
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. VIII (2009), 451-468

Invertible harmonic mappings, beyond Kneser

GIOVANNI ALESSANDRINI AND VINCENZO NESI

Abstract. We prove necessary and sufficient criteria of invertibility for planar
harmonic mappings which generalize a classical result of H. Kneser, also known
as the Radó–Kneser–Choquet theorem.

Mathematics Subject Classification (2000): 31A05 (primary); 35J25, 30C60,
53A10 (secondary).

1. Introduction

Let B := {(x, y) ∈ R2 : x2 + y2 < 1} denote the unit disk. Given a homeomor-
phism � from the unit circle ∂ B onto a simple closed curve γ ⊆ R2, let us consider
the solution U ∈ C2(B; R2) ∩ C(B; R2) to the following Dirichlet problem{

�U = 0, in B,

U = �, on ∂ B.
(1.1)

The basic question that we address in this paper is under which conditions on � we
have that U is a homeomorphism of B onto D, where D denotes the bounded open,
simply connected set for which ∂ D = γ .

The fundamental benchmark for this issue is a classical theorem, first conjec-
tured by T. Radó in 1926 [16], which was proved immediately after by H. Kneser
[12], and subsequently rediscovered, with a different proof, by G. Choquet [7]. Let
us recall the result.

Theorem 1.1 (H. Kneser). If D is convex, then U is a homeomorphism of B onto D.

We recall that this theorem had a remarkable impact in the development of
the theory of minimal surfaces, see for instance [17]. Its influence appears also
in other areas of mathematics, let us mention here homogenization and effective
properties of materials [2, 3, 5], inverse boundary value problems [1, 10, 11] and,
quite recently, variational problems for maps of finite distortion [4]. See also, as
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general references, and for many interesting related results, the book by Duren [9]
and the review article by Bshouty and Hengartner [6].

The amazing character of Kneser’s Theorem stands in the simplicity and ele-
gance of the geometric condition on the target curve γ . Let us emphasize here that
this condition does not involve the choice of the parametrization � of the curve γ .

In order to motivate the main result of this paper, Theorem 1.3 below, we wish
to stress that no weaker condition on the shape of D can replace the assumption in
Theorem 1.1. In fact, the following theorem holds.

Theorem 1.2 (G. Choquet). For every Jordan domain D which is not convex, there
exists a homeomorphism � : ∂ B → ∂ D such that the solution U to (1.1) is not a
homeomorphism.

A proof for this theorem is due to Choquet [7, Section 3]. In Section 6 we
present a new proof aimed at having a more explicit description of the homeo-
morphism �. In the final part of this introduction, when presenting the content of
Section 6, we shall illustrate the advantages of this new proof with more details.

Theorem 1.2 shows that, given a non–convex domain D and its boundary γ ,
one can find some parameterization of the latter which gives rise to a non–invertible
solution to (1.1). On the other hand, by the Riemann Mapping Theorem, see for
instance [15, Theorem 3.4], for any such γ one can also find other parameterizations
for which the corresponding solution to (1.1) is a homeomorphism and, in fact, a
conformal mapping. Thus the question arises, for a given simply connected target
domain D, possibly non–convex, of how to characterize all the parameterizations
which give rise to an invertible solution to (1.1).

Our main result is a complete answer to this question for those parameteriza-
tions � which are smooth enough so that the corresponding solution to (1.1) belongs
to C1(B; R2).

Theorem 1.3. Let � : ∂ B → γ ⊂ R2 be an orientation preserving diffeomor-
phism of class C1 onto a simple closed curve γ . Let D be the bounded domain such
that ∂ D = γ . Let U ∈ C2(B; R2) ∩ C(B; R2) be the solution to (1.1) and assume,
in addition, that U ∈ C1(B; R2).

The mapping U is a diffeomorphism of B onto D if and only if

det DU > 0 everywhere on ∂ B. (1.2)

