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H1 and BMO for certain locally doubling
metric measure spaces

ANDREA CARBONARO, GIANCARLO MAUCERI AND STEFANO MEDA

Abstract. Suppose that (M,ρ,µ) is a metric measure space, which possesses two
“geometric” properties, called “isoperimetric” property and approximate mid-
point property, and that the measure µ is locally doubling. The isoperimetric
property implies that the volume of balls grows at least exponentially with the
radius. Hence the measure µ is not globally doubling. In this paper we de-
fine an atomic Hardy space H1(µ), where atoms are supported only on “small
balls”, and a corresponding space B M O(µ) of functions of “bounded mean os-
cillation”, where the control is only on the oscillation over small balls. We prove
that B M O(µ) is the dual of H1(µ) and that an inequality of John–Nirenberg
type on small balls holds for functions in B M O(µ). Furthermore, we show that
the L p(µ) spaces are intermediate spaces between H1(µ) and B M O(µ), and
we develop a theory of singular integral operators acting on function spaces on
M . Finally, we show that our theory is strong enough to give H1(µ)-L1(µ)
and L∞(µ)-B M O(µ) estimates for various interesting operators on Riemannian
manifolds and symmetric spaces which are unbounded on L1(µ) and on L∞(µ).

Mathematics Subject Classification (2000): 42B20 (primary); 42B30, 46B70,
58C99 (secondary).

1. Introduction

Suppose that (M, ρ, µ) is a metric measure space. Assume temporarily that µ is a
doubling measure; then (M, ρ, µ) is a space of homogeneous type in the sense of
Coifman and Weiss. Harmonic analysis on spaces of homogeneous type has been
the object of many investigations. In particular, the atomic Hardy space H1(µ) and
the space B M O(µ) of functions of bounded mean oscillation have been defined
and studied in this setting. We briefly recall their definitions.

An atom a is a function in L1(µ) supported in a ball B which satisfies appropri-
ate “size” and cancellation conditions. Then H1(µ) is the space of all functions in
L1(µ) that admit a decomposition of the form

∑
j λ j a j , where the a j ’s are atoms

and the sequence of complex numbers {λ j } is summable.
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A locally integrable function f is in B M O(µ) if

sup
B

1

µ(B)

∫
B

| f − fB | dµ < ∞,

where the supremum is taken over all balls B, and fB denotes the average of f
over B.

These spaces enjoy many of the properties of their Euclidean counterparts. In
particular, the topological dual of H1(µ) is isomorphic to B M O(µ), an inequality
of John–Nirenberg type holds for functions in B M O(µ), the spaces L p(µ) are
intermediate spaces between H1(µ) and B M O(µ) for the real and the complex
interpolation methods. Furthermore, some important operators, which are bounded
on L p(µ) for all p in (1, ∞), but otherwise unbounded on L1(µ) and on L∞(µ),
turn out to be bounded from H1(µ) to L1(µ) and from L∞(µ) to B M O(µ). We
remark that the doubling property is key in establishing these results.

There is a huge literature on this subject: we refer the reader to [15,42] and the
references therein for further information.

There are interesting cases where µ is not doubling; then µ may or may not
be locally doubling. An important case in which µ is not even locally doubling is
that of nondoubling measures of polynomial growth treated, for instance, in [38,44,
46], where new spaces H1 and B M O are defined, and a rich theory is developed
(see also [34] for more general measures on Rn). We also mention recent works
of X.T. Duong and L. Yan [19, 20], who define a Hardy space H1 and a space
B M O of bounded mean oscillation associated to a given operator satisfying suitable
estimates. This is done in metric measure spaces with the doubling property, but
it is a remarkable fact that the theory works also for “bad domains” in the ambient
space, to which the restriction of the measure µ may be nondoubling.

In this paper we consider the case where µ(M) = ∞, and µ is a nondou-
bling locally doubling measure. By this we roughly mean that for every R in R+
balls of radius at most R satisfy a doubling condition, with doubling constant that
may depend on R (see (2.1) in Section 2 for the precise definition). Important ex-
amples of this situation are complete Riemannian manifolds with Ricci curvature
bounded from below, a class which includes all Riemannian symmetric spaces of
the noncompact type and Damek–Ricci spaces. In recent years, analysis on com-
plete Riemannian manifolds satisfying the local doubling condition has been the
object of many investigations. For instance, see [40] and the references therein for
the equivalence between a scale-invariant parabolic Harnack inequality and a scaled
Poincaré inequality, and [2, 16, 39] for recents results on the boundedness of Riesz
transforms on such manifolds.

Our approach to the case of locally doubling measures is inspired by a result
of A.D. Ionescu [29] on rank one symmetric spaces of the noncompact type and by
a recent paper of the second and third named authors concerning the analysis of the
Ornstein–Uhlenbeck operator [35].

For each “scale” b in R+, we define spaces H1
b (µ) and B M Ob(µ) much as in

the case of spaces of homogeneous type, the only difference being that we require
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that the balls involved have at most radius b. So, for instance, an H1
b (µ) atom is an

atom supported in a ball of radius at most b. We remark that in the case where M is
a symmetric space of the noncompact type and real rank one, the space B M O1(µ)

agrees with the space defined by Ionescu. Ionescu also proved that if p is in (1, 2),
then L p(µ) is an interpolation space between L2(µ) and B M O1(µ) for the complex
method of interpolation. In the case where M is a complete noncompact Rieman-
nian manifold with locally doubling Riemannian measure and satisfying certain ad-
ditional assumptions E. Russ [39] defined a Hardy space that agrees with the space
H1

1 (µ) defined above, but he did not investigate its structural properties.
We prove that under a mild “geometric” assumption, which we call property

(AM) (see Section 2), H1
b (µ) and B M Ob(µ), in fact, do not depend on the pa-

rameter b provided that b is large enough (see Section 4). Furthermore, we show
that B M Ob(µ) is isomorphic to the topological dual of H1

b (µ) (see Section 6),
and that functions in B M Ob(µ) satisfy an inequality of John–Nirenberg type (see
Section 5).

As far as interpolation is concerned, there is no reason to believe that in this
generality L p(µ) spaces with p in (1, ∞) are interpolation spaces between H1

b (µ)

and B M Ob(µ). However, a remarkable feature of these spaces is that this is true
under a simple geometric assumption on M , called property (I). Roughly speaking,
M possesses property (I) if a fixed ratio of the measure of any bounded open set is
concentrated near its boundary. If M possesses property (I), then a basic relative
distributional inequality for the local sharp function and the local Hardy–Littlewood
maximal function holds. We prove this in Section 7, by adapting to our setting some
ideas of Ionescu [29]. We remark that our approach, which makes use of the dyadic
cubes of M. Christ and G. David [14,18], simplifies considerably the original proof
in [29]. As a consequence of the relative distributional inequality we prove an
interpolation result for analytic families of operators, analogous to that proved by
C. Fefferman and E.M. Stein [23] in the classical setting.

An interesting application of the aforementioned interpolation result is to sin-
gular integral operators (Theorem 8.2). We prove that if T is a bounded self adjoint
operator on L2(µ) and its kernel k is a locally integrable function off the diagonal
in M × M and satisfies a local Hörmander type condition (i.e. if νk < ∞ and
υk < ∞, where νk and υk are defined in the statement of Theorem 8.2), then T
extends to a bounded operator on L p(µ) for all p in (1, ∞), from H1(µ) to L1(µ)

and from L∞(µ) to B M O(µ).
It is interesting to speculate about the range of applicability of the theory we

develop. In particular, a natural problem is to find conditions (possibly easy to
verify) under which a complete Riemannian manifold possesses all the three prop-
erties, local doubling, (I), and (AM), needed to prove the results of Sections 2-8.
This problem is considered in Section 9. Suppose that M is a complete Riemannian
manifold with Riemannian distance ρ and Riemannian density µ. A known fact,
which is a straightforward consequence of the Bishop–Gromov comparison Theo-
rem, is that if M has Ricci curvature bounded from below, then (M, ρ, µ) is locally
doubling. Furthermore, since ρ is a length distance, (M, ρ, µ) has property (AM).
We shall prove that M possesses property (I) if and only if the Cheeger isoperimet-
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ric constant h(M) (see (9.1) for the definition) is strictly positive. As a consequence
we shall prove that if M has Ricci curvature bounded from below, then M possesses
property (I) if and only if the bottom b(M) of the spectrum of M is strictly positive.

In Section 10 we apply our theory to obtain endpoint estimates for some opera-
tors on Riemannian manifolds and symmetric spaces. We show that, if the manifold
has Ricci curvature bounded from below and the bottom of the spectrum is positive,
then a class a spectral multipliers of the Laplacian is bounded from H1(µ) to L1(µ)

and from L∞(µ) to B M O(µ). Similar endpoint estimates hold also for a class of
spherical multipliers and for “localized” Riesz transforms on noncompact Rieman-
nian symmetric spaces. Our results complement earlier results of M. Taylor [43],
J.Ph. Anker [1] and Russ [39]. Similar results on graphs with bounded geometry
will appear elsewhere.

To keep the length of this paper reasonable we have considered only the case
where µ(M) < ∞. A detailed study of the case where µ(M) < ∞ will appear
in [11].

Finally, we would like to mention that, after this paper was completed, M. Tay-
lor kindly sent us a preprint in which he develops a theory of “local” Hardy and
B M O spaces on Riemannian manifolds which satisfy bounded curvature assump-
tions stronger than those considered in Section 9. Taylor’s theory is a generalization
of the theory developed by D. Goldberg in Rn [24]. We recall that the definition of
the local atomic Hardy space h1(Rn) of Goldberg is similar to that of the classical
atomic Hardy space H1(Rn); the only difference is that atoms supported in balls of
radius larger than one do not necessarily have mean value zero. The dual of h1(Rn)

is the space bmo(Rn) of functions f such that both the mean oscillation on balls
of radius at most one and the average of | f | on balls of radius one are bounded.
By imitating Goldberg’s definition, one can define local spaces h1(µ) and bmo(µ)

also in the context of a locally doubling metric measure space (M, ρ, µ) that satis-
fies assumption (AM). It is easy to see that h1(µ) is strictly larger than our H1(µ)

and bmo(µ) is strictly smaller than our B M O(µ). For instance, the characteristic
function of a ball is in H1(µ) but not in h1(µ) and the function x �→ ρ(x, x0),
where x0 is a fixed point in M , is in B M O(µ) but not in bmo(µ). It is known that
in Rn there are operators, e.g. the imaginary powers of the Laplacian, which are
bounded from the classical space H1(Rn) to L1(Rn) but fail to be bounded from
h1(Rn) to L1(Rn). The same phenomenon occurs in our context: there are metric
measure spaces in which “natural” operators are bounded from H1(µ) to L1(µ) but
not from h1(µ) to L1(µ). For instance, this happens for the imaginary powers of
the Ornstein-Uhlenbeck operator on Gauss space [35].

2. Geometric assumptions

Suppose that (M, ρ, µ) is a metric measure space, and denote by B the family of
all balls on M . We assume that µ(M) > 0 and that every ball has finite measure.
For each B in B we denote by cB and rB the centre and the radius of B respectively.
Furthermore, we denote by κ B the ball with centre cB and radius κ rB . For each b
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in R+, we denote by Bb the family of all balls B in B such that rB ≤ b. For any
subset A of M and each κ in R+ we denote by Aκ and Aκ the sets{

x ∈ A : ρ(x, Ac) ≤ κ
}

and
{

x ∈ A : ρ(x, Ac) > κ
}

respectively.
In Sections 2-8 we assume that M is unbounded and possesses the following

properties:

(i) local doubling property (LD): for every b in R+ there exists a constant Db such
that

µ
(
2B

) ≤ Db µ
(
B

) ∀ B ∈ Bb. (2.1)

This property is often called local doubling condition in the literature, and we
adhere to this terminology. Note that if (2.1) holds and M is bounded, then µ is
doubling.

