Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. VIII (2009), 805-815

The open mapping theorem for regular quaternionic functions

GRAZIANO GENTILI AND CATERINA STOPPATO

Abstract. The basic results of a new theory of regular functions of a quaternionic
variable have been recently stated, following an idea of Cullen. In this paper
we prove the minimum modulus principle and the open mapping theorem for
regular functions. The proofs involve some peculiar geometric properties of such
functions which are of independent interest.
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1. Introduction

Let H denote the skew field of real quaternions. Its elements are of the form ¢ =
xo+ix1 + jxy+ kxz where the x; are real, and i, j, k, are imaginary units (i.e. their
square equals —1) such thatij = —ji =k, jk = —kj =i,and ki = —ik = j.

After Hamilton’s discovery of quaternions, the richness of the theory of holo-
morphic functions of one complex variable, along with motivations from physics,
aroused interest in a theory of quaternion-valued functions of a quaternionic vari-
able. In fact several interesting theories have been introduced in the last century.
The most famous is the theory of regular functions introduced by R. Fueter, [4, 5],
the basic results of which are accurately summarized in [16]. Recent work on this
subject includes [1, 10] and references therein. Fueter also introduced the class of
holomorphic functions over quaternions, to which the works of M. Sce [3, 15] are
closely related. The latest advances in this theory (which extends to all Clifford
algebras) can be found in [9, 11, 12, 14].

A different theory of quaternion-valued functions of one quaternionic vari-
able has been recently proposed by G. Gentili and D. C. Struppa [7, 8]. The the-
ory is based on a definition of regularity for quaternionic functions inspired by C.
G. Cullen [2]. Several basic results of the theory are proven in [8], including the
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Cullen-regularity of quaternion power series and some nice properties of their zeros.
The study of the zero-sets has been further developed in [6].

We shall now quickly review the definition of Cullen-regular function and the
basic properties of such a function. Denote by S the two-dimensional sphere of
quaternion imaginary units: S = {¢ € H : ¢> = —1}. For all imaginary unit / € S,
let L; = R + IR be the complex line through O, 1 and 1.

Definition 1.1. Let  be a domain in H and let f : & — H be a real differentiable
function. f is said to be Cullen-regular if, for all I € S, the function d; f : QN
L; — H defined by

- 1/9 il
81f(x+ly)=§(£+15) Ji(x +1y) (1.1)

vanishes identically.

With the notations 2; = Q2 N L; and f; = f|f21’ we may refer to the van-

ishing of d; f saying that the restriction f; is holomorphic on ©;. From now on
we will omit Cullen’s name and refer to these functions just as regular functions.
As observed in [8], a quaternionic power series ),y ¢"a, with a, € H defines
a regular function in its domain of convergence, which proves to be an open ball
B(0,R) = {q € H: |g| < R}. In the same paper, it is proven that:

Theorem 1.2. If f : B = B(0, R) — H is regular then there exist quaternions
a, € H such that

f@ =Y q"a (12)

neN
forall g € B. In particular, f € C*(B).

Many classical results in complex analysis are extended in [8] to regular func-
tions f : B(0, R) — H: the identity principle, the maximum modulus principle,
the Cauchy representation formula, the Liouville theorem, the Morera theorem and
the Schwarz lemma.

In this paper we prove the open mapping theorem for regular functions. We
point out that this result is straightforward in the special case of series f(g) =
> nen 4" an having real coefficients a, € R (series which are also studied in [3,9,
12]): it is easy to deduce that such an f is open from the open mapping theorem
for holomorphic functions of one complex variable. The general proof is elaborate,
and it requires several preliminary steps.

We first define an operation on regular functions which allows us to deduce
a weak version of the minimum modulus principle (see Theorem 4.3) from the
maximum modulus principle proven in [8]. We then study the behavior of a regular
function f restricted to any 2-sphere S = x + yS (x,y € R,y # 0) and find
out that f|, is either constant or an affine map of S onto a 2-sphere b + Sc with
b, ¢ € H. This peculiar geometric property, which is of independent interest, leads
to the following version of the minimum modulus principle:
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Theorem 1.3 (Minimum modulus principle). Let f : B = B(0, R) — H be a
regular function. If | f| has a local minimum point p € B then either f(p) = 0 or
f is constant.

