant metric for which X , Y and T are orthonor-
mal. We denote by |E | the volume of a (Lebesgue) measurable set E ⊂ H1. The
horizontal perimeter (or simply perimeter) of E is

P(E)=sup

{∫
E

(
Xϕ1 + Yϕ2

)
dxdydt

∣∣∣ ϕ1, ϕ2 ∈ C1
c (R3), ϕ2

1 + ϕ2
2 ≤ 1

}
. (1.1)

If P(E) < +∞, the set E is said to be of finite perimeter. Perimeter is left-invariant
and 3-homogeneous with respect to the group of dilations δλ : H1 → H1, δλ(z, t) =
Received March 31, 2008; accepted October 14, 2008.
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(λz, λ2t), λ > 0, that is P(δλ(E)) = λ3 P(E). Definition (1.1) of perimeter is mod-
elled on De Giorgi’s notion of perimeter in Euclidean spaces which was generalized
in [10] to Carnot-Carathéodory spaces. For smooth sets (e.g. of class C2), perime-
ter coincides with the Minkowski content and with the 3-dimensional Hausdorff
measure of ∂ E constructed by means of the standard Carnot-Carathéodory metric
in H1 (see [16] and [9], respectively). Volume and perimeter are related via the
isoperimetric inequality

|E | ≤ Cisop P(E)4/3, (1.2)

where Cisop > 0 and E ⊂ H1 is any measurable set with finite perimeter and
volume. This inequality is proved by P. Pansu in [17] and [18] for smooth domains
with the 3-dimensional Hausdorff measure of ∂ E in H1 replacing P(E). In the
general form (1.2), the inequality is proved in [10] (see also [8]). The problem
of computing the sharp constant Cisop leads to the notion of isoperimetric set. A
set E ⊂ H1 with 0 < |E | < +∞ is an isoperimetric set if it minimizes the
isoperimetric ratio

Isop(E) = P(E)4/3

|E | . (1.3)

Isoperimetric sets do exist: this is proved in [12] by a concentration-compactness
argument. Pansu notes that the boundary of a smooth isoperimetric set has “constant
mean curvature” and that a smooth surface has “constant mean curvature” if and
only if it is foliated by horizontal lifts of plane circles with constant radius. Then
he conjectures that an isoperimetric set is obtained by rotating around the center of
the group a geodesic joining two points in the center. Recently, Pansu’s conjecture
reappeared in [11].

The problem of determining isoperimetric sets is interesting for two reasons.
On the one hand, the non commutative group law makes it difficult to prove by a
rearrangement argument that the isoperimetric ratio (1.3) is minimized by rotation-
ally symmetric sets, as it is natural to conjecture. On the other hand, there is no
regularity theory for measurable sets in H1 minimizing perimeter with (or without)
a volume constraint. So, new techniques and ideas are needed.

All known results assume either symmetry or regularity (or both). In fact,
assuming rotational symmetry and regularity it is easy to determine the isoperi-
metric profile (see [13], and [22] for the general case). Actually, it suffices to
assume the rotational symmetry of a certain horizontal section (see [7] and espe-
cially the calibration argument in [21]). The solution of the rotationally symmetric
case with no regularity assumption is in [14]. On the other hand, isoperimetric sets
can be also determined assuming only the C2 regularity of the boundary and no
symmetry (see [23]). Further evidence supporting Pansu’s conjecture is provided
by [15], where a 2-dimensional version of the problem is solved. We refer to the
monograph [3] for a more detailed introduction to the isoperimetric problem in the
Heisenberg group.

In this article, we characterize isoperimetric sets which are convex. By convex
set we mean a subset of H1 = R3 which is convex with respect to the standard
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vector space structure of R3. Convexity is a left invariant property in H1 because
left translations are affine mappings.

Theorem 1.1 (Convex isoperimetric sets). Up to a left translation and a dilation,
any closed convex isoperimetric set in H1 coincides with

Eisop =
{
(z, t) ∈ H

1
∣∣ |t | ≤ arccos |z| + |z|

√
1 − |z|2, |z| ≤ 1

}
. (1.4)

The boundary of the set in (1.4) is foliated by Heisenberg geodesics, it is globally
of class C2, but it fails to be of class C3 at the north and south poles (0, ±π/2). At
these points, the plane spanned by the vector fields X and Y , the horizontal plane,
is tangent to the boundary.

We explain the main steps in the proof of Theorem 1.1. Let us consider a
bounded convex set of the form

E = {
(z, t) ∈ H

1 | z ∈ D, f (z) ≤ t ≤ g(z)
}
, (1.5)

where D ⊂ R2 is a compact convex set in the plane with nonempty interior, and
−g, f : D → R are convex functions. If E is isoperimetric, then the function
f : D → R satisfies the partial differential equation

div

( ∇ f (z) + 2z⊥

|∇ f (z) + 2z⊥|
)

= 3P(E)

4|E | (1.6)

in int(D) \ �( f ). Here and in the following we let z = (x, y) and z⊥ = (−y, x).
We call the singular set �( f ) = {

z ∈ int(D) | − 2z⊥ ∈ ∂ f (z)
}

the characteristic
set of f . This set is always contained in a line segment. The basic facts concerning
�( f ) are discussed in the appendix. Equation (1.6) is derived in Section 2.

The curvature operator in (1.6) has been studied by several authors under dif-
ferent regularity assumptions (besides the previous references, see also [4–6, 19,
20]). In the smooth case, the number

H = 3P(E)

4|E | (1.7)

is known as the (horizontal) curvature of ∂ E . In our case, equation (1.6) is to be
interpreted in distributional sense. The distributional derivatives of u(z) = ∇ f (z)+
2z⊥ are measures, because f is a convex function, and so the equation states that
the distributional divergence of u/|u| is constant.

Our goal is to give equation (1.6) a pointwise meaning along integral curves of
the vector field orthogonal to u/|u|. The first step is to show that the equation holds
in the Sobolev sense. Precisely, we prove that the distributional derivative of u/|u|
is a measure which is absolutely continuous with respect to Lebesgue measure.
This result is a corollary of the following regularity theorem for BV vector fields,
which is interesting in itself. We prove a slightly more general statement in the third
section.



394 ROBERTO MONTI AND MATTHIEU RICKLY

Theorem 1.2 (Improved regularity). Let � ⊂ R2 be a bounded open set and let
u ∈ BV (�; R2) be a vector field. Suppose that:

(i) There exists δ > 0 such that |u(z)| ≥ δ for L2-a.e. z ∈ �;
(ii) div u⊥ ∈ L1(�);

(iii) div

(
u

|u|
)

∈ L1(�).

Then we have u/|u| ∈ W 1,1(�; R2).

The improved regularity of the boundary is the starting point for the geometric
characterization of convex isoperimetric sets. The vector field v(z) = −u⊥(z) =
2z −∇ f ⊥(z) belongs to BVloc(int(D); R2). Moreover, its distributional divergence
is in L∞, in fact

div v = 4 in int(D). (1.8)

Thanks to the theory on the Cauchy Problem for BV vector fields recently devel-
oped by Ambrosio in [1], the bound on the divergence ensures the existence of a
unique regular Lagrangian flow � : K × [−	, 	] → D starting from a compact
set K ⊂ int(D), where 	 > 0 is small enough. For L2-a.e. z ∈ K , the curve
s 
→ �(z, s) is an integral curve of v passing through z at time s = 0. In Section 4,
we show that L2-a.e. integral curve of v is an arc of circle.

Theorem 1.3 (Foliation by circles). Let E ⊂ H1 be a convex isoperimetric set of
the form (1.5) and let K ⊂ int(D)\�( f ) be a compact set. Then, for L2-a.e. z ∈ K ,
the curve s 
→ �(z, s) is an arc of circle having radius 1/H, with H > 0 as in
(1.7).