(ii) isoperimetric property (I): there exist κ0 and C in R+such that for every bounded
open set A

µ
(

Aκ

) ≥ C κ µ(A) ∀ κ ∈ (0, κ0]. (2.2)

Suppose that M has property (I). For each t in (0, κ0] we denote by Ct the
supremum over all constants C for which (2.2) holds for all κ in (0, t]. Then we
define IM by

IM = sup
{
Ct : t ∈ (0, κ0]

}
.

Note that the function t �→ Ct is decreasing on (0, κ0], so that

IM = lim
t→0+ Ct ; (2.3)

(iii) property (AM) (approximate midpoint property): there exist R0 in [0, ∞) and
β in (1/2, 1) such that for every pair of points x and y in M with ρ(x, y) >

R0 there exists a point z in M such that ρ(x, z) < β ρ(x, y) and ρ(y, z) <

β ρ(x, y).
This is clearly equivalent to the requirement that there exists a ball B contain-
ing x and y such that rB < β ρ(x, y).

Remark 2.1. Observe that the isoperimetric property (I) implies that for every open
set A of finite measure

µ
(

Aκ

) ≥ C κ µ(A) ∀ κ ∈ (0, κ0],
where κ0 and C are as in (2.2).

Indeed, suppose that A is an open set of finite measure. Fix a reference point o
in M and denote by B(o, j) the ball with centre o and radius j , and by A( j) the set
A ∩ B(o, j). For each κ in (0, κ0] denote by A j,κ the set{

x ∈ A( j) : ρ
(
x, B(o, j)c) ≤ κ, ρ(x, Ac) > κ

}
.
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First we prove that
lim

j→∞ µ
(

A j,κ
) = 0. (2.4)

Since µ(A) < ∞, for each ε > 0 there exists J such that

µ
(

A ∩ B(o, J )c) < ε.

Now, if j ≥ J + κ and x is in A j,κ , then x belongs also to A ∩ B(o, J )c, whence
µ(A j,κ ) < ε for all j ≥ J , as required.

Observe that A j,κ is contained in A( j)κ and that A j,κ = A( j)κ\(B(o, j)∩Aκ

)
.

Therefore
µ

(
B(o, j) ∩ Aκ

) = µ
(

A( j)κ
) − µ

(
A j,κ

)
. (2.5)

Since µ(Aκ) = lim j→∞ µ
(
B(o, j) ∩ Aκ

)
,

µ(Aκ) = lim
j→∞ µ

(
A( j)κ

)
by (2.5) and (2.4). Since A( j) is a bounded open set, we may conclude that

µ(Aκ) ≥ lim
j→∞ C κ µ

(
A( j)

)
= C κ µ

(
A
)
,

as required.

Remark 2.2. The local doubling property is needed for all the results in this paper,
but many results in Sections 2-8 depend only on some but not all the properties (i)-
(iii). In particular, Theorem 3.2 and Proposition 3.4 require only the local doubling
property, Propositions 3.1 and 3.5, Lemma 7.2 and Theorem 7.3, which are key in
proving the interpolation result Theorem 7.4, require property (I), but not property
(AM), all the results in Sections 4, 5 and 6 require property (AM) but not property
(I). In particular, property (AM) is key to prove the scale invariance of the spaces
H1(µ) and B M O(µ) defined below (Proposition 4.3). Finally, all the properties
(i)-(iii) above are needed for the interpolation results in Section 7 and for the results
in Section 8.

Remark 2.3. The local doubling property implies that for each τ ≥ 2 and for each
b in R+ there exists a constant C such that

µ
(
B ′) ≤ C µ(B) (2.6)

for each pair of balls B and B ′, with B ⊂ B ′, B in Bb, and rB′ ≤ τ rB . We shall
denote by Dτ,b the smallest constant for which (2.6) holds. In particular, if (2.6)
holds (with the same constant) for all balls B in B, then µ is doubling and we shall
denote by Dτ,∞ the smallest constant for which (2.6) holds.
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Remark 2.4. There are various “structural constants” which appear explicitly in
the statements of some of our results. For the reader’s convenience we give here a
list of all the relevant constants used is Sections 2-8:

Dτ,b τ ≥ 2, b ∈ R+ ∪ {∞} (see Remark 2.3)
IM the isoperimetric constant (see (ii) above)
R0 and β appear in the (AM) property (see (iii) above)
δ, C1 and a0 appear in the construction of dyadic cubes (see Theorem 3.2).

3. Preliminary results

Roughly speaking, if M has property (I), then a fixed ratio of the measure of any
bounded open set is concentrated near its boundary. The following proposition
contains a quantitative version of this statement.

Proposition 3.1. The following hold:

(i) the volume growth of M is at least exponential;
(ii) for every bounded open set A

µ(At ) ≥ (
1 − e−IM t) µ(A) ∀ t ∈ R

+.

Proof. First we prove (i). Denote by o a reference point in M . For every r > 0
denote by Vr the measure of the ball with centre o and radius r . It is straightforward
to check that B(o, r)κ ⊂ B(o, r) \ B(o, r − κ), so that for all sufficiently large r

Vr − Vr−κ ≥ µ
(
B(o, r)κ

)
≥ C κ Vr ∀ κ ∈ (0, κ0]

by property (I) (C and κ0 are as in (2.2)). Hence

Vr ≥ C κ Vr + Vr−κ

≥ η Vr−κ ∀ κ ∈ (0, κ0],
where η = Cκ + 1. Denote by n the positive integer for which r − nκ is in [κ, 2κ).
Then

Vr ≥ ηn Vr−nκ

≥ ηr/κ−2 Vκ ,

as required.
Now we prove (ii). Suppose that A is a bounded open subset of M , and that t

is in (0, κ0]. Note that As is a bounded open subset of M . It is straightforward to
check that (As)t ⊂ As \ As+t . Therefore

µ(As+t ) − µ(As) ≤ −µ
(
(As)t

)
≤ −Ct t µ(As)
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by property (I) (see (2.2) above). Since s �→ µ(As) is monotonic, it is differentiable
almost everywhere. The inequality above and (2.3) imply that for almost every s in
R+

d

ds
µ(As) ≤ −IM µ(As).

Notice also that lims→0+ µ(As) = µ(A). Therefore

µ(As) ≤ e−IM s µ(A) ∀ s ∈ R
+,

and finally
µ(As) ≥ (

1 − e−IM s) µ(A) ∀ s ∈ R
+,

as required.

We shall make use of the analogues in our setting of the so-called dyadic cubes
Qk

α introduced by G. David and M. Christ [14,18] on spaces of homogeneous type.
It may help to think of Qk

α as being essentially a cube of diameter δk with centre zk
α .

Theorem 3.2. There exist a collection of open subsets {Qk
α : k ∈ Z, α ∈ Ik} and

constants δ in (0, 1), a0, C1 in R+ such that

(i)
⋃

α Qk
α is a set of full measure in M for each k in Z;

(ii) if � ≥ k, then either Q�
β ⊂ Qk

α or Q�
β ∩ Qk

α = ∅;

(iii) for each (k, α) and each � < k there is a unique β such that Qk
α ⊂ Q�

β ;

(iv) diam(Qk
α) ≤ C1 δk;

(v) Qk
α contains the ball B(zk

α, a0 δk).

Proof. The proof of (ii)–(v) is as in [14]. In fact, the proof depends only on the
metric structure of the space and not on the properties of the measure µ and is even
easier in our case, because ρ is a genuine distance, rather than a quasi-distance.

The proof of (i) is again as in [14]; observe that only a local doubling property
is used in the proof.

Note that (iv) and (v) imply that for every integer k and each α in Ik

B(zk
α, a0 δk) ⊂ Qk

α ⊂ B(zk
α, C1 δk).

Remark 3.3. When we use dyadic cubes, we implicitly assume that for each k in
Z the set M \ ⋃

α∈Ik
Qk

α has been permanently deleted from the space.

We shall denote by Qk the class of all dyadic cubes of “resolution” k, i.e., the
family of cubes {Qk

α : α ∈ Ik}, and by Q the set of all dyadic cubes. We shall need
the following additional properties of dyadic cubes.
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Proposition 3.4. Suppose that b is in R+ and that ν is in Z, and let C1 and δ are
as in Theorem 3.2. The following hold:

(i) suppose that Q is in Qk for some k ≥ ν, and that B is a ball such that cB ∈ Q.
If rB ≥ C1 δk , then

µ(B ∩ Q) = µ(Q); (3.1)

if rB < C1 δk , then

µ(B ∩ Q) ≥ D−1
C1/(a0δ),a0δ

ν µ(B); (3.2)

(ii) suppose that τ is in [2, ∞). For each Q in Q the space
(
Q, ρ|Q, µ|Q

)
is of

homogeneous type. Denote by DQ
τ,∞ its doubling constant (see Remark 2.3 for

the definition). Then

sup

{
DQ

τ,∞ : Q ∈
∞⋃

k=ν

Qk

}
≤ Dτ,C1δ

ν DC1/(a0δ),a0δ
ν ;

(iii) for each ball B in Bb, let k be the integer such that δk ≤ rB < δk−1, and and
let B̃ denote the ball with centre cB and radius

(
1 + C1

)
rB. Then B̃ contains

all dyadic cubes in Qk that intersect B and

µ(B̃) ≤ D1+C1,b µ(B);
(iv) suppose that B is in Bb, and that k is an integer such that δk ≤ rB < δk−1.

Then there are at most D(1+C1)/(a0δ),b dyadic cubes in Qk that intersect B.

Proof. First we prove (i). Our proof is a version of the proof given by Christ [14,
page 613] that keeps track of the various structural constants involved.

First we prove (3.1). By Theorem 3.2 (iv) the diameter of Q is at most C1 δk ,
so that Q ⊂ B, whence B ∩ Q = Q, and the required formula is obvious.

To prove (3.2), denote by j the unique integer such that

δ j <
rB

C1
≤ δ j−1

and by Q j
β the unique dyadic cube of resolution j that contains cB . Then j ≥ k,

because C1 δ j < rB ≤ C1δ
k . The cubes Q j

β and Q have nonempty intersection,

because, they both contain cB . Thus Q j
β ⊂ Q. By Theorem 3.2 (iv) the diameter

of Q j
β is at most C1 δ j , which is < rB by the definition of j , so that Q j

β ⊂ B.

Therefore Q j
β ⊂ B ∩ Q, and

µ(B ∩ Q) ≥ µ
(
Q j

β

)
≥ µ

(
B(z j

β, a0 δ j )
)
.
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Observe that rB
a0 δ j ≤ C1

a0 δ
and that B(z j

β, a0 δ j ) ⊂ B. Hence

µ
(
B(z j

β, a0 δ j )
) ≥ D−1

C1/(a0δ),a0δ
ν µ(B),

as required to conclude the proof of (3.2), and of (i).
Next we prove (ii). Suppose that Q is a dyadic cube in Qk , with k ≥ ν.

Suppose that B and B ′ are balls in B with B ⊂ B ′ such that cB and cB′ belong to
Q and rB′ ≤ τ rB . We treat the cases where C1 δk ≤ rB and rB < C1 δk separately.

If C1 δk ≤ rB , then µ(B ′ ∩ Q) = µ(Q) = µ(B ∩ Q).
If rB < C1 δk , then

µ(B ′ ∩ Q) ≤ µ(B ′)

≤ Dτ,C1δ
k µ(B)

≤ Dτ,C1δ
k DC1/(a0δ),a0δ

ν µ(B ∩ Q),

by the local doubling property of M and (3.2). Therefore Q is a homogeneous space
with doubling constant at most Dτ,C1δ

k DC1/(a0δ),a0δ
ν . Since k ≥ ν, these doubling

constants are dominated by Dτ,C1δ
ν DC1/(a0δ),a0δ

ν , as required.
Now we prove (iii). Denote by Q a cube in Qk that intersects B. By the triangle

inequality and Theorem 3.2 (iv), Q is contained in B̃. The required estimate of the
measure of B̃ follows from the local doubling condition (see Remark 2.3).

