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The conjugate linearized Ricci flow on closed 3-manifolds

MAURO CARFORA

with an appendix by Stefano Romano

Abstract. We characterize the conjugate linearized Ricci flow and the associated
backward heat kernel on closed three-manifolds of bounded geometry. We dis-
cuss their properties, and introduce the notion of Ricci flow conjugated constraint
sets which characterizes a way of Ricci flow averaging metric dependent geomet-
rical data. We also provide an integral representation of the Ricci flow metric
itself and of its Ricci tensor in terms of the heat kernel of the conjugate linearized
Ricci flow. These results, which readily extend to closed n-dimensional mani-
folds, yield various conservation laws, monotonicity and asymptotic formulas for
the Ricci flow and its linearization.

Mathematics Subject Classification (2000): 53C44 (primary); 53C21, 58J35
(secondary).

1. Introduction

Hamilton’s Ricci flow [37] is the weakly-parabolic geometric evolution equation
obtained by deforming a Riemannian metric gab, on a smooth n-manifold �, in
the direction of its Ricci tensor Rab [3, 18, 37, 39, 40]. The geometrical and ana-
lytical properties featuring in this natural geometric flow have eventually lead to
a remarkable proof, due to G. Perelman [49–51], of Thurston’s geometrization
program for three-manifolds [56, 57]. This is a result of vast potential use also
in theoretical physics, where the Ricci flow often appears in disguise as a natu-
ral real-space renormalization group flow. Non-linear σ -model theory, describing
quantum strings propagating in a background spacetime, affords the standard case
study [5, 6, 26, 45, 48]. Paradigmatical applications occur also in relativistic cos-
mology [14, 15] (for a series of recent results see also [8, 9, 12] and the references
cited therein). An important role both in Ricci flow theory, as well as in its physi-
cal applications, is played by its formal linearization around a given Ricci evolving
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metric β → gab(β), 0 ≤ β < T0 ≤ ∞. By suitably fixing the action of the diffeo-
morphism group Diff (�), this linearized flow takes the form of the parabolic initial
value problem

∂

∂β
h̃ab(β) = �L h̃ab(β) ,

h̃ab(β = 0) = h̃ab , 0 ≤ β < T0 .

(1.1)

where �L denotes the Lichnerowicz-de Rham laplacian [44] (with respect to
gab(β)), and the symmetric bilinear form β �→ h̃ab(β) can be thought of as rep-
resenting an infinitesimal deformation, g(t)

ab (β) = gab(β) + t h̃ab(β), t ∈ (−ε, ε),
of the given flow β → gab(β). Stability questions around fixed points of the Ricci
flow [11, 33, 35, 41, 52, 54, 59], pinching estimates [2], and the characterization of
linear Harnack inequalities [20, 21, 46], are typical issues related to the structure
of the linearized Ricci flow (1.1). Related problems, with an impact also in the
physical applications of the theory, concerns the control of β �→ h̃ab(β) not just
around fixed points but along a generic Ricci flow metric β �→ gab(β). In partic-
ular, if one needs to go beyond a fixed point stability analysis, the characterization
of monotonicity formulas for the parabolic equation (1.1) is a key problem in many
applications. Difficulties in dealing with such questions are strictly related to the
Diff (�)-equivariance of the Ricci flow. This remark takes shape in the fact that the
flow β �→ h̃ab(β), solution of (1.1), may describe reparametrization of β �→ gab(β)

as well as the evolution of non-trivial deformations. The former correspond to the
Diff (�)-solitonic solutions of (1.1). They are provided by h̃ab(β) = Lv(β)gab(β),
where Lv(β) is the Lie derivative along some suitably chosen β-dependent vector
field v(β). The latter are instead parametrized by β �→ h̃ab(β) with ∇a h̃ab(β) = 0,
where the divergence ∇· is with respect to the β-varying Ricci flow metric gab(β).
As is well known, the subspace generated by the Lie derivative of the metric along
vector fields, and the subspace of divergence-free h̃ab ’s, provide an L2(�, g)-
orthogonal splitting of the whole space of symmetric bilinear forms. It is a matter of
fact, naturally related to the geometry of the Ricci flow, that (1.1) does not preserve
such a splitting unless the Ricci flow β �→ gab(β) is restricted to particular class of
geometries [4, 10, 33, 35, 59]. What happens is that (1.1) may evolve a divergence-
free h̃ab(β = 0) into a flow β �→ h̃ab(β) possessing also a Lie-derivative part.
For instance, if one considers, for the volume-normalized Ricci flow, the evolution
of the coupled β �→ (gab(β), hab(β)) with Ric (g)|β=0 > 0, � � S3, then by
Hamilton’s rounding theorem [37], gab(β) converges, as β ↗ ∞, to the standard
metric ḡ on the 3-sphere S3, with Vol [S3, ḡ] = Vol [S3, g(β = 0)]. Since (S3, ḡ)

is isolated (i.e., it does not admit any non-trivial Riemannian deformation), it fol-
lows that any divergence-free h̃ab(β = 0)) must necessarily evolve under (the nor-
malized version of) (1.1) into a Lie derivative term LX ḡab, for some β-dependent
vector field X . This dynamical generation of Diff (�)-reparametrization out of non-
trivial deformations is at the root of the difficulties in the general analysis of (1.1).
A possible way out is to adopt a strategy akin to the one used by Perelman [49]
in handling Ricci flow Diff (�)-solitons. These are put under control by means of
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a (backward) diffusion process which is conjugated to the Ricci diffusion of the
Riemannian measure. A related and very subtle use of the backward-forward con-
jugation, in connection with the Kähler-Ricci flow, has been recently pointed out
also by Lei Ni [47]. By extending these points of view to the Lv(β)gab(β) soli-
tonic solutions of (1.1), we introduce in this paper the backward conjugated flow
associated with (1.1), generated by the operator

©∗
L

.= − ∂

∂β
− �L + R , (1.2)

where R denotes the scalar curvature of (�, gab(β)). The flow described by ©∗
L

enjoys many significant properties:

(i) The space of divergence-free bilinear forms is an invariant subspace of the
flow.