We define the degenerate set Dy of f as the union of all the 2-spheres § =
x4+ yS(x,y € R,y # 0) on which f is constant. If f is not constant then D ¢
turns out to have empty interior and by means of the above result we prove:

Theorem 1.4 (Open mapping theorem). Let f : B(0, R) — H be a non-constant
regular function and let Dy be its degenerate set. Then f : B(0, R) \ Dy — His
open.

Corollary 1.5. Let f : B(0, R) — H be a regular function. If f is not constant on
any 2-sphere x + yS with 'y # 0, then f is open.

We give an example of regular function f : B = B(0, R) — H which is
open on B\ D_f but not on B. Finally, we show that an open subset U < B(0, R)
such that U = Ux+y1€U x + yS always maps to an open set f(U), even when U
intersects the degenerate set D y. In particular f(B(0, R)) is always an open set.

2. Preliminary results

We will recall in this section some results and definitions which appear in the study
of the structure of the zero-sets of regular functions presented in [6, 8]. We begin
with a symmetry property of the zeros proven in [8]. This result and the following
are proven for polynomials in [13].

Theorem 2.1. Let f : B = B(0, R) — H be a regular function and let x,y €
R, y > 0 be such that x> + y* < R?. If there exist distinct imaginary units I, J € S
such that f(x + yI) = f(x +yJ) =0, then f(x + yK) =0 forall K € S.

In other words, if f has more than one zero on the 2-sphere x + yS then
it vanishes identically on x + yS. In [6] the zero-set is further characterized as
follows.

Theorem 2.2. Let f be a regular function on an open ball B = B(0, R). If f is
not identically zero then its zero-set consists of isolated points or isolated 2-spheres
of the form x + yS, forx,y € R,y # 0.

The study of the zeros presented in [6] involves the following operations on
regular functions f : B(0, R) — H.
Definition 2.3. Let f, g be regular functions on an open ball B = B(0, R) and let

@) = ,end"an, 8(q) = Y ,cn 9" bn be their power series expansions. We
define the regular product of f and g as the regular function f * g : B — H with

fre@ =) q"ca,  cn=) arbuy. @.1)
k=0

neN
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We define the regular conjugate of f as the function f¢ : B — H, satisfying the
following formula: f(q) = ),y ¢"ax. Finally, we define the symmetrization of
fas ff=f*fC=fxf.

Note that the regular multiplication is an associative, non-commutative binary
operation. Since no confusion can arise, we may also write f(g) * g(g) for f x
g(g). Also note that the symmetrization f*(q) = >,y q" Y _r—o dkan—k has real
coefficients. The zero-sets of ¢ and f* are characterized in [6] as follows.

Theorem 2.4. Let f be a regular function on B = B(0, R). For all x, y € R with
X + yS C B, the zeros of the regular conjugate f€ on x + yS are in one-to-one
correspondence with those of f. Moreover, the symmetrization f° vanishes exactly
on the sets x + yS on which f has a zero.

Note that x + yS is a 2-sphere if y # 0 and a real singleton {x} if y = 0.

3. The reciprocal function

We define a new operation on regular functions, associating to any regular f :
B(0, R) — H afunction f~* called its regular reciprocal. The reason for this name
will become apparent later. Denote by Z ¢ the zero set of a regular function f.

Definition 3.1. Let f : B = B(0, R) — H be a regular function and let f¢, f* be
its regular conjugate and symmetrization. We call the regular reciprocal of f the
function f~* : B\ Zys — H defined by

1

“(q). 3.1
@ (3.1)

f @)=

We will use the shorthand notation f~*(g) for ﬁ. Also, from now on we will
refer to f—* just as the reciprocal of f, omitting the adjective “regular” for the
sake of simplicity. The reciprocal f—* of a regular function is regular due to the

following result, which can be proven by direct computation.

Lemma 3.2. Let f,g : B = B(0, R) — H be regular functions and suppose the
power series expansion of g at 0, g(q) = Y, cx q"Tn, has real coefficients r, € R.

Then the function h : B\ Z, — H defined by h(q) = ﬁf(q) is regular.

If f does not have any zeros then f~* is the inverse element of the function f
with respect to regular multiplication:

Proposition 3.3. Let f be a regular function on B = B(0, R) which does not have
zeros. Then f~* is a regular function on B and

frfr=fFxf=1 (32)
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Proof. By Theorem 2.4, if f does not have zeros then the zero set Z s of its sym-
metrization is empty. In this case f~% and f~* are well defined and regular on
the whole ball B and we may consider their regular product with other regular
functions g : B — H. We first note that for all such g we have f™5(q)g(q) =
f7%(q) * g(q) = g(q) * f°(q). We may then compute:

ForRf =T f = =1
Frf = T w = e fO= =1 O

We now give an alternative expression of the regular product and the reciprocal.