Finally we prove (iv). Denote by Q1, . . . , QN the cubes in Qk that intersect
B. By (iii) each of these cubes is contained in B̃ . By Theorem 3.2 (v) each cube
Q j contains a ball, B ′

j say, of radius a0 δk , and these balls are pairwise disjoint
because they are contained in disjoint dyadic cubes. By the local doubling condition
µ(B̃) ≤ D(1+C1)/(a0δ),b µ(B ′

j ) for all j . Therefore

N µ(B̃) ≤ D(1+C1)/(a0δ),b

N∑
j=1

µ(B ′
j )

= D(1+C1)/(a0δ),b µ

(
N⋃

j=1

B ′
j

)
≤ D(1+C1)/(a0δ),b µ(B̃),

from which the desired estimate follows.

Our next result is a covering property enjoyed by spaces with property (I). It
is key in proving relative distributional inequalities for the sharp maximal operator
(see Lemma 7.2 below).

Proposition 3.5. Suppose that ν is an integer. For every κ in R+, every open subset
A of M of finite measure and every collection C of dyadic cubes of resolution at least
ν such that

⋃
Q∈C Q = A, there exist mutually disjoint cubes Q1, . . . , Qk in C such

that
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(i)
k∑

j=1

µ(Q j ) ≥ (
1 − e−IM κ

)
µ(A)/2;

(ii) ρ(Q j , Ac) ≤ κ for every j in {1, . . . , k}.
Proof. Denote by C̃ the subcollection of all cubes in C that intersect Aκ . Clearly
the cubes in C̃ cover Aκ and satisfy (ii).

Next we prove (i). Since two dyadic cubes are either disjoint or contained one
in the other, we may consider the sequence {Q j } of cubes in C̃ which are not con-
tained in any other cube of C̃. The existence of these “maximal” cubes is guaranteed
by the assumption that the resolution of the cubes in C is bounded from below. The
cubes {Q j } are mutually disjoint and cover Aκ . Therefore

µ(A) ≥
∑

j

µ(Q j )

≥ µ
(

Aκ

)
≥ (

1 − e−IM κ
)
µ(A),

(3.3)

where the last inequality holds because M possesses property (I). To conclude the
proof of (i) take k so large that

∑k
j=1 µ(Q j ) ≥ (1/2)

∑∞
j=1 µ(Q j ). Then

k∑
j=1

µ(Q j ) ≥ (
1 − e−IM κ

)
µ(A)/2,

as required.

4. The Hardy space H1

Definition 4.1. Suppose that r is in (1, ∞]. A (1, r)-atom a is a function in L1(µ)

supported in a ball B in B with the following properties:

(i) ‖a‖∞ ≤ µ(B)−1 if r is equal to ∞ and(
1

µ(B)

∫
B

|a|r dµ

)1/r

≤ µ(B)−1

if r is in (1, ∞);

(ii)
∫

B
a dµ = 0.

Definition 4.2. Suppose that b is in R+. The Hardy space H1,r
b (µ) is the space of

all functions g in L1(µ) that admit a decomposition of the form

g =
∞∑

k=1

λk ak, (4.1)
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where ak is a (1, r)-atom supported in a ball B of Bb, and
∑∞

k=1 |λk | < ∞. The
norm ‖g‖H1,r

b (µ)
of g is the infimum of

∑∞
k=1 |λk | over all decompositions (4.1)

of g.

Clearly a function in H1,r
c (µ) is in H1,r

b (µ) for all c < b. We shall prove in
Proposition 4.3 below that, in fact, the reverse inclusion holds whenever c is large
enough. Hence for b large the space H1,r

b (µ) does not depend on the parameter b,
and for each pair of sufficiently large parameters b and c the norms ‖·‖H1,r

b (µ)
and

‖·‖H1,r
c (µ)

are equivalent.

There are cases where H1,r
c (µ) and H1,r

b (µ) are isomorphic spaces for each
pair of parameters c and b. This happens, for instance, if M is the upper half plane,
ρ the Poincaré metric and µ the associated Riemannian measure. However, if M
is a homogeneous tree of degree q ≥ 1, ρ denotes the natural distance and µ the
counting measure, it is straightforward to check that H1

1 (µ) consists of the null
function only, whereas H1

2 (µ) is a much richer space.
Recall that R0 and β are the constants which appear in the definition of the

(AM) property.

Proposition 4.3. Suppose that r is in (1, ∞], b and c are in R+ and satisfy R0/(1−
β) < c < b. The following hold:

(i) there exist a constant C and a nonnegative integer N, depending only on M, b
and c, such that for each ball B in Bb and each (1, r)-atom a supported in B
there exist at most N (1, r)-atoms a1, . . . , aN with supports contained in balls
B1, . . . , BN in Bc and N constants λ1, . . . , λN such that

∣∣λ j
∣∣ ≤ C,

a =
N∑

j=1

λ j a j and ‖a‖H1,r
c (µ)

≤ C N ;

(ii) a function f is in H1,r
c (µ) if and only if f is in H1,r

b (µ). Furthermore, there
exists a constant C such that

‖ f ‖H1,r
b (µ)

≤ ‖ f ‖H1,r
c (µ)

≤ C ‖ f ‖H1,r
b (µ)

∀ f ∈ H1,r
c (µ).

Proof. Choose β ′ in (0, 1 − β) such that R0/β
′ < c.

First we prove (i). Suppose that B is a ball in Bb and that rB > c, for otherwise
there is nothing to prove. Denote by {z1, . . . , zN1} a maximal set of points in B such
that ρ(z j , zk) ≥ β ′rB for all j �= k and each point of B is at distance at most β ′rB
from the set {z1, . . . , zN1}. Denote by B j the ball with centre z j and radius β ′rB ,
and by B0 the ball with centre cB and radius β ′rB . Note that

µ(B) ≤ D1/β ′,b µ(B0), (4.2)
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where D1/β ′,b is as in Remark 2.3. We consider the partition of unity {ψ1, . . . ,ψN1}
of 1⋃

j B j subordinated to the covering {B1, . . . , BN1} defined by ψ j =1B j /
N1∑

k=1
1Bk .

For each j in {1, . . . , N1} we define

A j = 1

µ(B0)

∫
M

a ψ j dµ and φ j = a ψ j − A j 1B0 .

It is straighforward to check that a = ∑N1
j=1 φ j and each function φ j has integral 0

and is supported in B j ∪ B0. Define J ′ and J ′′ by

J ′ = { j : z j /∈ B0} and J ′′ = { j : z j ∈ B0}.

If j is in J ′, then z j is not in B0, so that ρ(cB, z j ) > β ′rB > β ′c > R0. Therefore
we may use property (AM) and conclude that there exists a ball B ′

j containing cB

and z j with radius < β ρ(cB, z j ). Denote by B̃ j the ball centred at cB′
j

with radius

rB′
j
+ β ′rB . By using the triangle inequality we see that B̃ j contains B j ∪ B0.

Observe that rB̃ j
≤ (β + β ′) rB , which is strictly less than rB , because we assumed

that β ′ < 1 − β.
Next we check that if j is in J ′, then φ j is a multiple of a (1, r)-atom: we

give details in the case where r = 2; the cases where r ∈ (1, ∞) \ {2} may be
treated similarly, and the variations needed to treat the case where r = ∞ are
straightforward and are omitted. By the triangle inequality(

1

µ(B̃ j )

∫
B̃ j

∣∣φ j
∣∣2 dµ

)1/2

≤
(

1

µ(B̃ j )

∫
B̃ j

∣∣a ψ j
∣∣2 dµ

)1/2

+ ∣∣A j
∣∣ ( 1

µ(B̃ j )

∫
B̃ j

1B0 dµ

)1/2

≤
√

µ(B)

µ(B̃ j )

(
1

µ(B)

∫
B

|a|2 dµ

)1/2

+
√

µ(B0)

µ(B̃ j )

1

µ(B0)

∫
M

∣∣a ψ j
∣∣ dµ

≤
(√

µ(B)

µ(B0)
+ µ(B)

µ(B0)

)
1

µ(B)

≤ 2 D1/β ′,b
µ(B)

.
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Observe that
1

µ(B)
≤ 1

µ(B0)
≤ Dβ/β ′+1,b

µ(B̃ j )
,

because B0 is contained both in B and B̃ j and the ratio between the radii of B̃ j and
B0 is at most β/β ′ + 1. Therefore we may conclude that(

1

µ(B̃ j )

∫
B̃ j

∣∣φ j
∣∣2 dµ

)1/2

≤ 2 D1/β ′,b Dβ/β ′+1,b

µ(B̃ j )
,

i.e., φ j/(2 D1/β ′,b Dβ/β ′+1,b) is an atom supported in the ball B̃ j of radius at most
(β + β ′) rB .

Now suppose that j is in J ′′. Then B j ∪ B0 is contained in 2B0. Notice that
β ′ < 1−β < 1/2, so that r2B0 = 2β ′rB < (β +β ′) rB . By arguing much as above,
we see that φ j/(2 D1/β ′,b Dβ/β ′+1,b) is an atom supported in the ball 2B0 of radius
< (β + β ′) rB .

We have written a as the sum of N1 functions φ j , each of which is a multiple of
an atom with constant 2 D1/β ′,b Dβ/β ′+1,b. Thus, we have proved that ‖a‖H1,r

b(β+β′)
≤

2 D1/β ′,b Dβ/β ′+1,b N1.
Now, if j is in J ′, and rB̃ j

< c, then B̃ j is in Bc. Similarly, if j is in J ′′,
and r2B0 < c, then 2B0 is in Bc. If 2B0 and all the balls B̃ j are in Bc, then the
proof is complete. Otherwise either 2B0 or some of the B̃ j ’s is not in Bc, and we
must iterate the construction above. It is clear that after a finite number of steps,
depending on the ratio b/c, we end up with the required decomposition.

Next we prove (ii). Obviously ‖ f ‖H1,r
b

≤ ‖ f ‖H1,r
c

, so we only have to show

that ‖ f ‖H1,r
c

≤ C ‖ f ‖H1,r
b

for some constant C depending only on b and c and M .

But this follows directly from (i).

Definition 4.4. Suppose that r is in (1, ∞). Then for every b and c in R+ such that
R0/(1 − β) < c < b the spaces H1,r

b (µ) and H1,r
c (µ) are isomorphic (in fact, they

contain the same functions) by Proposition 4.3 (ii), and will simply be denoted by
H1,r (µ).

Later (see Section 6) we shall prove that H1,r (µ) does not depend on the pa-
rameter r in (1, ∞), and we shall denote H1,r (µ) simply by H1(µ).

5. The space B M O

Suppose that q is in [1, ∞). For each locally integrable function f we define N q
b ( f )

by

N q
b ( f ) = sup

B∈Bb

(
1

µ(B)

∫
B

| f − fB |q dµ

)1/q

,
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where fB denotes the average of f over B. We denote by B M Oq
b (µ) the space

of all equivalence classes of locally integrable functions f modulo constants, such
that N q

b ( f ) is finite, endowed with the norm

‖ f ‖B M Oq
b (µ) = N q

b ( f ).

Notice that only “small” balls enter in the definition of B M Oq
b (µ). It is a non-

trivial fact, proved in Proposition 5.1 below, that B M Oq
b (µ) is independent of the

parameter b, provided b is large enough, and that the norms N q
b are all equivalent.