The proof of Theorem 1.3 relies upon a reparameterization argument. The
vector field v has a regular flow � starting from K ⊂ int(D) \ �( f ) but it is
only in BVloc(int(D); R2). On the other hand, v/|v| is in W 1,1

loc (int(D); R2), but
its divergence is only in L1

loc(int(D)) and so we have no regular flow for v/|v|. In
order to compute the second order derivative of a generic integral curve of v, we
introduce a suitable reparameterization γ (s) = �(z, τ (s)). We show that for any
vector field w ∈ W 1,1(�; R2) defined in some open neighborhood � of K , the
curve κ(s) = w(γ (s)) is in W 1,1 for L2-a.e. z ∈ K and moreover

κ̇ = (∇w ◦ γ ) γ̇ in the weak sense. (1.9)

Using the chain rule (1.9) with w = v/|v|, which is in W 1,1 by Theorem 1.2,
equation (1.6) can be given a pointwise meaning along the flow, and the integral
curves of v turn out to be arcs of circles.

Since the horizontal lift of the flow � foliates the graph of the function f ,
it follows that the bottom (and upper) part of the boundary of E is foliated by
geodesics of the Heisenberg Carnot-Carathéodory metric. However, this is not yet
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enough to finish our argument. We still need to show that the bottom and upper
parts of ∂ E match together in the proper way. To do this, we write E in the form

E = {
(x, y, t) ∈ H

1 | (y, t) ∈ F, h(y, t) ≤ x ≤ k(y, t)
}
, (1.10)

for some compact convex set F ⊂ R2 and convex functions h, −k : F → R. The
analysis carried out for f can be also carried out for h even though in this case
computations are, unfortunately, more complicated. This provides the last piece of
information needed to get the set Eisop in (1.4).

A short overview is now in order. In Section 2, we derive the curvature equa-
tions for convex isoperimetric sets. In Section 3, we prove the generalized version
of Theorem 1.2 which is needed in Section 4, where we establish the foliation by
geodesics property for convex isoperimetric sets. Finally, in Section 5 we prove
Theorem 1.1. The results concerning convex sets are collected in the appendix at
the end of the paper.

2. Curvature equations for convex isoperimetric sets

We derive partial differential equations for certain vector fields built from the func-
tions which parameterize the boundary of convex isoperimetric sets. We study
graphs of the form t = f (x, y) and graphs of the form x = h(y, t). We use
the following representation formula for perimeter. If E ⊂ H1 is a bounded set
such that ∂ E is locally a Lipschitz surface, then

P(E) =
∫

∂ E

√
(X · ν)2 + (Y · ν)2 dH2, (2.1)

where ν is a unit normal to ∂ E . Here and in the following, · denotes the standard
inner product in R3 or R2 (we think of X and Y as vectors in R3). H2 is the 2-
dimensional Hausdorff measure in R3 with respect to the usual Euclidean distance.
For a proof of formula (2.1), see [9].

Graphs of the form t = f (x, y)

We denote elements of H1 = R2 × R by (z, t) with t ∈ R and z = (x, y) ∈ R2.
We write z⊥ = (−y, x). Let E be a convex set in H1 of the form (1.5). We define
the characteristic set of the convex function f : D → R as

�( f ) = {
z ∈ int(D) | − 2z⊥ ∈ ∂ f (z)

}
, (2.2)

where ∂ f (z) stands for the subdifferential of f at z.

Proposition 2.1 (Curvature equation I). Let E ⊂ H1 be a convex isoperimetric
set with perimeter P(E) and volume |E |. Then the function f : D → R satisfies in
distributional sense the partial differential equation

div

( ∇ f (z) + 2z⊥

|∇ f (z) + 2z⊥|
)

= H (2.3)

in int(D) \ �( f ), with H = 3P(E)/4|E |.
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Proof. By Theorem A.1 in the appendix, �( f ) is contained in the union of at most
two line segments.

Let ϕ ∈ C∞
c (int(D) \ �( f )) and for ε ∈ R, consider the set

Eε = {
(z, t) ∈ H

1 | z ∈ D, f (z) + εϕ(z) ≤ t ≤ g(z)
}
.

We let P(ε) = P(Eε), V (ε) = |Eε| and R(ε) = P(ε)4/V (ε)3. If E is an isoperi-
metric set, then R(ε) has a minimum at ε = 0, and then

R′(0) = P3

V 4

(
4P ′V − 3PV ′)∣∣∣∣∣

ε=0

= 0. (2.4)

There exists ε0 > 0 such that

V ′(ε) = −
∫

D
ϕ(z) dz for |ε| < ε0. (2.5)

Let νε be the exterior unit normal to ∂ Eε and let Sε = {
(z, f (z)+εϕ(z)) ∈ H1 | z ∈

D
}

be the graph of f + εϕ. By the Heisenberg area formula (2.1) and from the
standard area formula for graphs of functions in Euclidean spaces, we find

P ′(ε) = d

dε

∫
Sε

√
(X · νε)2 + (Y · νε)2 dH2

= d

dε

∫
D

|∇ f (z) + ε∇ϕ(z) + 2z⊥| dz.
(2.6)

By Proposition A.2 in the appendix, for any compact set K ⊂ int(D) \ �( f ), there
is δ > 0 such that |∇ f (z) + 2z⊥| ≥ δ for L2-a.e. z ∈ K . Then we can interchange
derivative and integral for all small ε. At ε = 0 we obtain

P ′(0) =
∫

D

∇ f (z) + 2z⊥

|∇ f (z) + 2z⊥| · ∇ϕ(z) dz. (2.7)

From (2.4), (2.5) and (2.7) we find

4|E |
∫

D

∇ f (z) + 2z⊥

|∇ f (z) + 2z⊥| · ∇ϕ(z) dz = −3P(E)

∫
D

ϕ(z) dz

for arbitrary ϕ ∈ C∞
c (int(D) \ �( f )). This is (2.3).

Graphs of the form x = h(y, t)

We denote points in H1 = R × R2 by (x, ζ ) with x ∈ R and ζ = (y, t) ∈ R2.
Let E be a convex set in H1 of the form (1.10). We define the characteristic set of
the convex function h : F → R as the set �(h) of the points ζ ∈ F such that the
horizontal plane spanned by the vector fields X and Y at the point p = (h(ζ ), ζ ) ∈
R × R2 is a supporting plane for E (i.e. the plane does not intersect the interior of
E). By Theorem A.1 in the appendix, �(h) is contained in the union of at most two
line segments.
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Proposition 2.2 (Curvature equation II). Let E ⊂ H1 be a convex isoperimetric
set with perimeter P(E) and volume |E |. Then the function h : F → R satisfies in
distributional sense the partial differential equation

(∂y − 2h∂t )

(
u1

|u|
)

− 2y∂t

(
u2

|u|
)

= H (2.8)

in int(F)\�(h), with H = 3P(E)/4|E | and u = (u1, u2) = (hy −2hht , 1−2yht ).

Proof. Notice that u ∈ BVloc(int(F); R2) and moreover, by Proposition A.3 in the
appendix, for each compact set K ⊂ (int(F) \ �(h)), there exists δ > 0 such that
|u| ≥ δ L2-a.e. in K . Hence u/|u| ∈ BVloc(int(F) \ �(h); R2).

Let ϕ ∈ C∞
c (int(F) \ �(h)) and for any ε ∈ R consider the set

Eε = {
(x, ζ ) ∈ H

1 | ζ ∈ F, h(ζ ) + εϕ(ζ ) ≤ x ≤ k(ζ )
}
.

We let P(ε) = P(Eε), V (ε) = |Eε| and R(ε) = P(ε)4/V (ε)3. Denoting by
Sε = {

(h(ζ ) + εϕ(ζ ), ζ ) ∈ H1 | ζ ∈ F
}

the graph of h + εϕ and by νε the exterior
unit normal to ∂ Eε, from the Heisenberg area formula (2.1) and from the standard
area formula we get

P ′(ε)= d

dε

∫
Sε

√
(X · νε)2 + (Y · νε)2 dH2

= d

dε

∫
F

((
1 − 2y(ht +εϕt )

)2+(
(hy +εϕy) − 2(h+εϕ)(ht +εϕt )

)2
)1/2

dζ.