Proposition 3.4. Let f, g be regular functions on B = B(0, R). Then

@ =f@g (F@™"ar@) (3:3)
forallqg € B\ Zy.

Proof. Let f(q) = Y ,enq"an. 8(q) = Y_,cn 9" bn be the power series expan-
sions of f and g. By Definition 2.3,

fre@=>q"> abus= Y ¢ abi=> 4 f@h.
k=0

neN = k,leN leN

If f(g) # 0O then

Yd @b =) f@f @ 'd f@b=f@)) [f(q)_qu(q)]lbz

leN leN leN

= f@e(f@ "af @)). O

Proposition 3.5. Let f be a regular function on B = B(0, R). If we set Tr(q) =

(@ 1qf(q), then 1
) = f(Tr(g)~ (3.4)

forallqg € B\ Zys.
Proof. If f*(q) # Othen f“(q) # 0, hence T is well defined on B\ Zs. We also
note that, by the previous result, f“(q) * g(q) = f°(q)g(Tr(q)). We conclude by
computation:
@ =7 @7 @ =11 f@I " 1)
= /DS Tr@™ " f@) = fFTr@) ™ @~ @
= f(Tr@)~". O
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This result clarifies, together with proposition 3.3, why we call f~* the “reciprocal”
of f. Note that Ty : B\ Zys — H maps any 2-sphere (or real singleton) x 4 yS to
itself. In particular Ty (B \ Z¢s) € B\ Zys. Moreover, we prove the following:

Proposition 3.6. Let f : B = B(0, R) — H be a regular function. Ty and T e are
mutual inverses. In particular Ty : B\ Zys — B\ Zys is a diffeomorphism.

Proof. Forall ¢ € B\ Zs we have, setting p = Tr(q),

Ty o Ty(q) = Tye(p) = ()~ pf(P)
=17 @™ @] re =@l e @]

where

FDFP) = F@OF @ af @) = f* f(@) = f (@)

Hence
TreoTr(q) = f (@) 'qf* (@) =4q.

where the last equality holds because f*(q) always lies in the same complex line as
q so that they commute. O

4. The minimum modulus principle

The reciprocal function will allow us to derive the minimum modulus principle from
the maximum modulus principle proven in [8]. Actually, the latter only applies to
functions which are regular on a ball B(0, R). In order to apply it to the reciprocal
f7*: B\Zys — H we need to extend the maximum modulus principle to a slightly
larger class of functions. We first extend the identity principle proven in [8].

Proposition 4.1 (Identity principle). Let 2 be a domain in H intersecting the real
axis and having connected intersection 2y = Q2 N L with any complex line Ly. If
| g : Q — H are regular functions which coincide on Q NR then they coincide on
the whole domain 2.

Proof. Let h = f — g and let us prove & = 0 on 2. Choose any imaginary unit
I € S and consider the restriction h; = h|91' Since h; : Q; — H is holomorphic
and it vanishes on the set 2 N R, which is not discrete, #; must vanish identically
on ;. ]

We are now ready to extend the maximum modulus principle as desired.

Theorem 4.2 (Maximum modulus principle). Let Q2 be the quaternionic ball B =
B(0, R) minus a (closed) set £ consisting of isolated points and isolated 2-spheres
x + yS. Let f : Q — H be a regular function. If | f| has a local maximum point
p € Q then f is constant in Q.
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Proof. Let Ly, with I € S, be the complex line through p in H and consider the
restriction f7 : Q; — HL If p is a maximum point for | f| then it is also a maximum
point for | f7]. By the same argument used in [8], we conclude f7 is constant on €2;.
By the identity principle 4.1, f is constant on 2. O

Theorem 4.3 (Weak minimum modulus principle). Ler f : B = B(0,R) — H
be a regular function. If | f| has a local minimum point p = x + yl € B then either
f is constant or f has a zero in x + yS.