Remark 1.4. In order to compare this statement with Kneser’s Theorem, it is worth
noticing that, when γ is convex, (1.2) is automatically satisfied. Indeed we shall
prove, see Lemma 5.3, that det DU > 0 always holds true on the points of ∂ B
which are mapped through � on the part of γ which agrees with its convex hull,
see also Definition 5.1. As a consequence it is possible to refine the statement
of Theorem 1.3, by requiring (1.2) on a suitable proper subset of ∂ B. This is the
content of Theorem 5.2. Furthermore, it may be worth stressing that (1.2) is, in fact,
a constraint on the boundary mapping � only. Indeed in Theorem 5.4, by means of
the Hilbert transform, we shall express the Jacobian bound det DU > 0 on ∂ B as
an explicit, although nonlocal, constraint on the components of �.
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Remark 1.5. In view of a better appreciation of the strength and novelty of The-
orem 1.3 let us recall the so–called method of shear construction introduced by
Clunie and Sheil–Small [8]. Until now, this method has been known [9, Section
3.4] as the only other general means for construction of invertible harmonic map-
pings, besides Kneser’s Theorem. In fact, we shall show that Theorem 1.3, and
the arguments leading to its proof, enable us to obtain a new and extremely wide
generalization of the shear construction. We refer the reader to Theorem 7.3 and
Corollary 7.4 in Section 7, where the shear construction of Clunie and Sheil–Small
is reviewed and our new version is demonstrated.

With our next result we return to the original issue for homeomorphisms. Un-
fortunately, in this case, the characterization of the parameterizations �, which give
rise to homeomorphic harmonic mappings U , is less transparent. It involves the fol-
lowing classical notion.

Definition 1.6. Given P ∈ B, a mapping U ∈ C(B; R2) is a local homeomorphism
at P if there exists a neighborhood G of P such that U is one–to–one on G ∩ B.

Theorem 1.7. Let � : ∂ B → γ ⊂ R2 be a homeomorphism onto a simple closed
curve γ . Let D be the bounded domain such that ∂ D = γ . Let U ∈ W 1,2

loc (B; R2)∩
C(B; R2) be the solution to (1.1).

The mapping U is a homeomorphism of B onto D if and only if, for every
P ∈ ∂ B, the mapping U is a local homeomorphism at P.

Remark 1.8. Let us note that, on use of the Riemann Mapping Theorem and the
Caratheodory–Osgood Extension Theorem, see for instance [15, Theorem 4.9], the
disk B can be replaced by any Jordan domain. This observation applies also to
Theorem 1.3 . In this case an analogous result could be stated when the disk B is
replaced by any simply connected domain �, provided the boundary of � is smooth
enough to guarantee that the map ω mapping conformally � onto B, extends to a
C1 diffeomorphism of � onto B.

The paper is organized as follows.
In Section 2 we recall two classical results of global invertibility, Theorems 2.1,

2.2, and a fundamental result by H. Lewy [13], about invertible harmonic mappings,
Theorem 2.3.

Section 3 collects a sequence of results which are useful for the proofs of The-
orems 1.3, 1.7. In view of Theorem 2.2 on the inversion of C1 mappings, our
guiding light towards Theorem 1.3 is to obtain that det DU > 0 everywhere in B.
This is equivalent to showing the absence of critical points for any linear combi-
nation uα = cos(α) u + sin(α) v of the components u, v of U . This goal will be
achieved through a number of steps. In Proposition 3.2 we show that, assuming
(1.2), the number Mα of critical points of uα , counted with multiplicities, is finite
and independent of α. With Proposition 3.6 we express the number M = Mα in
terms of the winding number of the holomorphic function f the real part of which
is u. We conclude the section with Theorem 3.9 which enables the computation of
such winding number in terms of the boundary mapping �.
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Section 4 contains the proofs of the main Theorems 1.3, 1.7.
In Section 5 we present Theorems 5.2, 5.4, the two refinements of Theorem 1.3

which we already announced in Remark 1.4.
Section 6 is mainly devoted to a new proof of Theorem 1.2. It will be obtained

through an adaptation of an explicit example, which can be traced back at least to
J. C. Wood [23], namely, the polynomial harmonic mapping F(x, y) = (x, x2−y2).
It is easily seen that such a mapping has a non–convex range. It shows also that,
contrary to what happens for holomorphic functions, a harmonic mapping may fail
to be open, see Figure 6.2 on page 463. From our construction, we also obtain
that, in Theorem 1.2, the boundary mapping � can be chosen in such a way that
there exists a curve η ⊂ B on which det DU vanishes and such that U changes
its orientation across η. In Remark 6.1 we also use this construction to show the
considerable tightness of the condition of U being a local homeomorphism at the
boundary appearing in Theorem 1.7.

In the final Section 7, we first review the shear construction method of Clunie
and Sheil–Small. Then we state and prove our improved version, namely Theo-
rem 7.3. We conclude with Corollary 7.4 which provides a general construction of
harmonic univalent mappings with prescribed dilatation.

ACKNOWLEDGEMENTS. The authors express their gratitude to G. F. Dell’Antonio
for inspiring and fruitful conversations occurred while completing this paper.