Because we have (hy − 2hht )
2 + (1 − 2yht )

2 ≥ δ2 > 0 L2-a.e. in a neighbourhood
of spt(ϕ), we can differentiate under the integral sign and we obtain

P ′(0) =
∫

F

(hy − 2hht )(ϕy − 2(ϕh)t ) − 2yϕt (1 − 2yht )√
(hy − 2hht )2 + (1 − 2yht )2

dζ

at ε = 0. An integration by parts yields

P ′(0) = −
∫

F
ϕ d

(
(∂y − 2h∂t )

(
u1

|u|
)

− 2y∂t

(
u2

|u|
))

,

where the derivatives of u/|u| are measures. If E minimizes the isoperimetric ratio
then, as in the proof of Proposition 2.1, we get

4|E |
∫

F
ϕ d

(
(∂y − 2h∂t )

(
u1

|u|
)

− 2y∂t

(
u2

|u|
))

= 3P(E)

∫
F

ϕ dζ

for arbitrary ϕ ∈ C∞
c (int(F) \ �(h)). This is (2.8).
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3. Improved regularity of the boundary

In this section, we prove a regularity result for vector fields with bounded variation
in the plane arising from the parameterization of the boundary of convex isoperi-
metric sets.

Let � ⊂ R2 be an open set and let a, b ∈ C(�) be continuous functions. We
consider the differential operator M acting on BV (�; R2) defined by

Mu = (∂1 − a∂2)u1 + b∂2u2. (3.1)

In general, Mu is a measure in �. We have M = div when a = 0 and b = 1.
When a = 2h and b = −2y, M is the operator appearing in the left hand side of
(2.8).

We recall that a vector field u ∈ L1(�; R2) has approximate limit ū(q) ∈ R2

at the point q ∈ � if

lim
r↓0

−
∫

B(q,r)

|u − ū(q)| dL2 = 0. (3.2)

Here, B(q, r) denotes the open Euclidean ball of radius r centered at q. The ap-
proximate discontinuity set of u is the set Su of points in � at which u has no
approximate limit. The jump set of u is the set Ju of points q ∈ � for which there
exist u+(q), u−(q) ∈ R2 and νu(q) ∈ S1 such that u+(q) 
= u−(q) and

lim
r↓0

−
∫

B±(q,r)

|u − u±(q)| dL2 = 0, (3.3)

where B±(q, r) = {
q ′ ∈ B(q, r) | ± (q ′ − q) · νu(q) > 0

}
. Finally, the precise

representative u∗ : � → R2 of u is:

u∗(q) =


ū(q) q ∈ � \ Su,

1

2

(
u+(q) + u−(q)

)
q ∈ Ju,

0 q ∈ Su \ Ju .

(3.4)

By the Lebesgue density theorem, it is u = u∗ L2-a.e. in �.

Theorem 3.1 (Improved regularity). Let � ⊂ R2 be a bounded open set, let u =
(u1, u2) ∈ BV (�; R2), and let a, b ∈ C(�) be continuous functions such that
b 
= 0 in �. Assume that:

(i) There exists δ > 0 such that |u| ≥ δ L2-a.e. in �;
(ii) Mu⊥ ∈ L1(�), where u⊥ = (−u2, u1);

(iii) M
(

u

|u|
)

∈ L1(�).
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Then u/|u| ∈ W 1,1(�; R2) and there exists a function µ : Ju → (0, +∞), such
that u− = µu+ on Ju.

Proof. If u ∈ BV (�; R2) the measure Du has the decomposition Du = Dau +
Dsu with Dau � L2 and Dsu ⊥ L2. Dau = ∇u L2 is the absolutely continuous
part of the measure, with ∇u ∈ L1(�; M2×2) and M2×2 denotes the space of 2 × 2
matrices with real entries. Moreover, it is Dsu = Dcu + D j u, where Dcu =
Dsu � \ Su is the Cantor part and D j u = Dsu Su is the jump part. By the
representation theorem of Federer–Vol’pert and by Alberti’s rank one theorem, the
measures Dcu and D j u admit the representations

D j u = (u+ − u−) ⊗ νu H1 Ju and Dcu = η ⊗ ξ |Dcu|, (3.5)

where |Dcu| is the total variation of Dcu and η, ξ : � → S1 are suitable Borel
maps. The measure |Dcu| is absolutely continuous with respect to H1. The set Ju
is an H1-rectifiable Borel subset of Su with H1 (Su \ Ju) = 0. For these and related
results on BV vector fields we refer the reader to the monograph [2].

We claim that both the jump and the Cantor parts of D(u/|u|) vanish. Let
F : R2 → R2 be a smooth mapping such that

F(0) = 0, F(q) = q

|q| for |q| ≥ δ

2
and |∇F | ∈ L∞(R2). (3.6)

If |q| > δ/2, the derivative of F is

∇F(q) = 1

|q|3 q⊥ ⊗ q⊥. (3.7)

By (i), the vector field v = F ◦ u is in BV (�; R2) (this fact is implicitly assumed
in (iii)).

By the chain rule for BV vector fields, we have

Dav = ∇F(u∗)∇u L2 and Dcv = (∇F(u∗)η) ⊗ ξ |Dcu|. (3.8)

A point q ∈ � belongs to Jv if and only if q ∈ Ju and F(u+(q)) 
= F(u−(q)).
Moreover, it is D jv = (

F(u+) − F(u−)
) ⊗ νu H1 Ju . Notice that |u±(q)| ≥ δ

for all q ∈ Ju , by (i). Then, the jump set of v is

Jv = {
q ∈ Ju | u+(q)/|u+(q)| 
= u−(q)/|u−(q)|} (3.9)

and the jump part of Dv is

D jv =
(

u+

|u+| − u−

|u−|
)

⊗ νu H1 Ju . (3.10)
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By assumption (ii), the part of the measure −∂1u2 + b∂2u1 + a∂2u2 concentrated
on Ju vanishes. From the formula for D j u in (3.5), we can compute D j

k ul for
k, l = 1, 2, and we obtain(

(u−
2 − u+

2 ), b(u+
1 − u−

1 ) + a(u+
2 − u−

2 )
) · νu = 0 (3.11)

H1-a.e. on Ju .
By assumption (iii), the part of the measure (∂1 − a∂2)(u1/|u|) + b∂2(u2/|u|)

concentrated on Jv vanishes. Thus, using (3.10), we can compute D j
k (ul/|u|) for

k, l = 1, 2, and we get(
u+

1

|u+| − u−
1

|u−| ,
au−

1 − bu−
2

|u−| − au+
1 − bu+

2

|u+|

)
· νu = 0 (3.12)

H1-a.e. on Jv .
From (3.12) and (3.11), we deduce that there exists λ ∈ R such that the fol-

lowing system of equations is satisfied H1-a.e. on Jv:
u+

1

|u+| − u−
1

|u−| = −λ(u+
2 − u−

2 )

bu+
2 − au+

1

|u+| − bu−
2 − au−

1

|u−| = λ
(
b(u+

1 − u−
1 ) + a(u+

2 − u−
2 )

)
.

By elementary linear algebra, using b 
= 0, we obtain the equivalent system
u+

1

|u+| − u−
1

|u−| = −λ(u+
2 − u−

2 )

u+
2

|u+| − u−
2

|u−| = λ(u+
1 − u−

1 )

⇔
(

u+

|u+| − u−

|u−|
)

· (
u+ − u−) = 0,

that is u− · u+ = |u−||u+|, H1-a.e. on Jv . It follows that u− = µu+ H1-a.e. on
Jv for some µ : Jv → (0, +∞), and then u+/|u+| = u−/|u−| H1-a.e. on Jv . This
proves that H1(Jv) = 0 and thus D jv = 0.