(ii) If β �→ h̃ab(β) is the a solution of the linearized Ricci flow (1.1), and η �→
Hab

(T )(η), η
.= β∗ − β, for some β∗ ∈ (0, T0), is a divergence-free solution of

the conjugate flow, ©∗
L Hab

(T )(η) = 0, then∫
�

h̃(T )
ab (η) Hab

(T )(η) dµg(η) , (1.3)

where h̃(T )
ab (η) is the divergence-free part of h̃ab(η), is a conserved quantity

along the (backward) Ricci flow. This result provides a useful control on the
dynamics of β �→ h̃(T )

ab (β).
(iii) If β �→ Rab(β) is the Ricci tensor associated with the Ricci flow metric β �→

gab(β), and ©∗
L Hab(η) = 0, then∫

�

Rab(η)Hab(η)dµg(η) , (1.4)

and ∫
�

(gab(η) − 2η Rab(η)) Hab(η)dµg(η) , (1.5)

are also conserved along the (backward) Ricci flow. Thus, quite surprisingly,
the conjugate linearized Ricci flow has strong averaging properties on the full
Ricci flow itself. These averaging properties become manifest when we iden-
tify the flow η �→ Hab(η), with the (backward) heat kernel of ©∗

L . In such a
setting we prove the main results of this paper, viz.,

Proposition 1.1. Let η �→ gab(η) be a backward Ricci flow with bounded ge-
ometry on �η × [0, β∗] and let K ab

i ′k′(y, x; η) be the (backward) heat kernel of
the corresponding conjugate linearized Ricci operator ©∗

L K ab
i ′k′(y, x; η) = 0, for
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η ∈ (0, β∗], with K ab
i ′k′(y, x; η ↘ 0+) = δab

i ′k′(y, x) (the bi-tensorial Dirac mea-
sure). Then

Ri ′k′(y, η = 0) =
∫

�

K ab
i ′k′(y, x; η)Rab(x, η) dµg(x,η) , (1.6)

for all 0 ≤ η ≤ β∗. Moreover, as η ↘ 0+, we have the uniform asymptotic
expansion

Ri ′k′(y, η = 0)

= 1

(4π η)
3
2

∫
�

exp

(
−d2

0 (y, x)

4η

)
τ ab

i ′k′(y, x; η)Rab(x, η) dµg(x,η)

+
N∑

h=1

ηh

(4πη)
3
2

∫
�

exp

(
−d2

0 (y, x)

4η

)
�[h]ab

i ′k′(y, x; η)Rab(x, η)dµg(x,η)

+ O
(
ηN− 1

2

)
,

(1.7)

where τ ab
i ′k′(y, x; η) ∈ T �η � T ∗�η is the parallel transport operator associ-

ated with (�, g(η)), d0(y, x) is the distance function in (�, g(η = 0)), and
�[h]ab

i ′k′(y, x; η) are the smooth section ∈ C∞(� × �′, ⊗2T � � ⊗2T ∗�) (de-
pending on the geometry of (�, g(η))), characterizing the asymptotics of the heat
kernel K ab

i ′k′(y, x; η).

Under the same hypotheses of Proposition 1.1, we also have the following integral
representation of the Ricci flow on �β × (0, β∗].
Proposition 1.2. Let β �→ gab(β) be a Ricci flow with bounded geometry on �β ×
[0, β∗], and let K ab

i ′k′(y, x; η) be the (backward) heat kernel of the corresponding
conjugate linearized Ricci operator ©∗

L , for η = β∗−β. Then, along the backward
flow η �→ gab(η),

gi ′k′ (y, η = 0) =
∫

�

K ab
i ′k′(y, x; η)

[
gab(x, η) − 2η Rab(x, η)

]
dµg(x,η) , (1.8)

for all 0 ≤ η ≤ β∗, and

gi ′k′(y, η = 0)

= 1

(4πη)
3
2

∫
�

e− d2
0 (y,x)

4η τ ab
i ′k′(y, x; η)

[
gab(x, η) − 2ηRab(x, η)

]
dµg(x,η)

+
N∑

h=1

ηh

(4πη)
3
2

∫
�

e− d2
0 (y,x)

4η �[h]ab
i ′k′(y,x;η)[gab(x,η)−2ηRab(x,η)]dµg(x,η)

+ O
(
ηN− 1

2

)
.

(1.9)

holds uniformly, as η ↘ 0+.
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In particular, the above result proves the following:

Theorem 1.3. The heat kernel flow

η �−→ K ab
i ′k′(y, x; η) (1.10)

is conjugated and thus fully equivalent to the Ricci flow β �−→ gab(β).

This is a quite non-trivial consequence of the conjugacy relation and opens the
possibility of a weak formulation of the Ricci flow by exploiting the linear evolution
of η �−→ K ab

i ′k′(y, x; η).
The properties of the conjugate heat flow [25,46,49] and those of the conjugate

linearized Ricci flow established in this paper suggest to shift emphasis from the
flows themselves to their dependence from the corresponding initial data. Thus,
along a Ricci flow of bounded geometry β �→ (�, g(β)), β ∈ [0, β∗], we consider
the associated heat flow (β, �0) �→ �(β), ( ∂

∂β
−�) � = 0, and linearized Ricci flow

(β, hab) �→ h̃ab(β), as functionals of the respective initial data �(β = 0)
.= �0,

and h̃ab(β = 0)
.= hab. Similarly, we can consider, along the backward Ricci flow

η �→ (�, g(η)), η ∈ [0, β∗], η
.= β∗ − β, the conjugate flows (η, 
∗) �→ 
(η),

( ∂
∂η

− � + R) 
 = 0, and (η, Hab∗ ) �→ Hab(η), as functionals of the respective

initial data 
(η = 0)
.= 
∗, and Hab(η = 0)