2. Classical foundations

In what follows we shall identify, as usual, points (x, y) ∈ R2 with complex num-
bers z = x + iy ∈ C. When needed, we shall use also polar coordinates z = reiθ .

We now recall some classical fundamental theorems which we shall use several
times in the paper.

Theorem 2.1 (Monodromy). Let U ∈ C(B; R2) be such that

a) � = U
∣∣
∂ B is a homeomorphism of ∂ B onto a simple closed curve γ .

b) For every P ∈ B, U is a local homeomorphism at P.

Then U is a global homeomorphism of B onto D, where D is the bounded domain
such that ∂ D = γ .

A proof can be found in [21, page 175]. Another proof might also be obtained
via the theory of light and open mappings of Stoilow [20]. Results of the same
nature in any dimension, but of higher sophistication, are due to Meisters and Olech
[14] and Weinstein [22].

A variant, which can be readily obtained as a consequence of Theorem 2.1 and
that we shall also use, is the following.
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Theorem 2.2. Let U ∈ C1(B; R2) be such that

a′) � = U
∣∣
∂ B is a sense preserving C1 diffeomorphism of ∂ B onto a simple closed

curve γ .
b′) det DU (P) > 0, for every P ∈ B.

Then U is a global diffeomorphism of B onto D.

Of a different character is the following theorem due to H. Lewy ensuring that
harmonic homeomorphisms are, in fact, diffeomorphisms as in the holomorphic
case.

Theorem 2.3 (H. Lewy). Let U : B → R2 be harmonic. If U is a sense preserving
homeomorphism, then

det DU > 0 everywhere in B.

We refer to [13] for a proof.

3. Preliminary results

Here we collect some (new) results of essentially topological nature regarding har-
monic functions and harmonic mappings.

Definition 3.1. Given a nonconstant harmonic function u defined in B, we denote
by M the sum of the multiplicities of its critical points. Hence M is either a non-
negative integer or +∞. Given U = (u, v) : B → R2 harmonic, we set, for every
α ∈ [0, 2π ]

uα = cos(α)u + sin(α)v (3.1)

and denote by Mα the sum of the multiplicities of the critical points of uα . Our
convention is that M := M0.

Proposition 3.2. Let U ∈ C1(B; R2) be harmonic in B. If det DU > 0 on ∂ B,
then for every α ∈ [0, 2π ], the number Mα is finite and we have Mα = M for every
α ∈ [0, 2π ].
Corollary 3.3. Let U be as in Proposition 3.2. We have det DU > 0 everywhere
in B if and only if there exists α ∈ [0, 2π ], such that ∇uα 	= 0 everywhere in B.

Proof of Proposition 3.2. Obviously ∇uα 	= 0 everywhere on ∂ B for every α ∈
[0, 2π ]. By the argument principle for holomorphic functions

Mα = 1

2π

∫
∂ B

d arg(∇uα) , for every α ∈ [0, 2π ].

We shall show that Mα = M0 for every α ∈ [0, 2π ]. It is clear that it suffices to
consider α ∈ (0, π). We set

J =
(

0 −1
1 0

)
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and we have
∇uα · J∇u = sin(α) det DU > 0, on ∂ B,

hence |arg(∇uα) − arg(J∇u)| < π . We conclude that

Mα = 1

2π

∫
∂ B

d arg(∇uα) = 1

2π

∫
∂ B

d arg(J∇u) = M0.

Proof of Corollary 3.3. Let us assume that for a given α ∈ [0, 2π ], we have Mα =
0. By Proposition 3.2 one has Mα = 0 for every α ∈ [0, 2π ]. Hence, for every P ∈
B, the vectors ∇u(P) and ∇v(P) are linearly independent, that is det DU (P) 	= 0.
Being det DU > 0 on ∂ B, by continuity we have det DU > 0 everywhere in B.
The reverse implication is trivial.

Definition 3.4. Given a closed curve γ , parameterized by � ∈ C1(∂ B; R2) and
such that

∂�

∂θ
	= 0, for every θ ∈ [0, 2π ],

we define the winding number of γ as the following integer

WN(γ ) = 1

2π

∫
∂ B

d arg

(
∂�

∂θ

)
.

Definition 3.5. Let u be a harmonic function in B. We denote by ũ its conjugate
harmonic function and we set

f = u + i ũ.

Note that if, in addition, u ∈ C1(B) and ∇u 	= 0 on ∂ B, then f
∣∣
∂ B gives us a

regular C1 parametrization of a closed curve.