By assumption (ii), the Cantor part of the measure −∂1u2 + b∂2u1 + a∂2u2
vanishes. From Dcu = η ⊗ ξ |Dcu|, we can compute Dc

kul for k, l = 1, 2, and we
find

(−η2, bη1 + aη2) · ξ = 0 (3.13)

|Dcu|-a.e. on �. By assumption (iii), the Cantor part of the measure

(∂1 − a∂2)(u1/|u|) + b∂2(u2/|u|)
vanishes, too. Thus, letting ϑ = (ϑ1, ϑ2) = ((u∗)⊥ ⊗ (u∗)⊥)η, we can use (3.7)
and (3.8) to compute Dc

k(ul/|u|) for k, l = 1, 2, and we find(
ϑ1, bϑ2 − aϑ1

) · ξ = 0 (3.14)



CONVEX ISOPERIMETRIC SETS IN THE HEISENBERG GROUP 401

|Dcu|-a.e. on �. From (3.13) and (3.14), we deduce that there exists λ ∈ R such
that {

ϑ1 = −λη2

bϑ2 − aϑ1 = λ
(
bη1 + aη2

) ⇔
{

ϑ1 = −λη2

ϑ2 = λη1.

Here we used b 
= 0. This, in turn, is equivalent with

ϑ · η = ((
(u∗)⊥ ⊗ (u∗)⊥

)
η
) · η = 0

|Dcu|-a.e. on �. Using the identity
((

(u∗)⊥ ⊗ (u∗)⊥
)
η
) · η = (

(u∗)⊥ · η
)2, we

deduce that (u∗)⊥ · η = 0, and thus
(
(u∗)⊥ ⊗ (u∗)⊥

)
η = 0 as well. By (3.7), this

proves that (∇F(u∗)η) ⊗ ξ = 0 |Dcu|-a.e. on �, whence Dcv = 0 by (3.8).

Theorem 3.1 has the following corollaries.

Corollary 3.2. Let E ⊂ H1 be a convex isoperimetric set and let f : D → R be
the function in (1.5). Then we have

∇ f (z) + 2z⊥

|∇ f (z) + 2z⊥| ∈ W 1,1
loc (int(D) \ �( f ); R

2). (3.15)

Proof. The vector field u(z) = (u1(z), u2(z)) = ∇ f (z) + 2z⊥ satisfies div u⊥ =
−4 in int(D). By Proposition A.2 in the appendix, |u| ≥ δ > 0 on a compact set in
int(D) \ �( f ). Moreover, by Proposition 2.1, we have div(u/|u|) = 3P(E)/4|E |
in int(D) \ �( f ). The claim follows from Theorem 3.1 with a = 0 and b = 1.

Corollary 3.3. Let E ⊂ H1 be a convex isoperimetric set and let h : F → R be
the function in (1.10). Then we have

u

|u| ∈ W 1,1
loc (int(F) \ ({y = 0} ∪ �(h)); R

2), (3.16)

with u = (u1, u2) = (hy − 2hht , 1 − 2yht ).

Proof. We use Theorem 3.1 with a = 2h and b = −2y. The vector field u is in
BVloc(int(F); R2) and satisfies

Mu⊥ = (∂y −2h∂t )(2yht −1)−2y∂t (hy −2hht ) = 2ht (1+2yht ) ∈ L∞
loc(int(F)).

From Proposition A.3 in the appendix, it follows that u/|u| ∈ BVloc(int(F)\�(h)),

and moreover, by Proposition 2.2, u/|u| satisfies

M
(

u

|u|
)

= (∂y − 2h∂t )

(
u1

|u|
)

− 2y∂t

(
u2

|u|
)

= 3P(E)

4|E |
in int(F) \ �(h). Now the claim follows from Theorem 3.1.
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4. Integration of the curvature equation

In this section we solve equations (2.3) and (2.8). These equations can be integrated
along a regular Lagrangian flow and the solutions are suitable arcs of circle.

We recall the definition of regular flow in the plane. Let � ⊂ R2 be an open
set and let u ∈ BV (�; R2) ∩ L∞(�; R2). For q ∈ � and 	 > 0 small enough
define

Cq([−	, 	]; �)

=
{
γ ∈ C([−	, 	]; �)

∣∣∣ γ (s) = q +
∫ s

0
u(γ (σ )) dσ, s ∈ [−	, 	]

}
.

Let K ⊂ � be a compact set. An L2-measurable map � : K → C([−	, 	]; �) is
a Lagrangian flow starting from K relative to u if �(q) ∈ Cq([−	, 	]; �) for L2-
a.e. q ∈ K . With abuse of notation, � is identified with the map � : K ×[−	, 	] →
�, �(q, s) = �(q)(s). The flow is said to be regular if there exists a constant
m ≥ 1 such that

1

m
L2(A) ≤ L2(�(A, s)) ≤ mL2(A) (4.1)

for all L2-measurable sets A ⊂ K and for all s ∈ [−	, 	].
Theorem 4.1 (Foliation by circles I). Let E ⊂ H1 be a convex isoperimetric set
and let f : D → R be the function in (1.5). Let K ⊂ int(D) \ �( f ) be a compact
set and � ⊂ int(D) \ �( f ) an open neighborhood of K .

For a sufficiently small 	 > 0, there exists a (unique) regular Lagrangian flow
� : K × [−	, 	] → � of the vector field v(z) = 2z − ∇ f ⊥(z). Moreover, for
L2-a.e. z ∈ K , the integral curve s 
→ �(z, s) is an arc of circle with radius
4|E |/3P(E) oriented clockwise.

For a convex isoperimetric set of the form (1.10) there is an analogous state-
ment.

Theorem 4.2 (Foliation by circles II). Let E ⊂ H1 be a convex isoperimetric set
and let h : F → R be the function in (1.10). Let K ⊂ int(F) \ ({y = 0}∪�(h)

)
be

a compact set and � ⊂ int(F) \ ({y = 0} ∪ �(h)
)

be an open neighborhood of K .
For a sufficiently small 	 > 0, there exists a (unique) regular Lagrangian

flow � : K × [−	, 	] → � of the vector field v(ζ ) = (
1 − 2yht , 2yhy − 2h

)
,

ζ = (y, t) ∈ F. Moreover, for L2-a.e. ζ ∈ K , the projection onto the xy-plane of
the curve

s 
→ (h(�(ζ, s)), �(ζ, s)) ∈ H
1, s ∈ [−	, 	], (4.2)

is an arc of circle with radius 4|E |/3P(E) oriented clockwise.

The existence of a (unique) regular Lagrangian flow stated in Theorems 4.1 and
4.2 follows from Ambrosio’s theory on the Cauchy problem for BV vector fields.
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Theorem 4.3 (Ambrosio). Let � ⊂ R2 be an open set and assume that:
(i) u ∈ BV (�; R2) ∩ L∞(�; R2);

(ii) div u ∈ L∞(�).

Then, for any compact set K ⊂ � and for a small enough 	 > 0, there exists a
(unique) regular Lagrangian flow � : K × [−	, 	] → � starting from K relative
to u.

The existence statement is Theorem 6.2 and the uniqueness statement is in [1, The-
orem 6.4]. We do not need the uniqueness of the flow in our argument. Ambrosio’s
theory holds more generally for non autonomous vector fields in any space dimen-
sion.

The characterization of the flow in Theorems 4.1 and 4.2 is obtained on proving
that a suitable reparameterization γ of a generic integral curve of the flow has a
second order derivative which satisfies the equation γ̈ = −H γ̇ ⊥ in a weak sense
with H = 3P(E)/4|E |.