Proposition 5.1. Suppose that q is in [1, ∞), and b and c are positive constant
such that R0/(1 − β) < c < b. Then B M Oq

b (µ) and B M Oq
c (µ) coincide and the

norms N q
b and N q

c are equivalent.

Proof. Obviously, if 0 < c < b and f is in B M Oq
b (µ), then f is in B M Oq

c (µ) and
N q

c ( f ) ≤ N q
b ( f ). Thus, we only have to show that N q

b ( f ) ≤ C N q
c ( f ) for some

constant C depending only on b and c and M . We give the proof in the case where
q = 1; the proof in the other cases is similar.

Suppose that B is a ball in Bb. Observe that

1

µ(B)

∫
B

| f − fB | dµ ≤ 2

µ(B)
inf
c∈C

∫
B

| f − c| dµ

≤ 2

µ(B)
‖ f ‖L1(B)/C,

where L1(B)/C is the quotient of the space L1(B) modulo the constants. Since the
dual of L1(B)/C is L∞

0 (B) (the space of all functions in L∞(B) with vanishing
integral, endowed with the L∞(B) norm),

‖ f ‖L1(B)/C = sup

{∣∣∣∣∫
B

f φ dµ

∣∣∣∣ : φ ∈ L∞
0 (B), ‖φ‖∞ ≤ 1

}
.

Suppose that φ is a function in L∞
0 (B) with ‖φ‖∞ ≤ 1. Then φ/µ(B) is a (1, ∞)-

atom and, by Proposition 4.3 (i), there exist (1, ∞)-atoms a1, . . . , aN supported
in balls B j in Bc whose union contains B such that φ/µ(B) = ∑N

j=1 λ j a j , with∣∣λ j
∣∣ ≤ C and ‖a j‖∞ ≤ 1/µ(B j ), where C and N are constants which depend only

on b, c and M . Thus

1

µ(B)

∣∣∣∣∫
B

f φ dµ

∣∣∣∣ ≤ C
N∑

j=0

∫
B j

∣∣ f − fB j

∣∣ ∣∣a j
∣∣ dµ

≤ C
N∑

j=0

1

µ(B j )

∫
B j

∣∣ f − fB j

∣∣ dµ

≤ C N N 1
c ( f ).

Hence N 1
b ( f ) ≤ 2 C N N 1

c ( f ), as required.
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Remark 5.2. For the rest of this paper, we fix a constant b0 > R0/(1 − β). For
each q in [1, ∞) we denote by B M Oq(µ) the space B M Oq

b0
(µ) endowed with any

of the equivalent norms N q
b , where b > R0/(1 − β).

Next, we want to show that B M Oq(µ) is independent of q (see the remark
at the end of this section). The strategy is the same as in the classical case: it
hinges on a John–Nirenberg type inequality for functions in B M O1(µ). The orig-
inal inequality was proved in [30], where classical functions of bounded mean os-
cillation appeared for the first time. We need the following generalization of the
John–Nirenberg inequality to doubling spaces which is stated in [15] and proved
in [6, Theorem 2.2] (see also [32, 34]).

Proposition 5.3. Suppose that (X, d, µ) is a doubling metric measure space, with
doubling constant D. There exist constants JD and ηD, which depend only on D,
such that for every ball B

µ
({

x ∈ B : ∣∣ f (x) − fB
∣∣ > s

}) ≤ JD e−ηDs/‖ f ‖B M O(X) µ(B) ∀ s ∈ R
+.

By Proposition 3.4 (ii) for each dyadic cube Q the metric measure space
(Q, ρ|Q, µ|Q) is a space of homogeneous type. Recall that a ball in Q is the inter-
section of Q with a ball B in B whose centre belongs to Q. We denote by B M O(Q)

the classical B M O space on Q, i.e. the space of all functions f in L1(Q, µ|Q) such
that

‖ f ‖B M O(Q) = sup
B

1

µ(B ∩ Q)

∫
B∩Q

∣∣ f − fB∩Q
∣∣ dµ < ∞,

where the supremum is taken with respect to all balls B in B whose centre belongs
to Q.

Theorem 5.4. Denote by ν the unique integer such that δν ≤ b0 < δν−1, and by N
the norm N 1

(1+C1)b0
on B M O(µ). The following hold:

(i) for each dyadic cube Q in
⋃∞

k=ν Qk and for each f in B M O1(µ) the restriction
of f to Q is in B M O(Q) and

‖ f ‖B M O(Q) ≤ 2 DC1/(a0δ),a0b0 N ( f );

(ii) there exist positive constants J and η such that for every function f in BMO1(µ)

and for every ball B in Bb0

µ
({x ∈ B : | f (x) − fB | > s}) ≤ J e−η s/N ( f ) µ(B).

Proof. First we prove (i). Suppose that Q is in Qk . We have to estimate

osc f (B ∩ Q) = 1

µ(B ∩ Q)

∫
B∩Q

∣∣ f − fB∩Q
∣∣ dµ, (5.1)
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where B is a ball in (M, ρ). We shall prove that

osc f (B ∩ Q) ≤ 2 DC1/(a0δ),a0b0 N ( f ) ∀ f ∈ B M O1(µ),

from which (i) follows. We consider the cases where rB < C1 δk and rB ≥ C1 δk

separately.
In the case where rB < C1 δk we compare (5.1) with the oscillation of f over

B. By the triangle inequality

osc f (B ∩ Q) ≤ 1

µ(B ∩ Q)

∫
B∩Q

∣∣ f − fB
∣∣ dµ + ∣∣ fB − fB∩Q

∣∣
≤ 2

µ(B ∩ Q)

∫
B∩Q

∣∣ f − fB
∣∣ dµ.

By Proposition 3.4 (i) we know that µ(B ∩ Q) ≥ D−1
C1/(a0δ),a0δ

ν µ(B); hence the
right hand side in the displayed formula above may be estimated from above by

2 DC1/(a0δ),a0δ
ν

µ(B)

∫
B

∣∣ f − fB
∣∣ dµ,

which, in turn, may be majorised by DC1/(a0δ),a0b0 N ( f ), since the radius of B is at
most C1b0.

Now suppose that rB ≥ C1 δk . Since diam(Q) < C1 δk by Theorem 3.2 (iv),
Q ∩ B = Q. For the sake of definiteness, suppose that Q is the dyadic cube Qk

β .

Then Qk
β contains the ball B(zk

β, a0 δk). Denote by B̃ the ball centred at zk
β and

radius C1 δk . Now,

osc f (B ∩ Q) ≤ 1

µ(B ∩ Q)

∫
B∩Q

∣∣ f − f B̃

∣∣ dµ + ∣∣ f B̃ − fB∩Q
∣∣

≤ 2

µ(B ∩ Q)

∫
B∩Q

∣∣ f − f B̃

∣∣ dµ

≤ 2

µ
(
B(zk

β, a0 δk)
) ∫

B̃

∣∣ f − f B̃

∣∣ dµ

≤ 2 DC1/a0,a0δ
ν

µ
(
B̃

) ∫
B̃

∣∣ f − f B̃

∣∣ dµ,

which is majorised by 2 DC1/a0,a0b0 N ( f ). The proof of (i) is complete.
Now we prove (ii). Suppose that B is in Bb0 . Denote by k the unique integer

such that δk ≤ rB < δk−1 and by Q1, . . . , QN the dyadic cubes of resolution k
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that intersect B. By Proposition 3.4 (iv) we have the estimate N ≤ D(1+C1)/(a0δ),b0 .
Then

µ
({x ∈ B : | f (x) − fB | > s})≤

N∑
j=1

µ
({x ∈ Q j : | f (x) − fB | > s}). (5.2)

We estimate each of the summands on the right hand side from above by

µ
({x ∈ Q j : ∣∣ f (x) − fQ j

∣∣>s/2}) + µ
({x ∈ Q j : ∣∣ fB − fQ j

∣∣>s/2}). (5.3)

By Proposition 5.3 and (i) the first summand in this formula is majorised by

JQ j e−ηQ j s/‖ f ‖B M O(Q j ) µ(Q j ) ≤ JQ j e−ηQ j s/(2DC1/(a0δ),a0b0 N ( f ))
µ(Q j ).

Here we use the fact that since diam(Q j) is finite, then Q j is a ball in the doubling
space (Q j ,ρ|Q j ,µ|Q j). By Proposition 3.4(ii) all the spaces (Q j ,ρ|Q,µ|Q) are spaces
of homogeneous type with doubling constant dominated by Dτ,C1b0 DC1/(a0δ),a0b0 ,
which we simply denote by D′. Also, denote by η′ the constant ηD′/(2DC1/(a0δ),a0b0).
By Proposition 3.4 (iii) the ball B̃ with centre cB and radius (1 + C1) rB contains
Q1, . . . , QN and µ(B̃) ≤ DC1+1,b0 µ(B). Thus, by summing over j , we see that

N∑
j=1

µ
({x ∈ Q j :

∣∣ f (x) − fQ j

∣∣>s/2})≤ JD′ e−η′s/N ( f )
N∑

j=1

µ(Q j )

≤ JD′ e−η′s/N ( f ) µ(B̃)

≤ JD′ e−η′s/N ( f )DC1+1,b0 µ(B).

(5.4)

Now we estimate the second summand in (5.3). We claim that∣∣ fB − fQ j

∣∣ ≤ D′′ N ( f ),

where D′′ = D1+C1,b0 + D(1+C1)/(a0b0),a0b0 . Indeed,∣∣ fB − fQ j

∣∣ ≤ ∣∣ fB − f B̃

∣∣ + ∣∣ f B̃ − fQ j

∣∣
≤ 1

µ(B)

∫
B

∣∣ f − f B̃

∣∣ dµ + 1

µ(Q j )

∫
Q j

∣∣ f − f B̃

∣∣ dµ

≤ 1

µ(B)

∫
B

∣∣ f − f B̃

∣∣ dµ + 1

µ
(
B(z j , a0δk)

) ∫
B̃

∣∣ f − f B̃

∣∣ dµ

≤ D′′

µ(B̃)

∫
B̃

∣∣ f − f B̃

∣∣ dµ,

which is dominated by D′′ N ( f ), as claimed.
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Thus

µ
({x ∈ Q j : ∣∣ fB − fQ j

∣∣ > s/2}) ≤ µ
({x ∈ Q j : D′′ N ( f ) > s/2}).

Now, the right hand side is equal to µ(Q j ) when s is in
(
0, 2 D′′ N ( f )

)
, and to 0

when s is in
[
2 D′′ N ( f ), ∞)

, so that

µ
({x ∈ Q j : ∣∣ fB − fQ j

∣∣ > s/2}) ≤ e2D′′
e−s/N ( f ) µ(Q j ) ∀ s ∈ R

+.

Therefore

N∑
j=1

µ
({x ∈ Q j : ∣∣ fB − fQ j

∣∣>s/2}) ≤ e2D′′
e−s/N ( f ) µ(B̃)

≤ e2D′′
DC1+1,b0 e−s/N ( f ) µ(B).

(5.5)

Now, (5.4) and (5.5) imply that

µ
({x ∈ B : | f (x)− fB |>s})≤(

JD′ e−η′s/N ( f ) + e2D′′
e−s/N ( f )

)
DC1+1,b0 µ(B)

≤ J e−η s/N ( f ) µ(B),

where J = (
JD′ + e2D′′)

DC1+1,b0 and η = min(1, η′), as required.

A standard consequence of the John–Nirenberg type inequality is the follow-
ing.

Corollary 5.5. Denote by ν the unique integer such that δν ≤ b0 < δν−1, and by
N the norm N 1

(1+C1)b0
on B M O(µ). The following hold:

(i) for every c < η∫
B

ec| f − fB |/N ( f ) dµ ≤
(

1 + Jc

η − c

)
µ(B) ∀ f ∈ B M O(µ) ∀ B ∈Bb0,

where η and J are as in Theorem 5.4 (ii);
(ii) for each q in (1, ∞) there exists a constant C such that(

1

µ(B)

∫
B

| f − fB |q dµ

)1/q

≤ C N ( f ) ∀ f ∈ B M O(µ) ∀ B ∈Bb0 .