Proposition 3.6. Let u ∈ C1(B) be harmonic in B. If ∇u 	= 0 on ∂ B, then

M = WN( f (∂ B)) − 1,

with M as in Definition 3.1.

Proof. The proof is elementary, and we claim no novelty in this case. We have

WN( f (∂ B)) = 1

2π

∫
∂ B

d arg

(
∂ f

∂z

∂z

∂θ

)
= 1

2π

∫
∂ B

d

[
arg

(
∂ f

∂z

)
+ θ

]

= 1

2π

∫
∂ B

d arg(∇u) + 1 = M + 1.

Remark 3.7. Let us emphasize that, if the harmonic mapping U=(u,v)∈C1(B;R2)

is such that det DU > 0 on ∂ B, then we also have | ∂ f
∂z | = |∇u| > 0 on ∂ B.

Moreover, for any P ∈ ∂ B, the mapping U is a diffeomorphism near P . Hence, on
∂ B, partial derivatives with respect to u and v make sense, and thus we are allowed
formulate the following statement.
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Lemma 3.8. Let U = (u, v) ∈ C1(B; R2) be harmonic in B. If

det DU > 0, on ∂ B,

then
∂ ũ

∂v
> 0, on ∂ B,

where ũ is the harmonic conjugate of u.

Proof. We compute

∂ ũ

∂v
= ∂ ũ

∂x

∂x

∂v
+ ∂ ũ

∂y

∂y

∂v
= 1

det DU

(
−∂ ũ

∂x

∂u

∂y
+ ∂ ũ

∂y

∂u

∂x

)
= |∇u|2

det DU
> 0.

We are now ready to state a theorem which contains the main elements towards a
proof of Theorem 1.3.

Theorem 3.9. Let U ∈ C1(B; R2) be harmonic in B and let � = U
∣∣
∂ B. If

det DU > 0 on ∂ B, then we have

WN( f (∂ B)) = WN(�(∂ B)). (3.2)

The proof of Theorem 3.9 will be based on the following two results.

Proposition 3.10. Given a C1 curve parameterized by � = (φ, ψ) : [a, b] → R2

such that φ′ 	= 0 in (a, b), φ′(a) = φ′(b) = 0 , ψ is not identically constant
in [a, b] and given a C1 function g : ψ([a, b]) → R with g′ > 0 in ψ((a, b)),
consider the curve �̃ : [a, b] → R2 given by �̃ = (φ, g(ψ)). We have∫ b

a
d arg(�̃′) =

∫ b

a
d arg(�′). (3.3)

Lemma 3.11. Under the assumptions of Theorem 3.9, assuming in addition that
∂u
∂θ

∣∣∣
∂ B

vanishes at finitely many points, we have that (3.2) holds.

Proof of Proposition 3.10. Without loss of generality we may assume φ′ > 0 in
(a, b). We have that both arg

(
�′) and arg

(
�̃′) take values in (−π, π). Hence∫ b

a
d arg(�′) = arg

(
�′(b−)

) − arg
(
�′(a+)

)
and also ∫ b

a
d arg(�̃′) = arg

(
�̃′(b−)

) − arg
(
�̃′(a+)

)
.

Now, we compute

arg(�′(b−)) = arg(�̃′(b−)) = ±π

2
,

and also
arg(�′(a+)) = arg(�̃′(a+)) = ±π

2
.

Hence (3.3) follows.
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Proof of Lemma 3.11. Let us recall the notation � = (φ, ψ) = U
∣∣
∂ B . Up to a

rotation in the x, y coordinates, we may assume without loss of generality that
there exists a partition of [0, 2π ], 0 = θ0 < θ1 < . . . < θN = 2π such that

∂φ

∂θ
(θk) = 0 for all k = 0, 1, . . . , N − 1,

and
∂φ

∂θ
(θ) 	= 0 in (θk, θk+1), for every k = 0, 1, . . . , N − 1.

By the assumption det DU > 0 on ∂ B, we must have

∂ψ

∂θ
(θk) 	= 0 for all k = 0, 1, . . . , N − 1,

and consequently ψ is not identically constant on any interval [θk, θk+1]. On each
interval [θk, θk+1], we have

f (eiθ ) =
(
φ(θ), g(ψ(θ))

)
with g

(
ψ(θ)

) = ũ(eiθ )

and, by Lemma 3.8,
∂g

∂ψ
= ∂ ũ

∂v
> 0.

Hence, by Proposition 3.10

∫ θk+1

θk

d arg

(
∂ f

∂θ

)
=

∫ θk+1

θk

d arg

(
∂�

∂θ

)
for every k = 0, 1, . . . , N − 1.