In order to make this reparameterization argument precise, let us consider an
open set � ⊂ R2 and a vector field v in � satisfying the assumptions of Theo-
rem 4.3, that is

v ∈ BV (�; R
2) ∩ L∞(�; R

2) and div v ∈ L∞(�). (4.3)

The function v is defined pointwise, i.e. we choose a representative in the equiva-
lence class of v. Our results hold independently of this choice. However, there is
an exceptional set of points which may a priori depend on the representative.

Given a compact set K ⊂ � and a sufficiently small 	 > 0, there exists a
unique regular Lagrangian flow � : K × [−	, 	] → � starting from K relative to
v. Let λ : � → R be a measurable function such that

0 < c1 ≤ λ ≤ c2 L2-a.e. in �. (4.4)

Then, for L2-a.e. q ∈ K , the curve s 
→ λ(�(q, s)) is measurable and

c1 ≤ λ(�(q, s)) ≤ c2 for a.e. s ∈ [−	, 	].
This follows from (4.1) by a Fubini-type argument. In fact, if N ⊂ � is an L2-
negligible set, then �−1(N ) ⊂ K × [−	, 	] is also negligible. Thus, for L2-
a.e. q ∈ K , the change of parameter σq : [−	, 	] → [σq(−	), σq(	)] defined
by

σq(s) =
∫ s

0
λ(�(q, ξ)) dξ

is bi-Lipschitz, strictly increasing and admits therefore a bi-Lipschitz, strictly in-
creasing inverse τq : [σq(−	), σq(	)] → [−	, 	], which satisfies

τ̇q(s) = 1

σ̇q(τq(s))
= 1

λ(�(q, τq(s)))
for a.e. s ∈ [σq(−	), σq(	)]. (4.5)
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Consequently, for L2-a.e. q ∈ K , the curve γq : [σq(−	), σq(	)] → � defined by

γq(s) = �(q, τq(s)) (4.6)

is absolutely continuous and satisfies

γ̇q(s) = v(γq(s))

λ(γq(s))
for a.e. s ∈ [σq(−	), σq(	)], (4.7)

i.e. γq is an integral curve of the vector field v/λ.

Theorem 4.4 (Chain rule for integral curves). Let � ⊂ R2 be an open set, K ⊂
� be a compact subset, w ∈ W 1,1(�; R2) and 	 > 0 small enough. For L2-a.e. q ∈
K , the curve w ◦ γq with γq defined in (4.6) belongs to W 1,1((σq(−	), σq(	)); R2)

and its weak derivative is (∇w ◦ γq)γ̇q .

Proof. Let {wk}k∈N be a sequence of smooth vector fields wk ∈ W 1,1(�; R2) con-
verging to w in W 1,1(�; R2). The map (q, s) 
→ w(�(q, s)) is measurable and
integrable on K × [−	, 	]. By Fubini’s theorem and by the bounded volume dis-
tortion property (4.1) of the flow, we have∫

K

∫ 	

−	

|wk(�(q, s)) − w(�(q, s))| ds dq ≤m
∫ 	

−	

∫
�(K ,s)

|wk(q) − w(q)| dq ds,

and ∫
K

∫ 	

−	

∣∣(∇wk(�(q, s)) − ∇w(�(q, s))
)
v(�(q, s))

∣∣ ds dq

≤ ‖v‖∞
∫ 	

−	

∫
K

|∇wk(�(q, s)) − ∇w(�(q, s))| dq ds

≤ m‖v‖∞
∫ 	

−	

∫
�(K ,s)

|∇wk(q) − ∇w(q)| dq ds.

The curve s 
→ wk(�(q, s)) is Lipschitz, for all k ∈ N and for L2-a.e. q ∈ K , with
derivative s 
→ ∇wk(�(q, s))v(�(q, s)). Passing to a subsequence and relabelling
if necessary, we conclude that

lim
k→∞ wk(�(q, ·)) = w(�(q, ·)) in W 1,1((−	, 	); R2)

forL2-a.e. q ∈K , and that the weak derivative of w(�(q,·)) is ∇w(�(q,·))v(�(q,·)).
Combining this observation, (4.5) and (4.7), for any ϕ ∈ C∞

c ((σq(−	), σq(	)); R2)
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we get,∫ σq (	)

σq (−	)

w(γq(s))ϕ̇(s) ds =
∫ 	

−	

w(�(q, s))ϕ̇(σq(s))σ̇q(s) ds

= −
∫ 	

−	

∇w(�(q, s))v(�(q, s)) ϕ(σq(s)) ds

= −
∫ σq (	)

σq (−	)

∇w(γq(s))γ̇q(s) ϕ(s) ds.

Hence w ◦ γq ∈ W 1,1((σq(−	), σq(	)); R2), and its weak derivative is (∇w ◦
γq)γ̇q .

Proof of Theorem 4.1. Let f : D → R be the convex function in (1.5). We con-
sider the vector fields v(z) = 2z − ∇ f ⊥(z) and u(z) = v⊥(z) = ∇ f (z) + 2z⊥
which are both in BVloc(int(D); R2) ∩ L∞

loc(int(D); R2). We have

div v = 4 + fyx − fxy = 4. (4.8)

If K ⊂ int(D) \ �( f ) is a compact set and � � int(D) \ �( f ) is a suitable open
neighborhood of K , the existence of a regular Lagrangian flow � : K ×[−	, 	] →
� for some 	 > 0 is guaranteed by Theorem 4.3.

The function λ : � → R, λ = |v|, satisfies 0 < c1 ≤ λ ≤ c2 L2-a.e. in � by
Proposition A.2 in the appendix. By Corollary 3.2, the vector field w = v/λ belongs
to W 1,1(�; R2), and div w⊥ = H L2-a.e. in � by (2.3), with H = 3P(E)/4|E |.

Let γz : (σz(−	), σz(	)) → � be the integral curve of the vector field w

defined in (4.6) and satisfying (4.7). We claim that γz parameterizes an arc of
circle with curvature H . Since �(z, ·) is a reparameterization of γz , proving the
claim concludes the proof of Theorem 4.1. The following identities hold a.e. in
(σz(−	), σz(	)) for L2-a.e. z ∈ K :

(i) |w ◦ γz| = 1;
(ii) (w · ∂xw) ◦ γz = (w · ∂yw) ◦ γz = 0;

(iii) (div w⊥) ◦ γz = H .

Here, we are using the fact that if F, G : � → R are L2-measurable functions such
that F = G L2-a.e. in �, then it is F ◦ � = G ◦ � L3-a.e. in K × [−	, 	], which
is a consequence of (4.1).

By Theorem 4.4, it is γz ∈ W 2,1((σz(−	), σz(	)); R2) with γ̈z = (∇w ◦γz)γ̇z .
Using (ii) and (iii), we compute

γ̈z · γ̇ ⊥
z = (−div w⊥) ◦ γz = −H.

Moreover, by (i) we also have γ̈z ·γ̇z = 0 a.e. in (σz(−	), σz(	)). Then γ̈z = −H γ̇ ⊥
z

a.e. and this implies that γz is of class C∞. The claim follows.
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Proof of Theorem 4.2. Let h : F → R be the convex function in (1.10). We use the
variables ζ = (y, t) ∈ F . The vector field v : F → R2

v(ζ ) = (
1 − 2yht , 2yhy − 2h

)
, (4.9)

is in BVloc(int(F); R2) ∩ L∞
loc(int(F); R2), and

div v = −4ht − 2yhty + 2yhyt = −4ht ∈ L∞
loc(int(F)). (4.10)

The vector field v is the projection onto the yt-plane of the vector field

(y, t) 
→ (hy − 2hht )∂x + (1 − 2yht )∂y + (2yhy − 2h)∂t , (4.11)

which is both horizontal and tangent to the graph of h at H2-a.e. point. We denote
by u = (hy − 2hht , 1 − 2yht ) the projection of the vector field (4.11) onto the
xy-plane. The relation between v and u is

v =
(

0 1
2y −2h

)
u. (4.12)

In (4.12), we think of v and u as column vectors. The function λ : � → R, λ = |u|,
satisfies 0 < c1 ≤ λ ≤ c2 L2-a.e. in � by Proposition A.3 in the appendix.