.= Hab∗ . In general, if the initial
data (�0, hab) satisfy a geometrical condition in the form of a constraint C(gik(β =
0), �0, hab) = 0, then this constraint will not be preserved along the evolution of the
given data. However, if we are able to find, along the given Ricci flow, initial data
(
∗, Hab∗ ) for the conjugated flows such that C(gik(η = 0), 
∗, Hab∗ ) = 0, then
the conjugate flows interpolate between (�0, hab) and (
∗, Hab∗ ) by averaging the
data with the kernels (
(η), Hab(η)). We say, in such a case, that the constraints
C(gik(β = 0), �0, hab) = 0 and C(gik(η = 0), 
∗, Hab∗ ) = 0 are Ricci flow
conjugated. This is basically a way for averaging geometrical constraints along the
Ricci flow, and may find applications in various geometrical and physical setting.
The stability of Type-II singularities (see Section 7), and the problem of Ricci flow
deforming the initial data set for Einstein equations (see Section 4) may provide
important examples.

Coming to the structure of the paper, we have tried to keep the presentation
as self-contained as possible. We start by recalling some well-known facts about
the Ricci flow and its linearization in Section 2. The conjugate linearized Ricci
flow is introduced in Section 3, where we also establish its properties. In Sec-
tion 4 we discuss the heat kernel associated with the conjugate linearized Ricci
flow. In an appendix, kindly provided by Stefano Romano, we carry out the ex-
plicit construction of the the heat kernel of a generalized Laplacian when the op-
erator in question smoothly depend on a one-parameter family of metrics. The
results discussed in Section 5 are elementary consequences of the properties of the
heat kernel of the conjugate linearized Ricci flow. In Section 6 we formalize the
notion of Ricci flow conjugated constraint sets, and briefly discuss a few natural
examples.
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2. Remarks on the Ricci flow and its linearization

We start by collecting a number of technical results on Ricci flow theory that
we shall need in the sequel. Excellent sources of information are provided by
[3, 18, 19, 21], and [58]. For simplicity � will always denote a C∞ compact three-
dimensional manifold without boundary, and C∞(�, R) and C∞(�, ⊗p T ∗� ⊗q

T �) are the space of smooth functions and of smooth (p, q)-tensor fields over �,
respectively. We shall denote by Diff (�) the group of smooth diffeomorphisms
of �, and by Met (�) the space of all smooth Riemannian metrics over �. The
tangent space , T(�,g)Met (�), to Met (�) at (�, g) can be naturally identified
with the space of symmetric bilinear forms C∞(�, ⊗2

S T ∗�) over �, endowed
with the pre-Hilbertian L2 inner product (U, V )L2(�)

.= ∫
�

gil gkm Uik Vlmdµg for
U, V ∈ C∞(�, ⊗2

S T ∗�). Let L2(�, ⊗2 T ∗�) be the corresponding L2 com-
pletions of C∞(�, ⊗2

S T ∗�). A geometric property of Met (�) that we shall often
exploit is that the tangent space T(�,g)Og to the Diff (�)-orbit of a given metric
g ∈ Met (�) is the image of the injective operator

δ∗
g : C∞(�, T ∗ �) −→ C∞(�, ⊗2T ∗ �) (2.1)

wa dxa �−→ δ∗
g (wa dxa)

.= 1

2
Lw# g ,

where we have set (w#)i .= gikwk , and denoted by Lw# the corresponding Lie
derivative. Standard elliptic theory then implies that the L2-orthogonal subspace to
Im δ∗

g in T(�,g)Met (�) is spanned by the (∞-dim) kernel of the L2 adjoint δg of
δ∗

g ,

δg : C∞(�, ⊗2T ∗ �) −→ C∞(�, T ∗ �) (2.2)

hab dxa ⊗ dxb �−→ δg (hab dxa ⊗ dxb)
.= − gi j ∇i h jk dxk .

It follows that with respect to the inner product (◦, ◦)L2(�), the tangent space
T(�,g)Met (�) splits as [24]

T(�,g)Met (�) ∼= Ker δg ⊕ Im δ∗
g . (2.3)
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Unless Ric(g) ≡ C g + Lw# g, for some constant C , the Ricci tensor Ric(g) of
a metric g ∈ Met (�) is a non-trivial Diff (�)-equivariant section of the tangent
bundle T Met (�), i.e., {Ric(g)} ∩ Ker δg �= ∅. Thus, according to (2.3), the Ricci
flow associated with a Riemannian three-manifold (�, g) can be thought of as the
dynamical system on Met (�) generated by the weakly-parabolic diffusion-reaction
PDE [37]

∂

∂β
gab(β) = −2Rab(β),

gab(β = 0) = gab , 0 ≤ β < T0 ,

(2.4)

where Rab(β) is the Ricci tensor of the metric gik(β). The flow (�,g) �→(�,g(β)),
defined by (2.4), always exists in a maximal interval 0≤β ≤T0, for some T0 ≤∞. If
such a T0 is finite then limβ↗T0 [supx∈� |Rm(x, β)|] = ∞, [37, 39] where Rm(β)

is the Riemann tensor of (�, g(β)). Note that, by exploiting a result by N. Sesum
and M. Simon [53, 55] (see also the comments in [42]) the curvature singularity
regime for the 3-d Ricci flow is equivalent to lim supβ↗T0

[maxx∈� |Ric(x, β)|] =
∞ (quite surprisingly, this result of Sesum and Simon holds on any compact n-
dimensional manifold). The structure of singularities of the Ricci flow, as well as
that of generalized fixed points attained if T0 = ∞, is associated with self-similar
solutions generated by the action of Diff (�) × R+, where R+ acts by scalings.
These solutions are described by the Ricci solitons −2Rab(β) = L�v(β) gab + ε gab,
where L�v(β) denotes the Lie derivative along the β-dependent (complete) vector
field �v(β) generating β �→ ϕ(β) ∈ Diff (�) × R+, and where, up to rescaling, we
may assume that ε = −1, 0, 1 (respectively yielding for the shrinking, steady, and
expanding solitons). This non-trivial action of the diffeomorphisms group Diff (�)

on the evolution of (�, g(β)) can be better seen if we describe the kinematics of
the flow (2.4) in the parabolic spacetime M4