Recalling Remark 3.7, we observe that the two curves parameterized by f
∣∣
∂ B

and by �, respectively, satisfy the conditions required in Definition 3.4, hence
their winding numbers are obtained by adding up the above integrals and (3.2)
follows.

Proof of Theorem 3.9. By continuity, there exists ρ ∈ (0, 1), such that det DU > 0
in B \ Bρ(0) and, consequently, ∂ f

∂z 	= 0 in B \ Bρ(0). Therefore the numbers

WN
(

f
(
∂ Br (0)

))
and WN

(
U

(
∂ Br (0)

))
are constant with respect to r ∈ [ρ, 1]. Since u

∣∣
∂ Br

(θ) is a nonconstant real analytic

function of θ , we have that ∂u
∂r

(
reiθ

)
vanishes at most on a finite set of angles θ j ∈

[0, 2π ]. Applying Lemma 3.11 to U (r ·) rather than U , we obtain

WN
(

f
(
∂ B

)) = WN
(

f
(
∂ Br (0)

)) = WN
(

U
(
∂ Br (0)

)) = WN
(
�

(
∂ B

))
.
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4. Proofs of the main theorems

Proof of Theorem 1.3. Let us assume that (1.2) holds. By assumption � is one–to–
one and sense preserving. Hence by Theorem 3.9,

WN
(

f
(
∂ B

)) = WN
(
�

(
∂ B

)) = 1.

By Proposition 3.6, ∇u never vanishes in B. By Corollary 3.3, det DU > 0 ev-
erywhere in B. By Theorem 2.2, U : B → D is a diffeomorphism. The reverse
implication is obvious.

Our next goal is to prove Theorem 1.7. We need the following preliminary lemma.

Lemma 4.1. Assume � : ∂ B → γ ⊂ R2 is a homeomorphism onto a simple closed
curve γ . Let U ∈ C2(B; R2)∩C(B; R2) be the solution to (1.1). If, in addition, for
every P ∈ ∂ B the mapping U is a local homeomorphism near P, then there exists

ρ ∈ (0, 1) such that U is a diffeomorphism of B \ Bρ(0) onto U
(

B \ Bρ(0)
)

.

Proof. By the compactness of ∂ B, there exist finitely many points P1, . . . , Pk ∈ ∂ B
and a number δ > 0 such that

∂ B ⊂
K⋃

k=1

Bδ(Pk),

and U is one–to–one on B2δ(Pk) ∩ B for every k. Note that there exists ρ0 ∈ (0, 1)

such that

B \ Bρ0(0) ⊂
K⋃

k=1

Bδ(Pk).

Let P, Q be two distinct points in B \ Bρ0(0). If |P − Q| < δ, then there exists
k = 1, . . . , K such that P, Q ∈ B2δ(Pk) and, hence, U (P) 	= U (Q). Assume now
|P − Q| ≥ δ. Let

P ′ = P

|P| , Q′ = Q

|Q| .

We have |P − P ′| < 1 − ρ, |Q − Q′| < 1 − ρ, and thus

|P ′ − Q′| > |P − Q| − 2(1 − ρ) ≥ δ − 2(1 − ρ).

Choosing ρ1, ρ0 ≤ ρ1 < 1 such that (1 − ρ1) < δ
4 , we have |P ′ − Q′| > δ

2 . Now
we use the fact that P ′ and Q′ belong to ∂ B and � is one–to–one to deduce that
there exists c > 0 such that

|�(P ′) − �(Q′)| ≥ c.
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Recall that U is uniformly continuous on B. Denoting by ω its modulus of conti-
nuity, we have

|U (P) − U (Q)| ≥ |U (P ′) − U (Q′)| − 2ω(1 − ρ)

= |�(P ′) − �(Q′)| − 2ω(1 − ρ) ≥ c − 2ω(1 − ρ).

Choosing ρ, ρ1 ≤ ρ < 1, such that 1 − ρ < ω−1
( c

4

)
we obtain

|U (P) − U (Q)| ≥ c

2
> 0,

which implies the injectivity of U in B \ Bρ(0). Consequently, by Theorem 2.3,
det DU 	= 0 in B \ Bρ(0) and the thesis follows.

Proof of Theorem 1.7. We assume that, for every P ∈ ∂ B, U is a local homeomor-
phism near P and prove that U : B → D is a homeomorphism. The opposite
implication is trivial. In view of Theorem 2.1 it suffices to show that det DU 	= 0
everywhere in B.