Let K and � be as in the statement of Theorem 4.2. The existence of a regular
Lagrangian flow � : K × [−	, 	] → � of v follows from Theorem 4.3.

Let F ∈ C∞(R2; R2) be a mapping which satisfies (3.6) (with c1 in place of
δ). We consider the vector fields v/λ and w = F ◦ u in �. Then w = u/|u| a.e. in
�. We have w ∈ W 1,1(�; R2) by Corollary 3.3. Observing that 2yhy − 2h =
2y(hy −2hht )+2h(2yht −1), we also get that v/λ ∈ W 1,1(�; R2). We claim that

∇w
v

λ
= −Hw⊥ L2-a.e. in �, (4.13)

with H = 3P(E)/4|E |. Indeed, using (3.7), we compute

∇w
v

λ
= (∇F ◦ u) ∇u

v

λ
= 1

|u|4
(
u⊥ ⊗ u⊥)∇u v

= 1

|u|3
(
u⊥ · (∇u v)

)
w⊥.

On the other hand, by (2.8) we have Mw = H in �, where M is the differential
operator appearing in (3.1) with a = 2h and b = −2y. Let B be the 2 × 2 matrix

B =
(

1 0
−2h −2y

)
.

Using (3.7) we find

Mw = tr
(
(∇F ◦ u)∇u B

) = 1

|u|3 tr
(
(u⊥ ⊗ u⊥)∇u B

) = 1

|u|3 u⊥ · (u⊥∇u B),
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where, by a short computation based on (4.12), we have u⊥ · (u⊥∇u B) = −u⊥ ·
(∇u v). This ends the proof of (4.13).

Denote by γζ : [σζ (−	), σζ (	)] → � the integral curve of v/λ defined in
(4.6). Then the curve s 
→ w(γζ (s)) belongs to W 1,1((σζ (−	), σζ (	)); R2) for
L2-a.e. ζ ∈ K , and its weak derivative is equal to (∇w ◦ γζ )γ̇ζ , by Theorem 4.4.
Identity (4.13) holds along L2-a.e. curve γζ . Hence, by Theorem 4.4 applied to w,
we have

d

ds
(w ◦ γζ ) = −H(w⊥ ◦ γζ ) (4.14)

in the sense of weak derivatives.
The projection of the vector field ζ = (y, t) 
→ (h(ζ ), ζ ) onto the xy-plane

belongs to W 1,1(�; R2). Denote by κζ : [σζ (−	), σζ (	)] → R2 the projec-
tion of the curve (h(γζ ), γζ ) onto the xy-plane. This projection is a reparame-
terization of the curve in (4.2). We claim that κζ parameterizes an arc of cir-
cle with curvature H oriented clockwise. By Theorem 4.4, for L2-a.e. ζ ∈ K
we have κζ ∈ W 1,1((σζ (−	), σζ (	)); R2), and a short computation shows that
the weak derivative of κζ is κ̇ζ = w ◦ γζ . From (4.14), we deduce that κζ ∈
W 2,1((σζ (−	), σζ (	)); R2) and κ̈ζ = −H κ̇⊥

ζ . This implies that κζ is of class C∞
and the claim follows.

5. Characterization of convex isoperimetric sets

In this section, we use Theorems 4.1 and 4.2 to characterize convex isoperimetric
sets. We also use Theorem A.1 in the appendix on the structure of the character-
istic set of bounded convex sets. Here, we recall some known facts about Carnot-
Carathéodory geodesics in the Heisenberg group.

An absolutely continuous path γ : [0, 1] → H1 is said to be horizontal if
γ̇ (s) ∈ spanR{X (γ (s)), Y (γ (s))} for a.e. s ∈ [0, 1]. The curve γ = (γ1, γ2, γ3) is
horizontal if and only if

γ3(s) = γ3(0) + 2
∫ s

0

(
γ̇1γ2 − γ̇2γ1

)
dσ. (5.1)

The plane curve κ = (γ1, γ2) is the horizontal projection of γ . If κ = (γ1, γ2) is a
given plane absolutely continuous curve, then a curve γ = (κ, γ3) with γ3 given by
(5.1) for some γ3(0) is called a horizontal lift of κ . The standard sub-Riemannian
length of the horizontal curve γ is

Length(γ ) =
∫ 1

0
|κ̇(s)| ds, (5.2)

where κ is the horizontal projection of γ and |κ̇| is the Euclidean length of κ̇ ∈ R2.
The distance d : H1 × H1 → [0, +∞) is defined as the minimum of Length(γ )
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over all horizontal curves connecting given points. Geodesic curves (i.e. lenght
minimizing curves) can be computed explicitly. A geodesic from 0 ∈ H1 to p =
(z, t) ∈ H1 is of the following form:

1) If t = 0 the geodesic is the line segment γ (s) = (sz, 0), s ∈ [0, 1].
2) If t > 0 and z 
= 0, the geodesic connecting 0 to p = (z, t) is the horizontal lift

starting at 0 of the arc of circle from 0 to z in the xy-plane oriented clockwise,
such that the plane region bounded by the arc and the segment joining 0 to z has
area equal to t/4. This geodesic is unique.

3) If t > 0 and z = 0, the geodesic from 0 to p = (0, t) is not unique. Take any
full circle oriented clockwise passing through 0 and with area equal to t/4. The
horizontal lift of the circle starting from 0 is a geodesic.

The case t < 0 is similar. All other geodesics are obtained by left translation. If
the arc of circle in 2) and 3) has radius 0 < R < +∞, we say that the geodesic has
curvature H = 1/R.

The geodesics joining (0, −π/2) to (0, π/2) are of the type described in 3)
above (up to a vertical translation). Their union bounds the isoperimetric set conjec-
tured by Pansu. The horizontal lift of the plane circle κ(s) = 1

2

(
1 + cos s, − sin s

)
,

s ∈ [−π, π ], passing through the point (1, 0, 0) ∈ H1 at time s = 0 is the curve
γ : [−π, π ] → H1

γ (s) = 1

2

(
1 + cos s, − sin s, s + sin s

)
. (5.3)

The third coordinate can be computed using formula (5.1). The curve γ is a geodesic
with curvature H = 2, starting from γ (−π) = (0, 0, −π/2) and reaching γ (π) =
(0, 0, π/2). If (z, t) = γ (s) ∈ γ ([−π, π ]) is a point on the curve, then we have

|z| =
(

1 + cos s

2

)1/2

and t = 1

2

(
s + sin s

)
,

and we obtain the relation |t | = arccos |z| + |z|√1 − |z|2. The region |t | ≤
arccos |z| + |z|√1 − |z|2 is the set Eisop in (1.4).

Corollary 5.1 (Foliation by geodesics I). Under the assumptions of Theorem 4.1,
for all z ∈ K , there is a geodesic γz : [−	, 	] → ∂ E with curvature H =
3P(E)/4|E |, such that γz(0) = (z, f (z)). Moreover, the length of γz is bounded
from below by a positive constant depending on K .

Proof. The vector field v(z) = 2z − ∇ f ⊥(z) is the projection onto the xy-plane of
the vector field

(x, y) 
→ ( fy + 2x)∂x + (2y − fx )∂y + (2x fx + 2y fy)∂t ,

which is both horizontal and tangent to the graph of f at H2-a.e. point. Then the
horizontal lift of the plane curve s 
→ �(z, s) given by Theorem 4.1 is the curve

γz(s) = (�(z, s), f (�(z, s))), s ∈ [−	, 	].