Par
.= � × I , I

.= [0, T0) ⊂ R. We
assume that the diffeomorphism

Fβ : I × � −→ M4
Par; (β, x) �→ iβ(x) , (2.5)

of I × � onto M4
Par, is the identity map, and that M4

Par carries the product metric
(4)gpar , so that in the coordinates induced by Fβ we can write

(F∗
β

(4)gpar ) = gab(β)dxa ⊗ dxb + dβ ⊗ dβ . (2.6)

In such a framework, ∂
∂β

: � → T M4
Par, can be interpreted as a vector field,

transversal (actually, (4)gpar -normal) to the leaves {�β}, describing the Ricci flow
evolution as seen by observers at rest on �β . The evolution of the metric g(β)

can be equivalently described by observers in motion on �β . To this end, consider
a curve of diffeomorphisms I � β �→ ϕ(β) ∈ Diff (�) (with the initial condition
ϕi (xa, β = 0) = id�), and define the vector field Xϕ : �β → T �β , Xϕ = ∂

∂β
ϕ(β),

generating β �→ ϕ(β). Such a β-dependent Xϕ provides the velocity field of these
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non-static observers. Thus,

d

dβ
Fβ,ϕ = ∂

∂β
+ Xϕ : �β −→ T M4

Par, (2.7)

is the space–time vector field covering the diffeomorphism Fβ,ϕ of I × � onto
(M4

Par,
(4)gpar ), defining space–time coordinates (β, yi = ϕi (β, x)) which describe

the curve of embeddings (β, x) ↪→ (β, ϕ(β, x)) of �β in M4
Par. In terms of the

coordinates (β, yi ) we can write

(F∗
β,ϕ

(4)gpar ) = ğab(β)(dya + Xa
ϕdβ) ⊗ (dyb + Xb

ϕdβ) + dβ ⊗ dβ , (2.8)

where the metric ğab(yi , β) is β-propagated according to the Hamilton-DeTurck
flow

∂

∂β
ğab(β) = −2R̆ab(β) − LXϕ ğab(β),

ğab(β = 0) = gab , 0 ≤ β < T0 .

(2.9)

The connection between (2.9) and (2.4) is most easily established if we proceed as
in the mechanics of continuous media, when shifting from the body (Lagrangian)
to the space (Eulerian) point of view. To this end, let us introduce the substan-
tial derivative D

Dβ

.= ∂
∂β

+ LXϕ associated with the convective action defined

by Xϕ . Since D
Dβ

ğab(β) = (ϕ∗)−1 ∂
∂β

[
ϕ∗ ğ

]
ab and ϕ∗ Ric(ğ) = Ric(ϕ∗ ğ),

R(ğ) = R(ϕ∗ ğ), it follows from (2.9) that the pull-back β �→ (ϕ∗ ğ) of the
flow β �→ ğikdyi ⊗ dyk , under the action of the β-dependent diffeomorphism
xa �→ yi = ϕi (xa, β), solves (2.4). The non-trivial action of the diffeomorphism
group described above is the rationale underlying DeTurck’s technique for fixing
a gauge Fη,ϕ making the evolution β �→ (T �, gab(β)) of the metric in the tan-
gent bundle manifestly parabolic [22]. In this connection, one easy but useful
information is that, along the evolution β �→ (T �, gab(β)), we can also con-
sider a β-dependent isomorphism ι(β) between a fixed vector bundle V over �

and the tangent bundle (T �, g(β)), in such a way that (V, ι∗(β) g(β)) is isomet-
ric to (T �, g(β = 0)). This is the Uhlenbeck trick [38, 43]. We briefly describe
it to set notation for later use (what follows holds for any dimension n). Con-
sider a bundle isometry between a fixed vector bundle V over � and the tangent
bundle T �, ι(0) : (

V, ι(0)
∗ g

) −→ (T �, g), where g is a given metric on
T �. Locally, in any open set U ⊂ �, given a basis of sections

{
e(µ)

}
µ=1,2,3

of V |U , and a basis of sections {θ(ν)}ν=1,2,3 of the dual bundle V ∗|U , we can
write ι(0)

∗ g|U = ι(0)
h
µ ι(0)

k
ν ghk θ(µ) θ(ν), where the components ι(0)

h
µ of the the

bundle isomorphism ι(0) are defined by ι(0)(e(µ)) = ι(0)
h
µ ∂h . Let us evolve the

isometry ι(0), along with the Ricci flow β �→ gab(β), 0 ≤ β < T0, according to
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ι(β) : (V, ι(0)
∗ g) → (T �, g(β)), where β �→ ι(β) is the solution of

∂

∂β
ιkµ(β) = ιhµ(β) Rk

h(β),

ιhµ(β = 0) = ι(0)
h
µ , 0 ≤ β < T0 .

(2.10)

It is easily checked that along such an evolution we have (ι(β)∗g(β))µν =(ι(0)
∗g)µν ,

0 ≤ β < T0, as required. One can also pull back to (V, ι(β)∗g(β)) the Levi-Civita
connection ∇(β) on (T �, g(β)) according to

D(β) : C∞(�, T �) × C∞(�, V ) → C∞(�, V ) (2.11)

(X, ξ) �−→ D(β)X ξ := ι(β)∗ ∇(β)X ξ .