For every r ∈ (0, 1), let us write �r : ∂ B → R2 to denote the application
given by

�r (eiθ ) = U (reiθ ), θ ∈ [0, 2π ].
By Lemma 4.1, there exists ρ ∈ (0, 1) such that for every r ∈ (ρ, 1) the mapping
�r : ∂ B → γr ⊂ R2 is a diffeomorphism of ∂ B onto a simple closed curve γr . As
is well–known, for instance by Weil’s lemma, U is harmonic in B in the classical
sense and hence U (r ·) ∈ C1(B; R2) solves (1.1) with � replaced by �r . Then, by
Theorem 1.3 we obtain

det DU (r z) 	= 0, for every z ∈ B

that is
det DU (z) 	= 0, for every z ∈ Br (0).

Finally, by Lemma 4.1 we have det DU 	= 0 in B \ Bρ(0) so that det DU 	= 0
everywhere in B.

5. Variations upon Theorem 1.3

Let us introduce some definitions borrowed from the literature on minimal sur-
faces [18].

Definition 5.1. Given a Jordan domain D, let us denote by co(D) its convex hull.
We define the convex part of ∂ D as the closed set γc = ∂ D ∩ ∂(co(D)). Conse-
quently we define the non–convex part of ∂ D as the open set γnc = ∂ D \ ∂(co(D)).
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Theorem 5.2. Under the same assumptions as in Theorem 1.3, the mapping U is a
diffeomorphism of B onto D if and only if

det DU > 0 everywhere on �−1(γnc), (5.1)

where γnc is the set introduced in Definition 5.1 above.

First we prove the following lemma.

Lemma 5.3. Under the assumptions of Theorem 1.3, we always have

det DU > 0 everywhere on �−1(γc). (5.2)

Proof. Let P ∈ �−1(γc) and Q = �(P). Let l be a support line for co(D) at Q.
Without loss of generality, we may assume

l = {(u, v) ∈ R2 : v = 0} , co(D) ⊂ {(u, v) ∈ R2 : v > 0}.
Thus the second component ψ of � satisfies

ψ ≥ 0 everywhere, ψ(P) = 0,

hence P is a minimum point for ψ and therefore

∂ψ

∂θ
(P) = 0.

Moreover, since � is orientation preserving, we have that φ is increasing at P and
also (

∂φ

∂θ
(P)

)2

=
∣∣∣∣∂�

∂θ
(P)

∣∣∣∣2

> 0

so that
∂φ

∂θ
(P) > 0.

On the other hand, Hopf’s lemma gives

∂v

∂r
(P) < 0.

Consequently

det DU (P) = −∂φ

∂θ
(P)

∂v

∂r
(P) > 0.

Proof of Theorem 5.2. The proof is a straightforward consequence of Theorem 1.3
and of the above Lemma 5.3.
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We now turn to the Hilbert transform formalism. For any g ∈ L2((0, 2π)), let

Hg(θ) := 1

2π
P.V.

∫ 2π

0

g(τ )

tan
(

θ−τ
2

)dτ, θ ∈ [0, 2π ], (5.3)

be the Hilbert transform on the unit circle, see for instance [19, page 145]. The
following is an equivalent formulation of Theorem 5.2 and thus of Theorem 1.3.

Theorem 5.4. Under the same assumptions as in Theorem 1.3, U is a diffeomor-
phism of B onto D if and only if the components φ and ψ of � satisfy

∂φ

∂θ
H

(
∂ψ

∂θ

)
− ∂ψ

∂θ
H

(
∂φ

∂θ

)
> 0 everywhere on �−1(γnc). (5.4)

Proof. Expressing det DU in polar coordinates we have, on ∂ B,

det DU = ∂u

∂r

∂v

∂θ
− ∂u

∂θ

∂v

∂r
.

Since 1
r

∂u
∂θ

is the harmonic conjugate of ∂u
∂r , we have that

∂u

∂r
= −H

(
∂u

∂θ

)
everywhere on ∂ B (5.5)

and the same formula, obviously applies for v. By assumption u, v ∈ C1(B), hence
we obtain

det DU = ∂φ

∂θ
H

(
∂ψ

∂θ

)
− ∂ψ

∂θ
H

(
∂φ

∂θ

)
everywhere on ∂ B.

Hence condition (5.1) is equivalent to (5.4).

6. The counterexample

Proof of Theorem 1.2. It suffices to prove the theorem with D replaced by T D
where T is an invertible affine transformation. In fact, the theorem will be proved
with � and U replaced by T −1� and T −1U respectively.