CONVEX ISOPERIMETRIC SETS IN THE HEISENBERG GROUP 409

By Theorem 4.1, this curve is a geodesic with curvature H and with length bounded
from below by a positive constant depending on K . This curve exists for all z ∈
K0 ⊂ K with L2(K \ K0) = 0. If z ∈ K \ K0, there are points zn ∈ K0, n ∈ N,
such that zn → z as n → +∞. We can use the theorem of Ascoli–Arzelà to extract
a subsequence, such that, after relabeling, the curves γzn converge uniformly to a
curve γ : [−	, 	] → ∂ E . This curve is a geodesic passing through (z, f (z)) at
time s = 0, with curvature H and with length bounded from below by the same
positive constant as above.

Analogously, we have:

Corollary 5.2 (Foliation by geodesics II). Under the assumptions of Theorem 4.2,
for all ζ ∈ K , there is a geodesic γζ : [−	, 	] → ∂ E with curvature H, such that
γζ (0) = (h(ζ ), ζ ). Moreover, the length of γζ is bounded from below by a positive
constant depending on K .

We identify the horizontal plane spanned by the vector fields X and Y at the
point p = 0 with the xy-plane

H0 = {
(z, 0) ∈ H

1 | z ∈ C
}
.

In general, if p = (z, t) ∈ H1 we let

Hp = pH0 = {
(z + z′, t + 2 Im zz̄′) ∈ H

1 | z′ ∈ C
}
.

The plane Hp is the boundary of the halfspaces

H−
p = {

(z′, t ′) ∈ H
1 | t ′ ≤ t + 2 Im zz̄′},

H+
p = {

(z′, t ′) ∈ H
1 | t ′ ≥ t + 2 Im zz̄′}. (5.4)

We say that a line � ⊂ H1 is horizontal if � ⊂ Hp for one (equivalently: all)
p ∈ �. A horizontal segment is a segment of a horizontal line. A plane π ⊂ H1 is
a supporting plane for a set E ⊂ H1 at a point p ∈ ∂ E if π ∩ E ⊂ ∂ E .

Definition 5.3 (Characteristic set). The characteristic set of a convex set E ⊂ H1

is �(E) = {
p ∈ ∂ E | Hp is a supporting plane for E at p

}
.

The structure of �(E) is described in Theorem A.1 in the appendix.

Proof of Theorem 1.1. The curvature H = 3P(E)/4|E | of a (convex) isoperimet-
ric set E is homogeneous with degree −1 with respect to the dilations δλ(z, t) =
(λz, λ2t), λ > 0. Thus, we can assume H = 2 without loss of generality.

Claim 1. For all p ∈ ∂ E \�(E), there is a curve of maximal length passing through
p and contained in ∂ E whose projection onto the xy-plane is an arc of circle with
curvature H . One endpoint of the curve belongs to �−, the other one to �+.
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Let f : D → R be the function in (1.5), and let h : F → R be the function
in (1.10). Using a rotation of R3 fixing the t-axis, which is an isometry for the
Carnot-Carathéodory metric, and a left translation in the y direction if necessary,
we can assume that p ∈ ∂ E \ �(E) is either of the form

1) p = (z, f (z)) for some z ∈ int(D) \ �( f ), or of the form
2) p = (h(ζ ), ζ ) for some ζ ∈ int(F) \ ({y = 0} ∪ �(h)

)
.

The existence of a piece of geodesic with curvature H passing through p and con-
tained in ∂ E follows either from Corollary 5.1 or from Corollary 5.2. The existence
of a curve with maximal length whose projection onto the xy-plane is an arc of cir-
cle with curvature H follows from a compactness argument. If one endpoint of the
maximal curve does not belong to �(E), then a continuation argument provides a
proper extension of the curve. To prove this continuation, notice that two geodesics
contained in ∂ E , with the same curvature and meeting at one point in ∂ E \ �(E)

coincide in a neighborhood of the point. Finally, the endpoints of the maximal curve
cannot both belong to �− or �+.

Claim 2. The sets �− and �+ are points.

Assume by contradiction that �− contains more than one point. According to
Theorem A.1, we have two cases:

1) �− is a closed horizontal segment of positive length;
2) �− = �−

1 ∪ �−
2 with �−

1 and �−
2 disjoint closed horizontal segments lying on

the same horizontal line.

In case 1), after a left translation and a rotation fixing the t-axis, we have �− ={
(0, y, 0) ∈ H1

∣∣ |y| ≤ y0
}

for some y0 > 0. Moreover, letting p0 = (0, y0, 0), by
the discussion of case 1) in the proof of Theorem A.1, we have

E ⊂ H+
p0

∩ H+−p0
. (5.5)

Claim 1 combined with an approximation-compactness argument shows that there
is a geodesic γ : [0, L] → ∂ E parameterized proportionally to arc-length, with
curvature H = 2 and such that γ (0) = 0. We have γ̇ (0) = (α, β, 0) for some
α, β ∈ R with α2 + β2 = 1/4. Assume α = 0 and β = 1/2 (if α 
= 0, the proof is
easier). Then, by (5.3), we have

γ (s) = 1

2

(
1 − cos s, sin s, s − sin s

) ∈ ∂ E for all s ∈ [0, L]. (5.6)

However, for any c0 > 0, there is δ > 0 with s − sin s < c0(1 − cos s) for all
s ∈ (0, δ). This contradicts (5.5).

Case 2) cannot occur. In fact, denoting by �̂ the nonempty open segment
between �−

1 and �−
2 , we have �̂ ⊂ ∂ E . By Claim 1, for any p ∈ �̂ there is a

geodesic contained in ∂ E with curvature 2 which passes through p ∈ �̂ and has
one endpoint in �−. This is impossible.
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Claim 3. Up to a left translation, we have E = Eisop as in (1.4).

After a left translation, we can assume that �− = {(0, −π/2)} and �+ =
{(z, t)} with t > −π/2. This forces z = 0 and t = π/2, otherwise there would be
at most one geodesic with curvature H = 2 connecting �− to �+.

We claim that 0 ∈ int(D). If, by contradiction, 0 ∈ ∂ D, then {(0, t) ∈
H1 | |t | ≤ π/2} is contained in ∂ E . But there is no geodesic with curvature
H = 2 which starts from �− and passes through a point (0, t) with |t | < π/2. This
contradicts Claim 1.

For all z ∈ ∂ D, there is a geodesic contained in ∂ E , with endpoints (0, −π/2),
(0, π/2), and which passes through (z, f (z)). The projection of this geodesic onto
the xy-plane is a (full) circle with radius 1/2 passing through the points 0 and z.
Hence ∂ E contains the surface of rotation around the t-axis generated by the curve
(5.3), and the claim follows.

A. Appendix

We describe the structure of the characteristic set �(E) of a compact convex set
E ⊂ H1 with nonempty interior. The notation is fixed before Definition 5.3.

Theorem A.1 (Characteristic set). If E ⊂ H1 is a compact convex set with non-
empty interior, then �(E) admits the decomposition �(E) = �− ∪ �+, where
either

1) �− (resp. �+) is a compact horizontal segment (possibly one point); or,
2) �− = �−

1 ∪ �−
2 (resp. �+ = �+

1 ∪ �+
2 ), where �−

1 and �−
2 (resp. �+

1 and
�+

2 ) are disjoint compact horizontal segments lying on the same horizontal line.

Moreover, if 0 ∈ int(E), then H0 separates �− from �+.

Proof. The proof is divided into a number of steps.

Claim 1. If E ⊂ H1 is a bounded strictly convex set, then �(E) contains at most
two points.