From the defining relation ι[D(β)hξ ] = ∇(β)h(ι(ξ)) it follows that ∇k∇h(ι(ξ)) =
∇k {ι [D(β)h ξ ]} = {ι [D(β)k D(β)h ξ ]}.
Thus, �(β)(ι(ξ)) :=gkh(β)∇k∇h(ι(ξ))=gkh(β) {ι[D(β)k D(β)hξ ]}= ι [�D(β)ξ ],
where the (rough) Laplacian �D on (V, ι(β)∗ g(β)) is defined by

�D(β) ξ := gkh(β) D(β)k D(β)h ξ . (2.12)

These remarks imply a well-known result (see e.g., [18, 58]) that can be phrased in
the following form, more adapted to our purposes:

Lemma 2.1. If a bilinear form vik ∈ C∞(�, ⊗2
S T ∗�) evolves, along a given Ricci

flow β �→ gab(β), 0 ≤ β < T0, according to the solution β �→ vik(β) of the
parabolic initial value problem

∂

∂β
vik(β) = �vik(β),

vik(β = 0) = vik , 0 ≤ β < T0 ,

(2.13)

then its pull-back ι∗ v, under the map ι(β) : (V, ι(0)
∗ g) → (T �, g(β)), evolves

according to

∂

∂β

(
ιiµ(β) ιkν(β) vik(β)

)
= �D

(
ιiµ(β) ιkν(β) vik(β)

)
+ ιhµ(β) ιkν(β)Ri

h(β) vik(β)

+ ιiµ(β) ιhν (β)Rk
h(β) vik(β) ,(

ιiµ(β) ιkν(β) vik(β)
)

(β=0)
= ι(0)

i
µ ι(0)

k
ν vik , 0 ≤ β < T0 .

(2.14)

There is a rather obvious similarity between the above spacetime kinematics for the
Ricci flow, the role of the lapse and shift vector field, and the use of Dreibeins
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in the formulation of the initial value problem in general relativity. However, this
similarity cannot be pushed too far on the dynamical side. As a matter of fact,
the natural spacetime metric on M4

Par associated with the dynamics of the Ricci
flow is not the product metric described by the diffeomorphism Fη : I × � →
M4

Par. Formal metrics, often strongly degenerate in the time-like direction, seem
to better capture the most relevant aspects of the spacetime geometry of the Ricci
flow [16, 17, 49].

2.1. Factorization of the linearized Ricci flow

As already stressed, an important role in Ricci flow theory is played by the formal
linearization of (2.4) in the direction of a symmetric bilinear form hab(β), i.e.

∂

∂β
hab(β) = − d

dt

(
2Rab(g(t))

)∣∣∣∣
t=0

,

hab(β = 0) = hab , 0 ≤ β < T0 ,

(2.15)

where hab(β) can be thought of as representing an infinitesimal deformation
g(t)

ab (β) = gab(β)+ t hab(β), t ∈ (−ε, ε), of the flow β → gab(β) defined by (2.4),
i.e., h(β) ∈ T(�,g(β)) Met (�). According to a lenghty but standard computation
(see e.g., [13, 18, 19]), the linearization (2.15) characterizes the flow β �→ hab(β)

as a solution of the weakly-parabolic initial value problem

∂

∂β
hab = �L hab + 2

[
δ∗

g δg G(h)
]

ab
,

hab(β = 0) = hab , 0 ≤ β < T0 .

(2.16)

For notational ease, in (2.16) we have dropped the explicit β-dependence and
we have introduced the Einstein-conjugate G(g, h)

.= h − 1
2

(
trg h

)
g of h ∈

C∞(�, ⊗2T ∗ �) (G(h) for short, if it is clear, from the context, with respect to
which metric g we are conjugating). The operator �L : C∞(�, ⊗2T ∗ �) →
C∞(�, ⊗2T ∗ �) is the Lichnerowicz-de Rham Laplacian on symmetric bilinear
forms defined by

�L hab
.= �hab − Rashs

b − Rbshs
a + 2Rasbt h

st , (2.17)

where � .= gab(β) ∇a ∇b is the rough (or Bochner) Laplacian, and where for n = 3
we can set

Rasbt = Rabgst + Rst gab − Rsbgat − Rat gsb + 1

2
R (gat gsb − gabgst ) . (2.18)

For each given β ∈ [0, T0), �L is an operator of Laplace type [29], i.e., �L =
� + E , for E the local section of End

(⊗2T ∗ �
)
, hik �→ E ik

ab hik , provided by

E ik
ab

.= −3Ri
aδk

b − 3Rk
bδ

i
a + 2Rik gab + 2

(
Rab − 1

2
Rgab

)
gik +Rδi

aδk
b . (2.19)
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�L is L2 self-adjoint, (�L h, k)L2(�),= (h, �L k)L2(�), but it is not negative semi-
definite since∫

�

hab �L hab dµg

= −
∫

�

[
∇i hab∇ i hab+ 6habRashs

b− 4hhabRab+ R(h2− habhab)
]

dµg,

(2.20)

where h
.= gab hab. Along the Ricci flow the curvature can grow unboundedly

large, thus, in order to have some control on the spectral properties of �L , we need
to restrict attention to a particular subclass of Ricci flow metrics. In particular, we
shall say that a Ricci flow β �→ gab(β) on � × [0, T0) is of bounded geometry on
the subinterval [0, β∗] ⊂ [0, T0) if, in such an interval, the associated β-dependent
curvature and its covariant derivatives of each order have uniform bounds, i.e., if
there exists constants Ck > 0 such that

∣∣∇k Rm(β)
∣∣ ≤ Ck , k = 0, 1, . . ., for

0 ≤ β ≤ β∗. The hypothesis of bounded geometry considerably simplifies the
characterization of the conjugate linearized Ricci flow (in particular the analysis
of the associated heat kernel and of its asymptotics), without sacrificing generality.
By exploiting the technique of parabolic rescalings, one can extend the analysis to
Ricci flow singularities, at least in the case when one has a noncollapsed limit (e.g.,
for finite time singularities on closed manifolds).