If D is not convex, we can find a support line l of its convex hull co(D) which
touches ∂ D on (at least) two points A and B and such that the open segment AB
is outside D. The midpoint C of AB is at a positive distance from D. We can also
find E ∈ co(D) \ D such that the segment C E is perpendicular to AB and it lies
outside D.

Next we consider K , the largest closed cone, with vertex at E , such that K ∩
D = ∅. Note that K ⊆ K ′, where K ′ is the convex cone with vertex at E and
such that A, B ∈ ∂K ′. Therefore the cone K is convex. Let α, β be the half–lines
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2

E

B'A'
γ1

γ

A B

α β

Figure 6.1. A sketch of the construction of the counterexample.

Figure 6.2. The basic example: the mapping F(x, y) = (x, x2 − y2).

such that α ∪ β = ∂K . Then α intersects ∂ D in at least one point A′ and similarly
β intersects ∂ D in at least one point B ′. Up to an affine transformation, we may
assume that |A′ − E | = |B ′ − E |.

Let P be the unique parabola contained in K which passes through A′ and B ′.
Up to a further affine transformation, we may assume

P = {(u, v)
∣∣v = u2}, A′ = (−p, p2), B ′ = (p, p2) for some p > 0.

Consider the harmonic mapping F : R2 → R2 given by

F(x, y) = (x, x2 − y2).

Set

Y+ = {y ≥ 0}, Y− = {y ≤ 0} and V− = {(u, v) ∈ R
2
∣∣v ≤ u2}.

The mappings F± = F
∣∣∣
Y±

: Y± → V − are both one–to–one.

Let γ1, γ2 be the simple open arcs of γ = ∂ D whose endpoints are A′ and B ′.
Consider the closed curve � obtained by gluing together the arcs

�1 = F−1+ (γ1), �2 = F−1− (γ2),
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through their common endpoints F−1(A′) and F−1(B ′). Then � is a simple closed
curve which intersects the line {y = 0} exactly at the two points, F−1(A′) = (p, 0)

and F−1(B ′) = (−p, 0). Let G be the Jordan domain bounded by � and let ω be a
conformal mapping ω : B → G which extends to a homeomorphism of B onto G.
We define

� = (F ◦ ω)
∣∣
∂ B, and U = F ◦ ω, in B. (6.1)

One then verifies that � : ∂ B → ∂ D is a homeomorphism, that U solves (1.1) and
that it is not one–to–one. In fact, det DU changes its sign across the curve

η = ω−1
({

(x, 0) ∈ R
2 : |x | < p

})
.

Moreover, det DU = 0 in B if and only if (x, y) ∈ η and U maps the curve η in a
one–to–one way onto the arc of the parabola P which joins A′ to B ′ and which lies
outside D.

Remark 6.1. In the construction of our counterexample the harmonic mapping U
given by (6.1) fails to be a local homeomorphism on ∂ B exactly at the points A′′ =
ω−1(−p, 0), B ′′ = ω−1(p, 0). This is a clear indication of how close to optimal
Theorem 1.7 is. In fact, the conclusion of Theorem 1.7 does not hold if the condition

for every P ∈ ∂ B, the mapping U is a local homeomorphism at P

is relaxed to

for every P ∈ ∂ B, except possibly at two points, the mapping U is a
local homeomorphism at P.

7. The shear construction revisited

Let us recall the so–called shear construction method due to Clunie and Sheil-
Small [8]. In order to conform to the language of the previous sections, we shall
adapt their definitions to the current notation of this paper.

Let U = (u, v) be a harmonic mapping on B and let ũ and ṽ be the harmonic
conjugates of u and v respectively. We already introduced the holomorphic function

f = u + i ũ , (7.1)

accordingly, we define
g = v + i ṽ . (7.2)

Let us further introduce the following linear combinations

G = 1

2
( f + ig) , H = 1

2
( f − ig) . (7.3)
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Then we have
U = G + H (7.4)

which is usually called the canonical representation of U . Note that, by construc-
tion, we have that f as defined by (7.1), satisfies

f = G + H . (7.5)

Here with slight, although customary, abuse of notation we have identified U =
(u, v) with u + iv.

Definition 7.1. For any θ ∈ [0, π), a set K ⊆ R2 is called convex in the direction
ζ = eiθ , if any line parallel to ζ intersects K in a connected set, possibly empty or
unbounded. We denote by Cθ the class of such sets. In particular, Cπ/2 denotes the
class of sets which are convex in the vertical direction and we write f (B) ∈ Cθ to
indicate that the range of f is convex in the direction eiθ .

The basic theorem of the shear construction method is as follows.