Proof. First we prove (i). Observe that the left hand side of (i) is equal to

µ(B) +
∫ ∞

1
µ ({x ∈ B : | f − fB | > N ( f ) (log β)/c}) dβ.
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Changing variables and using the John–Nirenberg type inequality proved in Theo-
rem 5.4 we see that the last integral may be estimated by

µ(B)

[
1 + J

∫ ∞

0
e(c−η)v/c dv

]
.

The above integral is finite if and only if c < η and it is equal to c/(η − c): the
required inequality follows.

Now we prove (ii). By elementary calculus, for each q in (1, ∞) there exists a
constant Cq such that es ≥ Cq sq for every s in R+. Therefore (i) implies that

Cq

(
c

N ( f )

)q ∫
B

| f − fB |q dµ ≤
(

1 + Jc

η − c

)
µ(B),

which is equivalent to the required estimate.
The proof of the corollary is complete.

Remark 5.6. By Corollary 5.5 (ii), if f is in B M O1(µ), then f is in B M Oq(µ)

for all q in (1, ∞). Conversely, if f is in B M Oq(µ) for some q in (1, ∞), then triv-
ially it is in B M O1(µ), hence in B M Or (µ) for all r in (1, ∞) by Corollary 5.5 (ii).
Furthermore, the norms N 1

b0
and N q

b0
are equivalent. In view of this observation, all

spaces B M Oq(µ), q in [1, ∞), coincide. We shall denote B M O1(µ) simply by
B M O(µ). We endow B M O(µ) with any of the equivalent norms N q

b , where q is
in [1, ∞) and b > R0/(1 − β). This remark will be important in the proof of the
duality between the Hardy space H1(µ) and B M O(µ) (see Section 6 below).

6. Duality

We shall prove that the topological dual of H1,r (µ) may be identified with BMOr ′
(µ),

where r ′ denotes the index conjugate to r . Suppose that 1 < r < s < ∞. Then(
H1,r (µ)

)∗ = (
H1,s(µ)

)∗, because we have proved that BMOr ′
(µ) = B M Os′

(µ)

(see Remark 5.6). Observe that the identity is a continuous injection of H1,s(µ) into
H1,r (µ), and that H1,s(µ) is a dense subspace of H1,r (µ). Then we may conclude
that H1,s(µ) = H1,r (µ).

We need some more notation and some preliminary observation. For each ball
B in Bb0 let L2

0(B) denote the Hilbert space of all functions f in L2(µ) such that
the support of f is contained in B and

∫
B f dµ = 0. We remark that a function f

in L2
0(B) is a multiple of a (1, 2)-atom, and that

‖ f ‖H1,2(µ) ≤ µ(B)1/2 ‖ f ‖L2(B). (6.1)

Suppose that � is a bounded linear functional on H1,2(µ). Then, for each B in Bb0

the restriction of � to L2
0(B) is a bounded linear functional on L2

0(B). Therefore, by



H1 AND B M O FOR LOCALLY DOUBLING SPACES 563

the Riesz representation theorem there exists a unique function �B in L2
0(B) which

represents the restriction of � to L2
0(B). Note that for every constant η the function

�B + η represents the same functional, though it is not in L2
0(B) unless η is equal

to 0. Denote by |||�|||H1,2(µ) the norm of �. Observe that

‖�B‖L2
0(B,µ) = sup

‖ f ‖
L2

0(B)=1

∣∣∣∣∫
B

�B f dµ

∣∣∣∣
≤ sup

‖ f ‖
L2

0(B)=1

|||�|||H1,2(µ) ‖ f ‖H1,2(µ)

≤ µ(B)1/2 |||�|||H1,2(µ),

(6.2)

the last inequality being a consequence of (6.1).
For every f in B M Or ′

(µ) and every finite linear combination g of (1, r)-
atoms the integral

∫
Rd f g dµ is convergent. Denote by H1,r

fin (µ) the subspace of
H1,r (µ) consisting of all finite linear combinations of (1, r)-atoms. Then g �→∫
Rd f g dµ defines a linear functional on H1,r

fin (µ). We observe that H1,r
fin (µ) is

dense in H1,r (µ).

Theorem 6.1. Suppose that r is in (1, ∞). The following hold

(i) for every f in B M Or ′
(µ) the functional �, initially defined on H1,r

fin (µ) by the
rule

�(g) =
∫

Rd
f g dµ,

extends to a bounded functional on H1,r (µ). Furthermore,

|||�|||H1,r (µ) ≤ ‖ f ‖B M Or ′
(µ)

;
(ii) there exists a constant C such that for every continuous linear functional � on

H1,r (µ) there exists a function f � in B M Or ′
(µ) such that ‖ f �‖B M Or ′

(µ)
≤

C |||�|||H1,r (µ) and

�(g) =
∫

Rd
f � g dµ ∀ g ∈ H1,r

fin (µ).

Proof. The proof of (i) follows the line of the proof of [15] which is based on the
classical result of C. Fefferman [22, 23]. We omit the details.

Now we prove (ii) in the case where r is equal to 2. The proof for r in
(1, ∞) \ {2} is similar and is omitted.

Recall that for each b > R0/(1 − β) the space H1,2(µ) is isomorphic to
H1,2

b (µ) with norm ‖·‖H1,2
b (µ)

. Thus, we may interpret � as a continuous linear

functional on H1,2
b (µ) for each b > R0/(1 − β). Fix a reference point o in M . For
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each b there exists a function f �
b in L2

0(B(o, b)) that represents � in B(o, b). Since
both f �

1 and the restriction of f �
b represent � on B(o, 1), there exists a constant ηb

such that
f �
1 − f �

b = ηb

on B(o, 1). By integrating both sides of this equality on B(o, 1) we see that

ηb = − 1

µ
(
B(o, 1)

) ∫
B(o,1)

f �
b dµ.

Define
f �(x) = f �

b (x) + ηb ∀ x ∈ B(o, b) ∀ b ∈ [1, ∞).

It is straightforward to check that this is a good definition. We claim that the func-
tion f � is in B M O(µ) and there exists a constant C such that

‖ f �‖B M O(µ) ≤ C |||�|||H1,2(µ)∗ ∀ � ∈ H1,2(µ)∗.

Indeed, choose a ball B in Bb0 . Then there exists a constant ηB such that

f �
∣∣

B = �B + ηB, (6.3)

where �B is in L2
0(B) and represents the restriction of � to L2

0(B). By integrating
both sides on B, we see that ηB = (

f �)B . Then, by (6.3),(
1

µ(B)

∫
B

∣∣ f � − (
f �

)
B

∣∣2 dµ

)1/2

=
(

1

µ(B)

∫
B

∣∣�B
∣∣2 dµ

)1/2

≤ |||�|||H1,2(µ),

so that N 2
b0

( f �) ≤ |||�|||H1,2(µ), as required.

Remark 6.2. Note that the proof of Theorem 6.1 does not apply, strictly speaking,
to the case where r is equal to ∞. However, a straightforward, though tedious,
adaptation to the case where µ is only locally doubling of a classical result [15],
shows that H1,∞(µ) and H1,2(µ) agree, with equivalence of norms. Consequently,
the dual space of H1,∞(µ) is B M O(µ).

7. Estimates for the sharp function and interpolation

The main step in the proof of Fefferman–Stein’s interpolation result for analytic
families of operators is a certain relative distributional inequality (also referred to as
“good λ inequality” in the literature) [23, Theorem 5, page 153], [42], which is a
modified version of the original relative distributional inequality of D. L. Burkholder
and R. F. Gundy [7, 8] for martingales.
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Extensions of Fefferman–Stein’s distributional inequality to spaces of homo-
geneous type are available in the literature (see, e.g., Macı́as’ thesis [33]). It may
be worth observing that the doubling property plays a key rôle in their proof. An
extension of this theory to rank one symmetric spaces of the noncompact type is
due to Ionescu [29]. In this section we adapt Ionescu’s ideas and arguments to our
setting.

For each integer k, and each locally integrable function f , the noncentred
dyadic local Hardy–Littlewood maximal function Mk f is defined by

Mk f (x) = sup
Q

1

µ(Q)

∫
Q

| f | dµ ∀ x ∈ M, (7.1)

where the supremum is taken over all dyadic cubes of resolution ≥ k that contain x .
For each p in M we denote by Bb(p) the subcollection of all balls in Bb which

contain p. For each b in R+ we define a local sharp function f �,b of a locally
integrable function f thus:

f �,b(p) = sup
B∈Bb(p)

1

µ(B)

∫
B

| f − fB | dµ ∀ p ∈ M.

Observe that f is in B M O(µ) if and only if ‖ f �,b‖∞ is finite for some (hence for
all) b in (R0/(1 − β), ∞).

We shall need the following result, whose proof, mutatis mutandis, is the same
as that of its Euclidean analogue.

Theorem 7.1. Suppose that k is an integer. Then the noncentred dyadic local
Hardy–Littlewood maximal operator Mk is bounded on L p(µ) for every p in
(1, ∞] and of weak type 1.

Lemma 7.2. Define constants C0, b′, σ and D by

C0 = max(C1/δ, δ),

b′ = max(b0, 2C1 + C0),

σ = (
1 − e−IM δ3)

/2 and

D = Db′/a0,a0,

where a0, C1 and δ are as in Theorem 3.2, and Db′/a0,a0 is defined in Remark 2.3.
For every η′ in (0, 1), for all positive ε < (1 − η′)/(2D), and for every f in L1(µ)

µ
({M2 f > α, f �,b′ ≤ ε α}) ≤ η µ

({M2 f > η′ α}) ∀ α ∈ R
+,

where

η = 1 − σ + 2ε D

σ (1 − η′)
.
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Proof. For each β > 0 we denote by A(β) and S(β) the sets {M2 f > β} and
{ f �,b′

> β} respectively. The inequality to prove may then be rewritten as follows:

µ
(

A(α) ∩ S(εα)c) ≤ η µ
(

A(η′α)
) ∀ α ∈ R

+.

To each x in A(η′α) we associate the maximal dyadic cube Qx containing x of
resolution at least 2 such that | f |Qx

> η′α. Here | f |Qx
denotes the average of | f |

on the cube Qx . We denote by Cη′α the collection of cubes {Qx }x∈A(η′α). Clearly
A(η′α) = ⋃

x∈A(η′α) Qx , and µ
(

A(η′α)
)

< ∞, because M2 is of weak type 1. By

Proposition 3.5 (with κ = δ3) there exist mutually disjoint cubes Q1, . . . , Qk in
Cη′α such that ρ

(
Q j , A(η′α)c

) ≤ δ3 and

k∑
j=1

µ(Q j ) ≥ σ µ
(

A(η′α)
)
. (7.2)

We claim that if 0 < ε < (1 − η′)/(2D) then

µ
(
Q j ∩ A(α) ∩ S(εα)c) ≤ 2ε D

σ (1 − η′)
µ

(
Q j

) ∀ j ∈ {1, . . . , k}. (7.3)

We postpone for a moment the proof of the claim and show how (7.3) implies the
required conclusion. Observe that A(α) ⊂ A(η′α) and that

µ
(

A(α) ∩ S(εα)c) = µ

((
A(η′α) \

k⋃
j=1

Q j

)
∩ A(α) ∩ S(εα)c

)

+ µ

((
k⋃

j=1

Q j

)
∩ A(α) ∩ S(εα)c

)

≤ (1 − σ) µ
(

A(η′α)
) + 2ε D

σ (1 − η′)

k∑
j=1

µ(Q j )

≤ η µ
(

A(η′α)
)
.