If we assume that β �→ gab(β) on � × [0, T0) is of bounded geometry on the
subinterval [0, β∗] ⊂ [0, T0), then from the spectral theory of Laplace type oper-
ators on closed Riemannian manifolds (see [29], and [30, Theorem 2.3.1]), it fol-
lows that, on (�, gab(β)), for each given β ∈ [0, β∗] ⊂ [0, T0), the operator PL

.=
−�L = − (� + E) has a discrete spectral resolution

{
h(n)

ik (β), λ(n)(β)
}

, where the

ordered eigenvalues λ(1)(β) ≤ λ(2)(β) ≤ . . . ∞ have finite multiplicities, and are
contained in [−C(β), ∞) for some constant C(β) depending from the (bounded)
geometry of (�, g(β)). Moreover, for any ε > 0, there exists an integer n(ε; β)

so that n
2
3 −ε ≤ λ(n) ≤ n

2
3 +ε, for n ≥ n(ε; β). The corresponding set of eigenten-

sors
{

h(n)
ik (β)

}
, h(n)

ik (β) ∈ C∞(�, ⊗2T ∗ �), with PL h(n)
ik (β) = λ(n)(β) h(n)

ik (β),

provide a complete orthonormal basis for L2(�, ⊗2T ∗ �). If for a tensor field
φ ∈ L2(�, ⊗2T ∗ �) we denote by cn(β)

.= (
φ, h(n)(β)

)
L2(�)

the corresponding

Fourier coefficients, then φik ∈ C∞(�, ⊗2T ∗ �) iff limn→∞ nk cn(β) = 0, ∀k ∈
N (i.e, the {cn(β)} are rapidly decreasing). Also, if |φ|k denotes the sup-norm of kth

covariant derivative of φ, then there exists j (k; β) so that |φ|k ≤ n j (k;β) if n is large
enough. This result implies in particular that the series φab = ∑

n cn(β) h(n)
ab (β)

converges absolutely to φab in the C∞ topology.
In order to exploit the properties of PL for defining the conjugate linearized

Ricci flow we need to factorize (2.16) into a strictly parabolic flow and a Di f f (�)

generating term. There are various distinct ways of implementing such a decom-
position, all eventually related to the DeTurck trick [22]. For the convenience of
the reader, here we describe a well-known factorization [2] in a form particularly
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suited to our purposes (to the best of my knowledge, such a factorization appeared
first explicitly in [45]), and which holds for any n-dimensional manifold. Further
details can be found in [21, Chapther 2].

Let us consider a given symmetric bilinear form h̃(0)
ab ∈ TgMet (�). Along the

Ricci flow of metrics β �−→ gab(β), gab(β = 0) = gab, 0 ≤ β < T0, look for
solutions β �→ hab(β) of the associated linearized flow in the form

hab(β) = h̃ab(β) + ∇awb(β) + ∇bwa(β), (2.21)

with h̃ab(β = 0) = h̃(0)
ab , and where the β-dependent vector field wa(β) is associ-

ated with β-dependent infinitesimal Di f f (�) reparametrizations of the Rieman-
nian structure associated with gab(β).

Since h̃ab(β) + L �wgab must satisfy the linearized Ricci flow, we get

∂

∂β
h̃ab + ∂

∂β
L �wgab = �L h̃ab − �LL �wgab

+ 2
[
δ∗

gδg G (̃h)
]

ab
+ 2

[
δ∗

gδg G(L �wg)
]

ab
,

(2.22)

where h̃(β)
.= gab(β) h̃ab(β). From the relations

∂

∂β
L �w(β)gab(β) = L �w(β)

∂

∂β
gab(β) + L ∂

∂β
�w(β)

gab(β), (2.23)

L �w(β)

∂

∂β
gab(β) = −2L �w(β) Rab (2.24)

(in the latter we have exploited the fact that β �−→ gab(β) evolves along the Ricci
flow), and

L �w Rab = −1

2
�LL �wgab −

[
δ∗

gδg G(L �wg)
]

ab
, (2.25)

(consequence of the the Diff (�)-equivariance of the Ricci tensor) we obtain

∂

∂β
L �wgab = L ∂

∂β
�wgab + �LL �wgab + 2

[
δ∗

gδg G(L �wg)
]

ab
. (2.26)

Inserting this latter in (2.22) we have

∂

∂β
h̃ab + L

( ∂
∂β

wk+∇i (̃hik− 1
2 h̃ gik))

gab = �L h̃ab . (2.27)

As an immediate consequence of the structure of this relation it follows that, under
the stated hypotheses, we can naturally factorize the linearized Ricci flow according
to the (see e.g., [21]):
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Lemma 2.2 (The reduced linearized Ricci flow). Let β �−→ h̃ab(β), β ∈[0, T0),
denote the flow solution of the parabolic initial value problem

∂

∂β
h̃ab = �L h̃ab

h̃ab(β = 0) = hab,

(2.28)

and let β �−→ wa(β), β ∈ [0, T0), be the β-dependent (co)vector field solution of
the initial value problem

∂

∂β
wa(β) = −∇b

(
h̃ab − 1

2 h̃ gab

)
,

wa(β = 0) = 0;
(2.29)

then the flow β �−→ hab(β), β ∈ (0, β0), defined by

hab(β)
.= h̃ab(β) + L �w(β)gab(β), (2.30)

solves the linearized Ricci flow (2.16) with initial datum hab(β = 0) = hab.

Proof. The proof of the lemma amounts to backtracking the steps leading to the
identity (2.27). Explicitly, from (2.28) and (2.26), we get

∂

∂β
h̃ab + ∂

∂β
L �w gab = �L h̃ab

+ L ∂
∂β

w
gab + �L L �w gab + 2

[
δ∗

gδg G(L �wg)
]

ab
.

(2.31)

Moreover, from (2.29), we have

L ∂
∂β

w
gab + 2

[
δ∗

gδg G(L �wg)
]

ab
= 2

[
δ∗

gδg G (̃h + L �wg)
]

ab
. (2.32)

By inserting (2.32) in (2.31), and gathering terms, we get that hab(β)
.= h̃ab(β) +

L �w(β)gab(β), solves the linearized Ricci flow (2.16) with initial datum hab(β =
0) = hab.