Theorem 7.2 (Clunie and Sheil-Small). Let U be a harmonic mapping on B with
canonical representation as in (7.4), let f be defined by (7.5) and assume that

det DU > 0 in B . (7.6)

The following two conditions are equivalent

U is one–to–one and U (B) ∈ Cπ/2 , (7.7)

f is one–to–one and f (B) ∈ Cπ/2 . (7.8)

A slightly more involved version of this result is available, which applies when
the class of sets convex in one direction is replaced with the class of close–to-
convex sets, we refer to [6, 8] for the definition and details. Our new version is the
following.

Theorem 7.3. Let U ∈ C2(B; R2) ∩ C1(B; R2) be harmonic on B with canonical
representation as in (7.4), let f be defined by (7.5) and assume that

det DU > 0 on ∂ B , (7.9)

then the following conditions are equivalent

U
∣∣
∂ B is one–to–one , (7.10)

f
∣∣
∂ B is one–to–one , (7.11)

U is one–to–one on B , (7.12)

f is one–to–one on B . (7.13)
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Proof. By Theorem 1.3, (7.10) is equivalent to (7.12). Due to the assumption (7.9),
and recalling Remark 3.7 we also have | ∂ f

∂z | = |∇u| > 0 on ∂ B. Hence Theorem
1.3 can also be used to show that (7.11) is equivalent to (7.13), however a more
direct proof can be obtained by the use of the classical argument principle. Next it
is evident that, under the assumption (7.9), � = U

∣∣
∂ B is one–to–one if and only

if WN(�(∂ B)) = 1, and the same holds when � is replaced by f
∣∣
∂ B . Therefore,

from Theorem 3.9, we readily obtain that (7.10) is equivalent to (7.11).

Observe that, in comparison to Theorem 7.2, at the minor price of assuming C1 reg-
ularity up to the boundary for U , we have obtained the advantage that the condition
of non–vanishing of the Jacobian is now required on the boundary only, and that we
do not need anymore the assumption of convexity in some direction. We recall also
that one of the main interest of Theorem 7.2 is that it allows to construct univalent
harmonic functions with prescribed dilatation

ω = Uz̄

Uz
. (7.14)

We refer the reader to the monograph of P. Duren [9] for more details about the
meaning of the dilatation of a harmonic mapping, also called second complex di-
latation or analytic dilatation. For the present purposes it suffices to recall that ω

is holomorphic and that, at any point, the condition det DU > 0 is equivalent to
|ω| < 1. If we are given a univalent holomorphic function f and a holomorphic
function ω such that |ω| < 1 in B and such that f (B) ∈ Cπ/2, then one can con-
struct a harmonic univalent function U such that U (B) ∈ Cπ/2 and which has the
canonical representation U = G + H where G and H are determined by the linear
system {

Gz + Hz = fz
ωGz − Hz = 0.

(7.15)

In this way one obtains a harmonic injective mapping with prescribed dilatation
ω. The name of shear construction is related to the mechanical concept of shear
deformation. Indeed U is obtained from f , by keeping one component fixed (in
this case the real part) and by deforming the other (in this case the imaginary part).
The fundamental drawback is that one cannot apply the method when no sort of
convexity assumption on the range of f is available. As a consequence of our new
Theorem 7.3 we can remove this kind of requirement.

Corollary 7.4. Let f, ω be holomorphic functions in B such that f extends to a C1

invertible mapping on B, ω extends continuously to B and it satisfies

|ω| < 1 , in B . (7.16)

Then, given G, H the holomorphic solutions to (7.15), the harmonic mapping U =
G + H is a diffeomorphism on B, it satisfies ReU = Re f and its dilatation equals
ω in B.
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Proof. We have that (7.16) implies det DU > 0 in all of B. Hence by the equiva-
lence of (7.12) and (7.13) proven in Theorem 7.3, the proof is completed.

Remark 7.5. It is evident that if we merely assume that f and ω are holomorphic
functions in B such that f is invertible on B and ω satisfies

|ω| < 1 , in B ,

then the same construction yields a harmonic mapping U which is a diffeomorphism
on the open disk B. In fact, similarly to what we did in the proof of Theorem 1.7,
it suffices to apply Corollary 7.4 by shrinking the independent variable z ∈ B to
r z ∈ Br (0) for any 0 < r < 1. It is also evident, indeed, that the above construction
provides a complete characterization of harmonic diffeomorphisms. In fact, given
a harmonic diffeomorphism U either on B, or on B, f and ω are immediately
obtained by (7.1), (7.14).
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