Proof. Suppose f does not have zeroes in S = x + yS and consider the reciprocal
f*:itis defined on the domain 2 = B\ Zs, which includes S. Note that

1
T @l= ——
|f(Tr(g))]
for all ¢ € Q. Since T is a diffeomorphism of B \ Zys onto itself, the fact that
| f| has a minimum at p = T¢(p’) implies that | f o Tr| has a minimum at p’. As a
consequence, | f~*| has a maximum at p’. By the maximum modulus principle 4.2,
J* is constant on 2. This implies that f is constant, too. O

We will soon prove a stronger version of the minimum modulus principle,
which will allow us to prove the open mapping theorem for regular quaternionic
functions.

5. Value distribution on the 2-spheres

We now want to strengthen the minimum modulus principle, proving that if the
modulus of a non-constant regular function f has a minimum at a non-real point
p = x + ylI then p itself must be a zero for f. In order to prove this result, we
need to better understand the distribution of the values of f on the 2-sphere x + yS
through p.

Theorem 5.1. Let f : B = B(0, R) — H be a regular function. For all x,y € R
such that x + yS C B there exist b, ¢ € H such that

fx+yl)y=b+Ic 5.1)
forall I € S. Note that c = 0 if, and only if, f is constant on x + yS.

Proof. Let f(q) = )_,cn 9" an be the power series expansion of f at 0 and, for all
n € N, let x,, y, € R be such that (x + yI)" = x, + y,I. Then

fa+yD =) (x+yD"ay =Y (tn+yaDa

neN neN (5.2)
= anan +IZynan =b+Ic.
neN neN
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We label the 2-spheres characterized by ¢ = 0 with the following definition:

Definition 5.2. Let f : B = B(0, R) — H be a regular function and let x, y €
R,y > 0 be such that S = x + yS € B. The 2-sphere S is said to be degenerate
for f if the restriction f|; is constant. The union D of all degenerate spheres for
f is called the degenerate set of f.

Example 5.3.

i) Let P(gq) be a quaternionic polynomial having real coefficients and a non-real
root x + yI. Then x + yS is a degenerate sphere for P. A simple example is
given by the polynomial ¢> 4 1, which vanishes on the 2-sphere S.

ii) The regular function f : B(0, 1) — H defined by f(q) = Y ,cnq" = ﬁ
has no degenerate spheres. In fact in this case f; : By — Lj can be written
as f1(x + yI) = (I_Szﬁyz + qorr ] and g—rr = 0if, and only if,
y = 0. Therefore there are no degenerate spheres for f.

If f: B— Hisregularand S = x + yS C B (with x,y € R,y > 0) is not
degenerate, then the restriction f is an affine map of S onto a 2-sphere b + Sc with
b, ¢ € H. As an immediate consequence, we get the following corollary.

Corollary 5.4. Let f : B = B(0, R) — H be a regular function, let x,y € R be
such that S = x + yS C B and suppose S not to be degenerate. Then | fi | has a
global minimum, a global maximum and no other extremal point.

As a consequence, we get a stronger version of the minimum modulus principle:

Theorem 5.5 (Minimum modulus principle). Let f : B = B(0, R) — H be a
regular function. If | f| has a local minimum point p € B then either f(p) = 0 or
f is constant.

Proof. By Theorem 4.3 a non-constant f whose modulus has a minimum at p =
x + yI must have a zero at a point p’ € x + yS. In particular | | has a minimum at
p’. By the previous corollary, | | cannot have two distinct local minimum points on
x + ¥S, unless x + yS is degenerate for f. As a consequence, either f is constant
onx + ySor p = p'. Inboth cases, f(p) = f(p') =0. O

This result will prove very useful in the next section.

6. The open mapping theorem

We are now ready to prove the open mapping theorem for quaternionic regular
functions. Before doing so, we want to state two properties of the degenerate set of
a regular function, defined in 5.2.
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Proposition 6.1. If f : B = B(0, R) — H is a regular function, then the degener-
ate set Dy of f is a closed subset of B\ R. Moreover, if f is not a constant function
then the interior of Dy is empty.