The penultimate inequality is a consequence of (7.2) and of (7.3), and the last in-
equality follows from the fact that the Q j ’s are mutually disjoint cubes contained
in A(η′α).

Thus, to conclude the proof of the lemma it remains to prove the claim (7.3).
For the rest of the proof we shall denote any of the cubes Q1, . . . , Qk simply by Q.
Denote by ν0 the resolution of Q.

We claim that there exists a dyadic cube Q̃ of the same resolution as Q such
that | f |Q̃ ≤ η′α and ρ(Q, Q̃) ≤ C0 δν0 .

We treat the cases where ν0 is equal to 2 or ≥ 3 separately.
Suppose that ν0 = 2. Since ρ

(
Q, A(η′α)c)

) ≤ δ3, there exists a point y in
A(η′α)c such that ρ(Q, y) ≤ δ3. Denote by Q̃ the dyadic cube with resolution 2
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which contains y. Then ρ(Q, Q̃) ≤ δ3 ≤ C0δ
2 and | f |Q̃ ≤ η′α, because Q̃ ∩

A(η′α)c �= ∅.
Now suppose that νo ≥ 3. Then the father Q� of Q contains a point y in

A(η′α)c, for otherwise Q� would be contained in A(η′α), thereby contradicting the
maximality of Q. Denote by Q̃ the dyadic cube of resolution ν0 which contains y.
Then y is in Q̃ ∩ Q� and therefore Q̃ ⊂ Q�. Thus

ρ(Q, Q̃) ≤ diam(Q�) ≤ C1 δν0−1 ≤ C0 δν0

and | f |Q̃ ≤ η′α, because Q̃ ∩ A(η′α)c �= ∅. This completes the proof of the claim.
To each point y in Q ∩ A(α) we associate a maximal dyadic cube Q′

y of res-
olution at least 2 containing y such that | f |Q′

y
> α. Denote C′ the collection of all

these cubes. By Proposition 3.5 we may select mutually disjoint cubes Q′
1, . . . , Q′

k′
in C′ such that

k′∑
j=1

µ(Q′
j ) ≥ σ µ

(
Q ∩ A(α)

)
. (7.4)

Note also that Q′
1, . . . , Q′

k′ are contained in Q. Denote by B∗ a ball with centre at
a point of Q and radius b′δν0 (recall that b′ ≥ 2C1 + C0). Then B∗ contains both
Q, whence the cubes Q′

1, . . . , Q′
k′ , and Q̃. Hence

µ(B∗) ≤ D µ(Q) and µ(B∗) ≤ D µ(Q̃) (7.5)

by the local doubling property.
If Q ∩ A(α) ∩ S(εα)c is nonempty, then∫

B∗
| f − fB∗ | dµ ≤ ε α µ(B∗). (7.6)

Since Q̃ ⊂ B∗ and | f |Q̃ ≤ η′ α,

µ(Q̃)
(| fB∗ | − η′ α

) ≤
∫

B∗
| f − fB∗ | dµ

by the triangle inequality. Now (7.6) implies that

µ(Q̃)
(| fB∗ | − η′ α

) ≤ ε α µ(B∗). (7.7)

By a similar argument

(
α − | fB∗ |) k′∑

j=1

µ(Q′
j ) ≤ ε α µ(B∗). (7.8)
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From (7.7) we see that | fB∗ | ≤ α
(
η′ + ε

µ(B∗)
µ(Q̃)

)
. By inserting this inequality in

(7.8), we obtain that(
1 − η′ − ε

µ(B∗)
µ(Q̃)

) k′∑
j=1

µ(Q′
j ) ≤ ε µ(B∗),

whence

σ

(
1 − η′ − ε

µ(B∗)
µ(Q̃)

)
µ(Q ∩ A(α) ∩ S(εα)c) ≤ ε µ(B∗),

by (7.4). Now, since ε < (1 − η′)/(2D), we may use (7.5) and conclude that

µ(Q ∩ A(α) ∩ S(εα)c) ≤ 2ε D

σ (1 − η′)
µ(Q),

as required.

Theorem 7.3. For each p is in (1, ∞) there exists a positive constant C such that

‖ f �,b′‖L p(µ) ≥ C ‖ f ‖L p(µ) ∀ f ∈ L p(µ),

where b′ = max(b0, 2C1 + C0) is as in the statement of Lemma 7.2.

Proof. Observe that it suffices to show that

‖ f �,b′‖L p(µ) ≥ C ‖M2 f ‖L p(µ), (7.9)

because M2 f ≥ | f | by the differentiation theorem of the integral, which is a
standard consequence of Proposition 7.1.

Let η and η′ be as in the statement of Lemma 7.2. By Lemma 7.2

‖M2 f ‖L p(µ)
p = p

∫ ∞

0
α p−1 µ

(
A(α)

)
dα

= p
∫ ∞

0
α p−1 µ

(
A(α) ∩ S(εα)c) dα

+ p
∫ ∞

0
α p−1 µ

(
A(α) ∩ S(εα)

)
dα

≤ p η

∫ ∞

0
α p−1 µ

(
A(η′α)

)
dα + p

∫ ∞

0
α p−1 µ

(
S(εα)

)
dα

= p η η′−p
∫ ∞

0
β p−1 µ

(
A(β)

)
dβ + p ε−p

∫ ∞

0
β p−1 µ

(
S(β)

)
dβ

≤ η η′−p ‖M2 f ‖L p(µ)
p + ε−p ‖ f �,b′‖L p(µ)

p
.

Now, for a given p, we choose η′ such that η′p = 1 − σ/4, and then we choose ε

small enough so that η ≤ 1 − σ/2. Therefore η η′−p < 1 and (7.9) follows.
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As a consequence of the relative distributional inequality proved in Theorem
7.3 we prove a complex interpolation theorem. Suppose that (X0, X1) is an interpo-
lation pair of Banach spaces, i.e., X0 and X1 are Banach spaces both continuously
included in a topological vector space V . For every θ in (0, 1) we denote by Xθ

the interpolation space (X0, X1)[θ ], obtained via Calderón’s complex interpolation
method [10]. The notation we adopt is consistent with that of [3, Chapter 4].

Theorem 7.4. Suppose that (M, d, µ) is a metric measure space that possesses
properties (I) and (LD). Suppose that θ is in (0, 1). The following hold:

(i) if pθ is 2/(1 − θ), then
(
L2(M), B M O(M)

)
[θ ] = L pθ (M);

(ii) if pθ is 2/(2 − θ), then
(
H1(M), L2(M)

)
[θ ] = L pθ (M).

Proof. First we prove (i). The inclusion L pθ (M) ⊂ (
L2(M), B M O(M)

)
[θ ] fol-

lows from the fact that L∞(M) is continuously included in B M O(M) and(
L2(M), L∞(M)

)
[θ ] = L pθ (M). Therefore we only have to show the reverse in-

clusion
(
L2(M), B M O(M)

)
[θ ] ⊂ L pθ (M).

The idea of the proof is to linearise the sharp maximal function (see [23]). Let
φ any measurable function which associates to every point x in M a ball φ(x) in B1
which contains x . Furthermore, let η : M × M → C be any measurable function
such that |η| = 1. We consider the linear operator Sφ,η which acts on a function f
in L2

loc(M) as follows

Sφ,η f (x) = 1

µ
(
φ(x)

) ∫
φ(x)

[
f − fφ(x)

]
η(x, ·) dµ ∀ x ∈ M.

Clearly ∣∣Sφ,η f
∣∣ ≤ f � and sup

φ,η

∣∣Sφ,η f
∣∣ = f �. (7.10)

We denote by S the strip {z ∈ C : Re z ∈ (0, 1)}, and denote by S its closure.
We consider the class F(L2(M), B M O(M)) of all functions F : S → L2(M) +
B M O(M) with the following properties:

1. 〈F(z), �〉 is continuous and bounded in S and analytic in S for every � in(
L2(M) + B M O(M)

)∗;
2. F(i t) is L2(M)-continuous and F(1 + i t) is B M O(M)-continuous.

We endow F(L2(M), B M O(M)) with the norm

‖F‖F = sup
{
max(‖F(i t)‖L2(M), ‖F(1 + i t)‖B M O(M)) : t ∈ R

}
.

Now, suppose that f is in the interpolation space
(
L2(M), B M O(M)

)
[θ ]. Then

there exists a function F in F such that F(θ) = f . For each φ and η as before, con-
sider the function Sφ,η F . Denote by M1 f the local noncentred Hardy–Littlewood
maximal function of f , defined by

M1 f (x) = sup
B∈B1(x)

1

µ(B)

∫
B

| f | dµ,
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where B1(x) denotes the collection of all balls in B1 that contain x . Recall that
g� ≤ 2M1g, and that M1 is bounded on L2(M). Thus,

‖Sφ,η F(is)‖L2(M) ≤ ‖F(is)�‖L2(M) ≤ 2 ‖M1 F(is)‖L2(M)

≤ C ‖F(is)‖L2(M).
(7.11)

Note that the constant C in the above inequality does not depend on φ and η.
Similarly,

‖Sφ,η F(1 + is)‖L∞(M) ≤ ‖F(1 + is)�‖L∞(M) ≤ ‖F(1 + is)‖B M O(M). (7.12)

From these estimates we deduce that Sφ,η F belongs to the classF(L2(M),L∞(M))

and that
‖Sφ,η F‖F(L2(M),L∞(M)) ≤ C ‖F‖F(L2(M),B M O(M)).

Hence

‖Sφ,η F(θ)‖L pθ (M) ≤ C ‖F(θ)‖(L2(M),B M O(M))[θ ] = C ‖ f ‖(L2(M),B M O(M))[θ ] .

By taking the supremum over all φ and η we obtain the estimate

‖ f �‖L pθ (M) ≤ C ‖ f ‖(L2(M),B M O(M))[θ ] . (7.13)

By applying [11, Theorem 7.3], we may conclude that

‖ f ‖L pθ (M) ≤ C ‖ f ‖(L2(M),B M O(M))[θ ] ∀ f ∈ (L2(M), B M O(M))[θ ],

which proves the required inclusion
(
L2(M), B M O(M)

)
[θ ] ⊂ L pθ (M).

Denote by Xθ the interpolation space
(
H1(M), L2(M)

)
[θ ]. From the duality

theorem [3, Corollary 4.5.2] we deduce that if pθ is 2/(2 − θ), then the topological
dual of Xθ is

(
L2(M), B M O(M)

)
[θ ], which is equal to L p′

θ (M) by (i). Further-

more, Xθ is continuously included in L pθ (M), because H1(M) is continuously
included in L1(M) and

(
L1(M), L2(M)

)
[θ ] = L pθ (M). Since L2(M) is reflexive,

the interpolation space Xθ is reflexive by a result of A. Calderón [3, Section 4.9],
so that Xθ is isometrically isomorphic to X∗∗

θ = (
L p′

θ (M)
)∗. This implies that

Xθ = L pθ (M), as required.

A standard consequence of Theorem 7.4 is the following interpolation result
for analytic families of operators.

Corollary 7.5. Denote by S the strip {z ∈ C : Re z ∈ (0, 1)}. Suppose that {Tz}z∈S̄
is a family of uniformly bounded operators on L2(µ) such that z �→ ∫

Rd Tz f g dµ is
holomorphic in S and continuous in S̄ for all functions f and g in L2(µ). Further,
assume that there exists a constant A such that

|||Tis |||L2(µ) ≤ A and |||T1+is |||L∞(µ);B M O(µ) ≤ A.
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Then for every θ in (0, 1) the operator Tθ is bounded on L pθ (µ), where pθ =
2/(1 − θ), and

|||Tθ |||L pθ (µ) ≤ Aθ ,

where Aθ depends only on A and on θ .

Proof. This follows directly from (i) of the previous theorem and [17, Theorem 1].
Alternatively, we may follow the line of the proof of the classical case (see, for
instance, [42, Theorem 4, page 175], or [23]).