The net effect of curvature on the factorization of the linearized Ricci flow is most
easily seen in an orthonormal frame. Since every 3-manifold is parallelizable, we
can choose orthonormal sections {e(µ)}µ=1,2,3 for (T �, g(β = 0) (locally e(µ)|U =
ιkµ∂i ), such that the induced basis in �2(Tp�), {e2∧e3, e3∧e1, e1∧e2} diagonalizes
the curvature tensor Rm(g), i.e., Rm2323 := r1, Rm3131 := r2, and Rm1212 := r3.
Let us evolve the sections {e(µ)}µ=1,2,3 along the given Ricci flow according to

the Uhlenbeck trick (2.10) and correspondingly set hµν(β) := h̃ jk(β) ι
j
µ(β) ιkν(β),
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where β �→ h̃ jk(β) is the solution of the reduced linearized Ricci flow (2.28).
Then, according to Lemma 2.1, we get (suppressing the β-dependence for nota-
tional ease),

∂

∂β
hµν = �D hµν + ιaµιbν E

jk
ab h̃ jk

+ ιaµιbν Rc
a h̃cb + ιaµιbν Rc

b h̃ac.

(2.33)

Since E jk
ab = −R j

a δk
b − Rk

b δ
j
a + 2R j k

a b, the above expression reduces to

∂

∂β
hµν = �D hµν + 2 Rµσντ hστ , (2.34)

where we have set Rµσντ
.= ιaµ ιbν ιsσ ιtτ Rasbt and hστ .= ισs ιτt h̃st , with ιαa the com-

ponents of the orthonormal (co)-basis {θ(α)} dual to {e(µ)}. Thus, from Hamilton’s
maximum principle [38], it follows that if β �→ gab(β), 0 ≤ β < β∗ ⊂ [0, T0)

is a Ricci flow with non-negative curvature operator and with bounded geometry
and if β �→ h̃i j (β) is a solution of the reduced linearized Ricci flow (2.28) with
h̃i j (β = 0) > 0, then h̃i j (β) > 0 for every β ∈ [0, β∗].

If, in the initial value problems (2.28) and (2.29), we consider the initial con-
ditions h̃ab(β = 0) = 0, and wa(β = 0) = ξa , then one recovers the well-
known fact that, for a β-independent vector �ξ ∈ C∞(�, T �), the tensor field
hab(β) = Lξ gab(β), is a solution of the linearized Ricci flow, and that any Killing
vector is preserved along the Ricci flow. More generally, the existence of the
Diff (�)-solitonic solutions of the Ricci flow, and the structure of the factoriza-
tion described by Lemma 2.2, suggest that there should exist solutions of the re-
duced linearized Ricci flow (2.28) of the form h̃ab(β) = Lv(β) gab(β) for some
judiciously chosen β �→ va(β). This is expressed by the following:

Lemma 2.3. For a given Ricci flow β �→ gab(β), 0 ≤ β < T0, let β �→ va(β)

denote the flow solution of the parabolic initial value problem

∂

∂β
va(β) = �va(β) − Rb

avb(β),

va(β = 0) = va,

(2.35)

where v(β = 0) ∈ C∞(�, T ∗�) is a given covector field, and where �vb(β) −
Ra

bva(β), with �vb(β)
.=∇a∇avb(β), is the (1-form) Hodge laplacian on (�,g(β)).

Then the flow β �→ h̃ab(β) = Lv(β) gab(β) provides a Diff (�)-solitonic solution
to the reduced linearized Ricci flow (2.28).

Again, in a form or another, this is a well-known property of the linearized Ricci
flow, see e.g. [21] (note that in [21] the sign convention on Ricci tensor is opposite
to ours). Here we are emphasizing, for later use, the Diff (�)-solitonic nature of
such solutions.
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Proof. A direct computation using the Ricci commutation relations provides

− δg G(L�vg) = ∇a [∇avb(β) + ∇bva(β) − gab(β)∇cvc(β)
]

dxb

= [�vb(β) − Rabv
a(β)

]
dxb ,

(2.36)

thus, according to (2.35)

∂

∂β
va(β) = − [

δg G(L�vg)
]

a , (2.37)

which implies (see (2.1)),

L ∂
∂β

�vgab = −2
[
δ∗

gδg G(L�vg)
]

ab
. (2.38)

By introducing this latter relation in

∂

∂β
L�vgab = L ∂

∂β
�vgab + �LL�vgab + 2

[
δ∗

gδg G(L�vg)
]

ab
, (2.39)

(see (2.26)), we get
∂

∂β
L�v gab = �LL�v gab , (2.40)

which implies that h̃ab(β) = Lv(β) gab(β) solves (2.28) with the initial datum
L�v(β) gab(β)

∣∣
β=0 = L�v gab.

Lemma 2.3 and of equation (2.40), may suggest that, along the Ricci flow, we can
decompose the given solution β �→ h̃ab(β) of (2.28) according to

h̃(β) = h̃(T )(β) + 2δ∗
gv(β), δg h̃(T )(β) = 0 . (2.41)

This would also imply that the divergence-free part h̃(T )(β) evolves according
to ∂

∂β
h̃(T )(β) = �L h̃(T )(β). However, from δgh̃(T )(β) = 0 it follows that the

(co)vector field defined by Lemma 2.3 must also comply with the constraint
2δgδ

∗
gv = δgh̃(β), for all 0 ≤ β < T0 (in components this reduces to the ellip-

tic PDE �va + Rabv
b + ∇a∇bvb = ∇bh̃ab, where h̃ab(β) is the given source).