Proof. By Theorem 5.1, there exist real analytic functions b = b(x, y), ¢ = c(x, y)
such that f(x + yI) = b(x, y) + Ic(x, y). Denote by C s the union of all spheres
(or real singletons) x + yS, x, y € R such that c(x, y) = 0. Wehave Dy = Cy\ R
since, for all x, y € R, y # 0, f is constant on x + yS if and only if ¢(x, y) = 0.
Clearly C is closed in B, thus Dy = Cy \ Riis closed in B \ R. Moreover, if f is
not constant then the interior of D s is empty because the interior of C s is. Assume
by contradiction that, for some I € S, there exist a non-empty open subset A; of
By = BN Ljsuchthat Ay € Cy, i.e. such that c(x, y) = >, .y ynan = 0 for all
x + yI € Aj. If we set the obvious notation a, = a® +ali + a2 j + a’k then, for
p =0, 1,2, 3, the holomorphic function f}, : B — L, defined by

fra4yD =) (x+yD'ay = xpaf + Y yaarl

neN neN neN

has vanishing imaginary part on the open set A;. Thus f(A;) € R and, by the
open mapping theorem for holomorphic functions of one complex variable, f), is
constant on By for p = 0, 1, 2, 3. Hence f is constant on B; and, by the identity
principle 4.1, on B. O

Theorem 6.2 (Open mapping theorem). Let f : B(0, R) — H be a non-constant
regular function and let Dy be its degenerate set. Then f : B(0, R) \ Dy — His
open.

Proof. Let U be an open subset of B(0, R) \D_f and let pg € f(U). We will show
that the image f(U) contains a ball centered at pg of radius ¢ > 0.

Choose go € U such that f(go) = po. By Theorem 2.2, either the point gg
is an isolated zero of the function f(g) — po, or it is part of a 2-sphere S of zeros
of the same function. The second possibility is excluded because it would imply
fis = po, so that S would be a degenerate sphere for f and go would belong to the
degenerate set Dy (which is impossible by construction).

Hence g is an isolated zero of f(g) — po and there exists an open ball B =
B(qo. r) such that B € U and f(q) — po # O for all ¢ € dB. In particular, there
exists ¢ > 0 such that | f(g) — po| > 3¢ for all ¢ € dB. Choosing any p such that
P — pol < &, we get

[f (@) —pl=1f(g)— pol = Ip — pol = 3e —&=2¢

for all ¢ € 0B, while
|f(qo) — Pl =1po—pl <e.

Hence the minimum of | f (¢) — p| in B is strictly less than its minimum in d B, and
| f(g) — p| must have a minimum point in B. By Theorem 5.5, either f(g) — p
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vanishes at the same point or it is a constant function. The second option is excluded
since f is not constant. We have thus proven the existence of ag € B € U such
that f(¢) = p and we conclude that p € f(U), as desired. O

If f has no degenerate spheres, as in Example 5.3 ii), then we get the statement:

Corollary 6.3. Let f : B(0, R) — H be a regular function. If f is not constant on
any 2-sphere x + yS with y # 0, then f is open.

We point out that there exist regular functions f : B(0, R) — H which are
open on B(0, R) \D_f but not on B(0, R). For instance the function f(g) = q2 +1
which appears in Example 5.3 i) maps the open ball B = B(/, 1/2) centered at
I € S onto a non-open set: indeed 0 € f(B) and f(B) N Ly C R when K € S
is orthogonal to /. Nevertheless we notice that f(B(0, R)) is open. In fact, if we
choose an open set U € B(0, R) which contains degenerate spheres for f, we can
still prove that f(U) is open provided U has the following property.

Definition 6.4. Let U C H. We say that U is (axially) symmetric if, forall x+yI €
U with y > 0, the whole 2-sphere x + yS is contained in U.

For all x,y € R,r > 0 we may consider the neighborhood of § = x + yS
defined by C(S,r) = {¢q € H :d(q, S) < r} and notice that it is symmetric.

Theorem 6.5. Let f : B(0, R) — H be a regular function. If U is a symmetric
open subset of B(0, R), then f(U) is open.

Proof. Let pop € f(U). Choose g0 = xo + yol € U such that f(qo) = po.
Since f(g) — po has a zero on S = x¢ + yoS C U, there exists r > 0 such that
C(S,r) CUand f(q) — po #0forallg € C(S,r)\ S. Let ¢ > 0 be such that
| f(q) — po| = 3¢ for all g such that d(q, S) = r. Forall p € B(po, €) we get

[ f(@)—pl=1f(@)—pol—Ip—pol =3¢ —e =2 >¢>|po—pl|l=1f(q0) — Pl

ford(q, S) = r. Thus | f(g) — p| must have a local minimum point in C(S, r). By
the minimum modulus principle, there exists ¢ € C(S, r) such that f(¢g)—p=0. O
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