8. Singular integrals

In this section we develop a theory of singular integral operators acting on L p(µ)

spaces.
Preliminarly, we observe the following. Recently, M. Bownik [5], following

up earlier work of Y. Meyer, produced in the classical Euclidean setting an example
of an operator TB defined on (1, ∞)-atoms with

sup{‖TBa‖L1(λ) : a is a (1, ∞)-atom} < ∞,

that does not extend to a bounded operator from H1(λ) to L1(λ): here λ denotes
the Lebesgue measure on Rn . The problem of giving sufficient conditions for an
operator uniformly bounded on atoms to extend to a bounded operator from H1(λ)

to L1(λ) has been considered independently in [36, 47]. The paper [47] and most
of [36] focus on the Euclidean case. However, in the last part of [36] more general
settings are considered. In particular, suppose that (M, ρ, µ) is a σ -finite metric
measure space with properties (LD), (I) and (AM). Then the following holds.

Proposition 8.1. Suppose that q is in (1, ∞), and that T is a linear operator de-
fined on finite linear combinations of (1, q)-atoms, satisfying

sup{‖T a‖L1(µ) : a is a (1, q)-atom} < ∞.

The following hold:

(i) T extends to a bounded operator T̃ from H1(µ) to L1(µ) and the transpose
operator T ∗ extends to a bounded operator (T ∗)̃ from L∞(µ) to B M O(µ);

(ii) if T is bounded on L2(µ), then T and T̃ are consistent operators on H1(µ)∩
L2(µ).

Proof. The result [36, Theorem 4.1 and Proposition 4.2] is stated for spaces of
homogeneous type. However, the proof extends verbatim to our setting.

Now we assume that T is bounded on L2(µ) and that there exists a locally
integrable function k off the diagonal in M × M such that for every function f with
support of finite measure

T f (x) =
∫

M
k(x, y) f (y) dµ(y) ∀ x /∈ supp f.
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We refer to k as to the kernel of T . A straightforward computation shows that the
kernel k∗ of the (Hilbert space) adjoint T ∗ of T is related to the kernel k of T by
the formula

k∗(y, x) = k(x, y). (8.1)

In particular, if T is self adjoint on L2(µ), then

k(y, x) = k(x, y). (8.2)

The next theorem is a version in our case of a classical result which holds on spaces
of homogeneous type. Mutatis mutandis, its proof is similar to the proof in the clas-
sical case. However, we include a sketch of the proof for the reader’s convenience.
See also [35] for a detailed proof of the analogous result in the Gaussian case.

Theorem 8.2. Suppose that b is in R+ and b > R0/(1 − β), where R0 and β

appear in the definition of property (AM). Suppose that T is a bounded operator on
L2(µ) and that its kernel k is locally integrable off the diagonal of M × M. Define
υk and νk by

υk = sup
B∈Bb

sup
x,x ′∈B

∫
(2B)c

∣∣k(x, y) − k(x ′, y)
∣∣ dµ(y),

and

νk = sup
B∈Bb

sup
y,y′∈B

∫
(2B)c

∣∣k(x, y) − k(x, y′)
∣∣ dµ(x).

The following hold:

(i) if νk is finite, then T extends to a bounded operator on L p(µ) for all p in (1, 2]
and from H1(µ) to L1(µ). Furthermore, there exists a constant C such that

|||T |||H1(µ);L1(µ) ≤ C
(
νk + |||T |||L2(µ)

);
(ii) if υk is finite, then T extends to a bounded operator on L p(µ) for all p in

[2, ∞) and from L∞(µ) to B M O(µ). Furthermore, there exists a constant C
such that

|||T |||L∞(µ);B M O(µ) ≤ C
(
υk + |||T |||L2(µ)

);
(iii) if T is self adjoint on L2(µ) and νk is finite, then T extends to a bounded

operator on L p(µ) for all p in (1, ∞), from H1(µ) to L1(µ) and from L∞(µ)

to B M O(µ).

Proof. First we prove (i). In view of Proposition 8.1 it suffices to show that T maps
(1, 2)-atoms in H1

1 (µ) uniformly into L1(µ). This is done exactly as in the classical
case, except that we need to consider only atoms supported in balls of Bb. Then T
maps H1(µ) into L1(µ), and, by interpolation, on L p(µ) for all p in (1, 2).
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Next we prove (ii). Since the kernel k∗(x, y) of the (Hilbert space) adjoint T ∗
of T is k(y, x), by (i) υk∗ = νk is finite and the operator T ∗ is bounded from H1(µ)

to L1(µ). Hence T is bounded from L∞(µ) to B M O(µ). Moreover

|||T ∗|||L∞(µ);B M O(µ) ≤ C
(
νk + |||T |||L2(µ)

)
.

By interpolation T extends to a bounded operator on L p(µ) for all p in (2, ∞),
Finally, we prove (iii). By (ii), T extends to a bounded operator on L p(µ) for

all p in (1, 2) and from H1(µ) to L1(µ). By (8.2) also υk is finite. Hence, by (i),
T extends to a bounded operator on L p(µ) for all p in [2, ∞) and from L∞(µ) to
B M O(µ), thereby concluding the proof of (iii) and of the theorem.

Remark 8.3. It is worth observing that in the case where M is a Riemannian man-
ifold and the kernel k is “regular”, then the condition υk < ∞ of Theorem 8.2 (i)
may be replaced by the condition υ ′

k < ∞, where

υ ′
k = sup

B∈Bb

rB sup
x∈B

∫
(2B)c

∣∣gradx k(x, y)
∣∣ dµ(y). (8.3)

Similarly, the condition νk < ∞ of Theorem 8.2 (ii) may be replaced by the condi-
tion ν′

k < ∞, where

ν′
m = sup

B∈Bb

rB sup
y∈B

∫
(2B)c

∣∣grady k(x, y)
∣∣ dµ(x). (8.4)

Indeed, by the mean value theorem we see that the condition

sup
B∈B1

sup
x,x ′∈B

ρ(x, x ′)
∫

(2B)c

∣∣gradx k(x, y)
∣∣ dµ(y) < ∞

implies the condition υk < ∞ of the theorem. Since ρ(x, x ′) < 2 rB , (8.3) follows.
We note also that formula (8.2) imply that if T is self adjoint, then υ ′

k < ∞
holds if and only if ν′

k < ∞ does.

9. Cheeger’s isoperimetric constant and property (I)

In this section we show that the theory developed in the previous sections may be
applied to an interesting class of complete noncompact Riemannian manifolds. First
we recall that if (M, ρ) is a complete Riemannian manifold with Ricci curvature
bounded from below, then M is a locally doubling metric space with respect to the
Riemannian measure and the geodesic distance. The proof of this fact is a direct
consequence of M. Gromov’s variant [25] of R.L. Bishop’s comparison theorem
(see, for instance, [4]).
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It is natural to investigate the dependence of property (I) on other geometric
or analytic properties of M . Denote by b(M) the bottom of the spectrum of M ,
defined by

b(M) = inf
f �=0

∫
M |grad f |2 dV∫

M | f |2 dV
,

where V denotes the Riemannian measure of M and f runs over all sufficiently
smooth functions with compact support. We denote by h(M) the Cheeger isoperi-
metric constant of M defined by

h(M) = inf
σ(∂ A)

V (A)
, (9.1)

where the infimum runs over all bounded open subsets A with smooth boundary ∂ A
and where σ denotes the (d − 1)-dimensional measure. Cheeger proved that

b(M) ≥ h(M)2/4. (9.2)

In this section we shall relate b(M) and h(M) to the isoperimetric constant IM
defined in Section 2.

First we need to show that in Cheeger’s isoperimetric inequality σ(∂ A) ≥
h(M) V (A), we may replace the bounded open set A with smooth boundary by any
set E of finite measure and the (d − 1)-dimensional measure σ of the boundary by
the perimeter of E . The definition of perimeter of a set in a Riemannian manifold
mimics closely the definition in the Euclidean setting [21, 37].

If U is an open subset of M we shall denote by �k
c(U ) the space of smooth

k-forms with compact support contained in U . The divergence is the formal adjoint
of the exterior derivative d, i.e. the operator div mapping k + 1-forms to k-forms
defined by ∫

M
〈div ω, η〉x dV (x) = −

∫
M

〈ω, dη〉x dV (x) (9.3)

for all smooth k + 1-forms ω and all smooth k-forms η with compact support.
Given a real valued function f in L1(M), the variation of f in U is

Var( f, U ) = sup

{∫
M

f (div ω) dV : ω ∈ �1
c(U ), ‖ω‖∞ ≤ 1

}
.

We say that f has bounded variation in U if Var( f, U ) < ∞. We shall denote by
BV (U ) the space of function of bounded variation in U .

As in the Euclidean case, if f is in BV (M), then the map U �→ Var( f, U )

extends to a finite Borel measure on M .
A measurable set E ⊂ M has finite perimeter if its indicator function 1E is in

BV (M). If U is a Borel set the perimeter of E in U is

P(E, U ) = Var(1E , U ).
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Since the manifold M is complete, by [27, Theorem 2.7] the Sobolev space H1,1(M)

is the completion of the space C∞
c (M) of smooth functions with compact support

on M with respect to the norm

‖ f ‖H1,1 = ‖ f ‖1 +
∫

M
|grad f | dV .

It is an easy matter to show that H1,1(M) ⊂ BV (M) and

Var( f, M) =
∫

M
|grad f | dV ∀ f ∈ H1,1(M).

Note also that the space Lipc(M) of Lipschitz functions with compact support on
M is contained in H1,1(M), by [27, Lemma 2.5].

In the Euclidean setting it is well known that BV functions may be approxi-
mated in variation by smooth functions in L1 (see, for instance [21, Theorem 3.9]).
The same result holds in the Riemannian setting [37, Proposition 1.4].

Lemma 9.1. For every f in BV (M) there exists a sequence ( fn) in C∞
c (M) which

converges to f in L1(M) and such that

Var( f, M) = lim
n→∞ Var( fn, M).

Now we can prove that Cheeger’s isoperimetric inequality for smooth compact hy-
persurfaces implies an analogous inequality for the perimeters of sets of finite mea-
sure.

Proposition 9.2. Suppose that M is a complete Riemannian manifold. If h(M) > 0
then for every measurable set E

P(E, M) ≥ h(M) V (E).

Proof. It is well known that Cheeger’s isoperimetric inequality for smooth subman-
ifolds is equivalent to the Sobolev inequality

Var( f, M) =
∫

M
|grad f | dV ≥ h(M)

∫
M

| f | dV (9.4)

for all real valued functions in C1
c (M) [12]. Suppose that E is a measurable set of

finite perimeter. By Lemma 9.1 there exists a sequence ( fn) of functions in C1
c (M)

such that fn → 1E in L1(M) and Var( fn, M) → Var(1E , M) = P(E, M). Hence
the desired conclusion follows from (9.4).

The following lemma is the coarea formula for functions in H1,1(M). The
proof uses the density of C1

c (M) in H1,1(M) and mimics closely the argument in
the Euclidean setting [21].
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Lemma 9.3. Suppose that M is a complete Riemannian manifold. Assume that f ∈
H1,1(M). Then for every open subset U of M the sets At := {x ∈ U : f (x) > t}
have finite perimeter for a.e. t in R and∫

U
|grad f | dV =

∫
R

P
(

At , U
)

dt.

Remark 9.4. We observe en passant that using Lemma 9.1, one can prove the fol-
lowing coarea formula for functions in BV (M)

Var( f, M) =
∫

R

P
(

At , M
)

dt.

Now we are ready to prove the equivalence of property (I) and Cheeger’s inequality.
We recall that the constant IM is defined in Section 2.