Let p0, p1 ∈ �(E) be such that p0 
= p1. After a left translation, we can
assume that p0 = 0 and p1 = (z1, t1) with t1 > 0. E is contained between the
horizontal planes Hp0 and Hp1 . By strict convexity, the segment{

ps = (sz1, st1) ∈ H
1 | 0 < s < 1

}
is contained in the interior of E . Moreover, we have

∂ E = {p0, p1} ∪
⋃

0<s<1

∂ E ∩ Hps .
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By strict convexity, ∂ E ∩Hp0 = {p0} and ∂ E ∩Hp1 = {p1}. Using the property p ∈
Hp′ if and only if p′ ∈ Hp, we deduce that if p ∈ ∂ E ∩ Hps with 0 < s < 1, then
ps ∈ Hp and Hp is not a supporting plane of E . It follows that �(E) = {p0, p1}.
Claim 2. If E ⊂ H1 is a bounded convex set with C∞ boundary, then �(E) 
= ∅.

For p ∈ ∂ E , let us denote by V (p) ∈ Tp∂ E the orthogonal projection of
the vector field T onto Tp∂ E with respect to the left invariant inner product which
makes X, Y, T orthonormal. Since ∂ E is diffeomorphic with the sphere S2, there
exists p ∈ ∂ E such that V (p) = 0 and therefore p ∈ �(E).

Claim 3. If E ⊂ H1 is a bounded strictly convex set with C∞ boundary, then �(E)

contains exactly two points.

By Claim 2 there exists p0 ∈ �(E). Without loss of generality we can assume
that p0 = 0 and E ⊂ H+

0 . Let V be the vector field defined in the proof of Claim 2.
It is V (0) = 0 and using the strict convexity of E it is not difficult to check that
index(V, 0) = 1 (we omit the details). If by contradiction V has no other zero
on ∂ E , then the Poincaré–Hopf index theorem would give index(V, 0) = χ(∂ E) =
χ(S2) = 2, where χ denotes the Euler–Poincaré characteristic. This is not possible.

Claim 4. If E ⊂ H1 is a bounded convex set with nonempty interior, then �(E)

contains at least two points.

This follows from Claim 3 by an approximation argument. Details are omitted.

Claim 5. We have �(E) = �− ∪ �+ as in the statement of Theorem A.1.

Without loss of generality, we assume that 0 ∈ int(E). We define the convex
sets

E− = E ∩ H−
0 and E+ = E ∩ H+

0 .

If p ∈ ∂ E− ∩ H0 = ∂ E+ ∩ H0 with p 
= 0, then 0 ∈ Hp 
= H0 and consequently
Hp ∩ int(E±) 
= ∅. It follows that �(E±) ∩ H0 = {0}. By Claim 4 there exist
points p−, p+ such that p± ∈ �(E±) ∩ int

(
H±

0

)
. The relative interior of the line

segment connecting 0 with p−, respectively p+, is contained in the interior of E−,
respectively E+. A similar reasoning as in the proof of Claim 1 gives

�(E−) = {0}∪(
�(E−) ∩ Hp−

)
and �(E+) = {0}∪(

�(E+) ∩ Hp+
)
. (A.1)

We consider E− and we let p− = p1. Assume there exists p2 ∈ �(E−) ∩ Hp1

with p2 
= p1. Since the equality on the left hand side of (A.1) must hold with p2
instead of p1 = p−, it follows that �(E−)\ {0} is contained in the horizontal line �

passing through p1 and p2. By a maximality argument, we can in fact assume that
�(E−) \ {0} is contained in the compact sub-interval of � with endpoints p1 and
p2. Moreover, possibly interchanging p1 and p2, there are only two possible cases:
either

1) E− ⊂ H+
p1

∩ H+
p2

; or,
2) E− ⊂ H+

p1
∩ H−

p2
.
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In the first case, all points p ∈ � between p1 and p2 are in �(E−), because Hp does
not intersect the interior of H+

p1
∩ H+

p2
. We conclude that there exists a compact,

horizontal segment �− such that �(E−) \ {0} = �−.
In the second case, there exists a maximal compact sub-interval �−

1 (resp. �−
2 )

of � such that p1 ∈ �−
1 and p ∈ �(E−) for all p ∈ �−

1 (resp. p2 ∈ �−
2 and

p ∈ �(E−) for all p ∈ �−
2 ). On the other hand, there exists a point p ∈ �

between p1 and p2 such that Hp ∩ int(E−) 
= ∅. Hence �−
1 ∩ �−

2 = ∅ and we let
�− = �−

1 ∪ �−
2 .

Analogously, we get �(E+) \ {0} = �+ with �+ as in the statement of the
theorem. Note that neither �− nor �+ intersects H0. Clearly, it is �(E) = �− ∪
�+.

Let E be a compact convex set in H1 with nonempty interior of the form (1.5).
We have the convex function f : D → R, where D is a compact and convex subset
of R2 with nonempty interior. We define the characteristic set �( f ) of f as the
set of points z ∈ D such that the horizontal plane Hp at the point p = (z, f (z)) ∈
R2 × R is a supporting plane for E .

An equation for the horizontal plane Hp, p = (z, f (z)), is t ′ = f (z)−2z⊥ · z′.
Then, we have for z ∈ int(D)

z ∈ �( f ) ⇐⇒ −2z⊥ ∈ ∂ f (z), (A.2)

where ∂ f (z) denotes the subdifferential of f at z.

Proposition A.2 (Lower bounds I). Let � ⊂ int(D) be an open set. Then, for any
compact set K ⊂ � \ �( f ) there is a constant δ > 0 such that

|∇ f (z) + 2z⊥| ≥ δ (A.3)

for L2-a.e. z ∈ K .

Proof. We show that (A.3) holds at differentiability points z ∈ K of f . By con-
tradiction, assume that there exists a sequence zk ∈ K , k ∈ N, of differentiability
points of f such that |∇ f (zk) + 2z⊥

k | → 0 as k → +∞. Possibly taking a subse-
quence, we have zk → z for some z ∈ K . It follows that −2z⊥ ∈ ∂ f (z) and this
implies z ∈ �( f ), contradicting the assumption K ∩ �( f ) = ∅.

Now consider a convex set E of the form (1.10). We have the convex function
h : F → R, with F ⊂ R2 convex set. We define the characteristic set �(h)

of h as the set of points ζ ∈ F such that the horizontal plane Hp at the point
p = (h(ζ ), ζ ) ∈ R × R2 is a supporting plane for E .

An equation for the horizontal plane Hp, p = (h(ζ ), ζ ) with y 
= 0, is

x ′ = h(ζ ) + h(ζ )

y
(y′ − y) + 1

2y
(t ′ − t).
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Then, we have for ζ = (y, t) ∈ int(F) with y 
= 0

ζ ∈ �(h) ⇐⇒
(

h(ζ )

y
,

1

2y

)
∈ ∂h(ζ ). (A.4)

Proposition A.3 (Lower bounds II). Let � ⊂ int(F) be an open set. Then, for
any compact set K ⊂ � \ �(h) there is a constant δ > 0 such that

|hy − 2hht | + |1 − 2yht | ≥ δ (A.5)

L2-a.e. in K .

Proof. If r > 0 is sufficiently small, we have a.e. in K ∩ {|y| ≤ r}
|1 − 2yhy | ≥ 1/2.

In fact, the derivatives of h are locally bounded. We claim that at differentiability
points of h in K ∩ {|y| ≥ r} we have

|hy − h/y| + |ht − 1/(2y)| ≥ δ1

for some δ1 > 0. If this is not the case, arguing as in the proof of Proposition A.2,
we find ζ ∈ K ∩ {|y| ≥ r} such that (h(ζ )/y, 1/2y) ∈ ∂h(ζ ), which is not possible
by (A.4). Hence there exists δ2 > 0 such that the condition |ht − 1/(2y)| ≤ δ2
implies |hy − h/y| ≥ δ1/2 and |2h(ht − 1/(2y))| ≤ δ1/4, whence

|hy − 2hht | ≥ |hy − h/y| − |2h(ht − 1/(2y))| ≥ δ1/4.

The claim follows with δ = min{1/2, δ1/4, 2rδ2}.
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