Theorem 9.5. Suppose that M is a complete Riemannian manifold. The following
hold:

(i) M possesses property (I) if and only if h(M) > 0. Furthermore IM = h(M);
(ii) if the Ricci curvature of M is bounded from below, then M possesses property

(I) if and only if b(M) > 0.

Proof. First we prove (i). Assume that M possesses property (I) and denote by A a
bounded open subset of M with smooth boundary. By Proposition 3.1

V (Aκ)

κ
≥ 1 − e−IM t

t
V (A) ∀ t ∈ R

+.

Hence

lim inf
κ→0

V (Aκ)

κ
≥ IM V (A).

Since the limit in the left hand side is the lower inner Minkowski content of ∂ A,
which coincides with σ(∂ A) because ∂ A is smooth, we have proved that Cheeger’s
isoperimetric constant h(M) is at least IM .

To prove the converse, assume that h(M) > 0 and let A be a bounded open
set in M . Since the manifold M is complete, the function f defined by f (x) =
ρ(x, Ac) (here Ac denotes the complementary set of A in M) is Lipschitz and
|grad f | = 1 almost everywhere on A. Recall that for each t in R we denote by At

the set {x ∈ A : f (x) > t}. Notice that

P
(

As, At) =
{

P
(

As, M
)

if s > t;
0 if s < t.

Thus, by the coarea formula

V
(

At) =
∫

At
|grad f | dV =

∫ ∞

t
P

(
As, M

)
ds.
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Hence, by Proposition 9.2

d

dt
V

(
At) = −P

(
At , M

) ≤ −h(M) V
(

At) for a.e. t ∈ R.

This differential inequality implies that V
(

At
) ≤ e−h(M) t V (A) for all t > 0, i.e.

V (At ) = V (A) − V
(

At) ≥ (1 − e−h(M) t ) V (A) ≥ h(M) t V (A) ∀ t ∈ (0, 1).

Thus M possesses property (I), and h(M) ≤ IM , as required to conclude the proof
of (i).

To prove (ii) we recall that if M has Ricci curvature bounded below by −K ,
for some K ≥ 0 then

b(M) ≤ C
(√

K h(M) + h(M)2), (9.5)

where C is a constant which depends only on the dimension of M [9, 31]. This
inequality, together with Cheeger’s inequality (9.2), shows that the constants h(M)

and b(M) are equivalent. The required conclusion follows directly from (i).

Remark 9.6. We remark that property (I) is invariant under quasi-isometries. In-
deed, the fact that h(M) is positive is invariant under quasi-isometries [12, Re-
mark V.2.2].

Remark 9.7. Suppose that M is a complete Riemannian manifold. If b(M) = 0,
then M has not property (I) by Theorem 9.5 (i).

Observe also that if M has Ricci curvature bounded from below, and a spec-
tral gap, then M has property (I). In particular noncompact Riemannian symmetric
spaces and Damek-Ricci spaces have property (I).

10. Applications

In this section we illustrate some applications of the theory developed in the previ-
ous sections. Other applications will appear in [11].

The first application we consider is to spectral multipliers on certain Rieman-
nian manifolds. Suppose that M is a complete Riemannian manifold with posi-
tive injectivity radius inj(M), Ricci curvature bounded from below, and positive
Cheeger isoperimetric constant h(M). By Cheeger’s inequality the bottom b(M)

of the L2(M) spectrum of the Laplace–Beltrami operator L on M is positive. We
denote by µ the Riemannian measure on M .

As shown in Section 9, under these assumptions M possesses property (I).
Furthermore, there exist constants α, α′, β, β ′, C1 and C2 such that

C1 (1 + r2)α
′/2 eβ ′ r ≤ µ

(
B(p, r)

) ≤ C2 (1 + r2)α/2 eβ r ∀ r > 1.
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We say that M has N -bounded geometry provided that the derivatives of the Rie-
mann tensor up to the order N are uniformly bounded. Clearly if M has N -bounded
geometry, then the Ricci curvature of M is bounded from below.

For each σ in R+ we denote by Sσ the strip {ζ ∈ C : |Im ζ | < σ }.
Definition 10.1. Suppose that κ is a positive integer and that σ is in R+. The space
H∞(Sσ ; κ) is the vector space of all functions f in H∞(Sσ ) for which there exists
a positive constant C such that for each ε in {−1, 1}∣∣∣Dk f (ζ )

∣∣∣ ≤ C (1 + |ζ |)−k ∀ k ∈ {0, 1, . . . , κ} ∀ ζ ∈ Sσ . (10.1)

If (10.1) holds, we say that f satisfies a Mihlin–Hörmander condition of order κ on
the strip Sσ . We endow H∞(Sσ ; κ) with the norm

‖ f ‖σ ;κ = max
k∈{0,1,...,κ}

sup
ζ∈Sσ

(1 + |ζ |)k
∣∣∣Dk f (ζ )

∣∣∣ .
The following result complements a celebrated result of Taylor [43, Theorem 1].

Theorem 10.2. Suppose that M is an n dimensional complete Riemannian man-
ifold with N-bounded geometry, where N is an integer ≥ n/2 + 1. Assume that
the injectivity radius inj(M) and the bottom b(M) of the L2(M) spectrum of M are
positive. Suppose that f is in H∞(Sσ ; κ), where σ ≥ β/2 and κ > max(α/2 +
1, n/2 + 1). Then f (L1/2

b ) extends to a bounded operator from H1(µ) to L1(µ),
from L∞(M) to B M O(µ) and on L p(M) for all p in (1, ∞).

Proof. Denote by Lb the operator L−b I , formally defined on L2(µ). The strategy
of the proof of [43, Theorem 1] is to decompose the operator f (L1/2

b ) as the sum of

two operators, f0(L1/2
b ) and f∞(L1/2

b ), where f∞(L1/2
b ) is bounded on L1(µ) and

L∞(µ) and f0(L1/2
b ) is of weak type 1.

To prove the latter, Taylor [43] and Cheeger, Gromov and Taylor [13] prove
that the integral kernel of f0(L1/2

b ), which is compactly supported, satisfies a
Hörmander type integral condition. Taking this for granted, by Theorem 8.2, the
operator f0(L1/2

b ) is bounded from H1(µ) to L1(µ), and from L∞(µ) to B M O(µ).

Therefore the same is true for f (L1/2
b ). The boundedness of f (L1/2

b ) on L p(µ) the
follows by interpolation.

Note that this result applies to Riemannian symmetric spaces of the noncom-
pact type, and to Damek–Ricci spaces. In the case where M is a symmetric space
of the noncompact type and real rank > 1, J.Ph. Anker [1] extended Taylor’s re-
sult [43, Theorem 1] to certain multiplier operators for the spherical Fourier trans-
form.

Suppose that G is a noncompact semisimple Lie group with finite centre, and
denote by K a maximal compact subgroup thereof, and by X the associated Rie-
mannian symmetric space of the noncompact type G/K (the G invariant metric on
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X is induced by the Killing form of G). Denote by µ a G-invariant measure on X .
We complement Anker’s result by showing that (some) of the multiplier operators
he considers satisfy natural H1(µ)-L1(µ) and L∞(µ)-B M O(µ) estimates.

Suppose that G = K AN is an Iwasawa decomposition of G, where A is
abelian and N is nilpotent. Denote by g and a the Lie algebras of G and A re-
spectively, and by ρ the half sum of the positive roots of (g, a) with multiplicities.
Denote by a∗ the dual of a. An important rôle in what follows is played by a certain
tube T in the complexified dual a∗

C
of a. To define T, denote by W the convex hull

of the vectors {w · ρ : w ∈ W } in a∗, where W denotes the Weyl group of G. Then
define T = a∗ + iW.

Definition 10.3. Suppose that κ is a positive integer. The space H∞(T; κ) is the
vector space of all Weyl invariant bounded holomorphic functions m on T for which
there exists a positive constant C such that for every multiindex β with |β| ≤ κ∣∣Dβm(ζ )

∣∣ ≤ C (1 + |ζ |)−|β| ∀ ζ ∈ T. (10.2)

If (10.2) holds, we say that f satisfies a Mihlin–Hörmander condition of order κ on
the tube T. We endow H∞(T; κ) with the norm

‖ f ‖κ = max|β|≤κ
sup
ζ∈T

(1 + |ζ |)|β| ∣∣Dβ f (ζ )
∣∣ .

Suppose that k is a K -bi-invariant distribution on G, and denote by m its spherical
Fourier transform: m may be thought of as a distribution on a∗. If m is bounded on
a∗, then the convolution operator Tk , defined by

Tk f = f ∗ k ∀ f ∈ C∞
c (G)

extends to a bounded operator on L2(µ).

Theorem 10.4. Suppose that κ > (dim X)/2 + 1. Suppose that k is a K -bi-
invariant distribution such that its spherical transform m is in H∞(T; κ). Then
the operator Tk extends to a bounded operator from H1(µ) to L1(µ) and from
L∞(µ) to B M O(µ).

Proof. Denote by ψ a K -bi-invariant smooth function on G with compact support
which is identically 1 in a neighbourhood of the identity, and define the distributions
k0 and k∞ by

k0 = ψ k and k∞ = (1 − ψ) k.

Anker [1, Theorem 1] shows that k∞ is, in fact, a function in L1(G). Therefore, the
operator Tk∞ , defined by Tk∞ f = f �→ f ∗ k∞ extends to a bounded operator on
L1(µ) and on L∞(µ), and a fortiori to a bounded operator from H1(µ) to L1(µ)

and from L∞(µ) to B M O(µ).
Furthermore, Anker proves that k0 is locally integrable off the origin, and sat-

isfies the following Hörmander type integral inequality

sup
B∈B1

sup
y∈B

∫
(2B)c

∣∣∣k0(y−1x) − k0(x)

∣∣∣ dµ(x) < ∞.
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Define the operator Tk0 by Tk0 f = f ∗ k0. Denote by � the diagonal in X × X , and
define the locally integrable function t on X × X \ � by

t (x, y) = k0(y−1x).

It is straightforward to check that t is the kernel (see the definition at the beginning
of Section 8) of the operator Tk0 , and that t satisfies conditions νt < ∞ and υt < ∞.
By Theorem 8.2 (iii) the operator Tk0 extends to a bounded operator from H1(µ) to
L1(µ) and from L∞(µ) to B M O(µ).

Since Tk = Tk0 + Tk∞ , the required boundedness properties of Tk follow di-
rectly from those of Tk0 and Tk∞ .

Our last application is to the boundedness of Riesz transforms. This is a very
fashionable and interesting subject: see [2, 16] for recent results on manifolds, and
the references therein for less recent results. Suppose that M is a complete Rie-
mannian manifolds satisfying the following assumptions: the Riemannian measure
µ is locally doubling, and the following scaled local Poincaré inequality holds: for
every positive b there exists a constant C such that for every B in Bb and for every
f in C∞(

2B
) ∫

B
| f − fB |2 dµ ≤ C r2

∫
2B

|∇ f |2 dµ.

Suppose also that the volume growth of M is at most exponential. Note that these
assumptions hold if M is a Riemannian manifold with Ricci curvature bounded
from below.

We may define the “localised” Riesz transforms ∇(L + ε)−1/2, where ε is in
R+. Russ [39] proved that the localised Riesz transforms map local atoms uni-
formly into L1(M). However, in general, there is no indication that this result
interpolates with the trivial L2(M) estimate to produce L p(M) boundedness for p
in (1, 2).

Our theory complements Russ’ results. Indeed, Proposition 8.1 implies that
∇(L + ε)−1/2 extends to a bounded operator from H1(M) into L1(M).

In the case where M possesses property (I) these result interpolate with the
trivial L2(M) estimate and give that ∇(L + ε)−1/2 extends to a bounded operator
on L p(M) for all p in (1, 2), a fact already known, but whose proof is far from
being trivial.
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