Such a requirement clearly overdetermines β �→ va(β), and we cannot assume that
(2.41) holds in the general case. This also follows explicitly from the following:

Lemma 2.4 (A commutation formula). For any symmetric bilinear form Skl on
any n-dimensional Riemannian manifold, we have

∇k �L Skl = � ∇k Skl + Sab ∇k Rkalb − Rla ∇k Sa
k − Sa

k ∇k Rla

= � ∇k Skl + Ska ∇l Rka − Rla ∇k Sa
k − 2Sa

k ∇k Rla .

(2.42)
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Proof. The proof is a somewhat lengthy but otherwise standard computation ex-
ploiting Ricci commutation formulas and the second Bianchi identity. In detail

−∇k�L Sik = ∇k(−∇ j∇ j Sik + Rl
i Slk + Rl

k Sil − 2Rl j
ik Sl j )

= −(∇ j∇k(∇ j Sik) − Rk
j ∇ j Sik − Rkl

i j ∇ j Skl + Rk
j ∇ j Sik)

+ (∇k Rl
i )Slk + Rl

i ∇k Slk + (∇k Rl
k)Sil + Rl

k∇k Sil

− 2(∇k Rl j
ik)Sl j − 2Rl j

ik∇k Sl j

= −∇ j (∇ j∇k Sik − Rkl
ji Skl + Rk

j Sik) + Rkl
i j ∇ j Skl

+ (∇k Rl
i )Slk + Rl

i ∇k Slk + (∇k Rl
k)Sil + Rl

k∇k Sil

− 2(∇k Rl j
ik)Sl j − 2Rl j

ik∇k Sl j

= −�∇k Sik − (∇ j Rkl
i j )Skl + (∇k R j

i )S jk + R j
i ∇k S jk .

From the second Bianchi identity we get ∇ j Rkl
i j = −∇k Rl

i +∇i Rkl , which inserted
into the above expression eventually provides (2.42).

From (2.42) and the Ricci flow rule

∂

∂β
∇k Skl = gik ∇i

(
∂

∂β
Skl

)
+ 2Rik∇i Skl + Smi ∇l Rmi , (2.43)

(which follows directly from the evolution of the Christoffel symbols under the
Ricci flow), we immediately compute that if β �→ Skl(β) evolves, along the Ricci
flow, according to ∂

∂β
Skl(β) = �L Skl(β), then

∂

∂β
∇k Skl = � ∇k Skl − Ra

l ∇k Ska + 2Sab ∇l Rab

+ 2Rik ∇i Skl − 2Sik ∇i Rkl .

(2.44)

The presence, in the above expression, of the terms 2Sab ∇l Rab + 2Rik ∇i Skl −
2Sik ∇i Rkl , implies that, unless we are on a (3-dimensional) Einstein manifold,
Rab = 1

3 R gab, the parabolic initial value problem (2.44) with initial the condition
∇a Sab(β)|β=0 = 0, does not admit, in general, the solution ∇a Sab(β) = 0, 0 ≤
β < T0. If we apply this latter result to S(β) =

(
2δ∗

gv(β) − h̃(β)
)

it follows that

the L2(�β, g(β))-orthogonal decomposition

C∞(�β, ⊗2T ∗�β) ∼= Ker δg(β) ⊕ Im δ∗
g(β) (2.45)
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cannot be naturally imposed to the coupled evolution β �→ (gab(β), h̃ab(β)) along
a generic Ricci flow metric on � × [0, T0).

The difficulties one experiences in controlling the L2-decomposition of the
solutions of (2.28) are related to the dynamical Diff (�)-equivariance of (2.16) and
are a counterpart of the existence of the solitonic solutions of the Ricci flow. It is
then natural to bypass such difficulties by adopting a strategy akin to the one used by
G. Perelman in handling Ricci flow Diff (�)-solitons. In particular, in order to have
an a priori control on the L2(�β, g(β)) decomposition (2.45), we shall characterize
the (backward) flow which is conjugated to the Diff (�)-soliton solutions of (2.28),
described by Lemma 2.3.

3. The conjugate linearized Ricci flow

Let β �→ (�, gab(β)), 0 ≤ β ≤ β∗, β∗ ∈ [0, T0) be a given Ricci flow metric of
bounded geometry, and let (M4

Par � � ×[0, β∗], (4)gpar ) denote the corresponding
parabolic spacetime. Through the diffeomorphism F−1

β : M4
par → I × � (see

(2.5)), any (β, x) �→ Bab(β, x), with Bab(β, x) ∈ C∞(�, ⊗2T ∗�), can be seen as
an element of the space of symmetric bilinear forms on M4

Par, C∞(M4
Par, ⊗2T ∗M4

Par).
Since the volume form on M4

Par is given by the
product measure dµg(β) dβ, we can consider, on C∞(M4

Par, ⊗2T ∗M4
Par), the

L2(M4
Par,

(4)gpar ) inner product

∫ β∗

0

∫
�

gia(β)gkb(β) Hik(β) Bab(β) dµg(β) dβ , (3.1)

between Hik(β) and Bab(β) ∈ C∞(�, ⊗2T ∗�). Similarly, we can also define the
natural pairing ∫ β∗

0

∫
�

Hab(β) Bab(β) dµg(β) dβ , (3.2)

between Hab(β) ∈ C∞(�, ⊗2T �) and Bab(β) ∈ C∞(�, ⊗2T ∗�). Let us con-
sider the operator

©L
.= ∂

∂β
− �L , (3.3)

acting on the space of β-dependent symmetric bilinear forms C∞(�, ⊗2T ∗�) ⊂
C∞(M4

Par, ⊗2T ∗M4
Par). According to Lemma 2.3, Ker ©L ∩ Im δ∗

g characterizes
the solitonic solutions of the (reduced) linearized Ricci flow (2.28). Let us compute
its L2(M4

Par,
(4)gpar ) conjugate ©∗

L , thought of as acting on the space of symmetric
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two-tensors with compact support. From the relation∫ β∗

0

∫
�

Hab(β)
∂

∂β
Bab(β)dµg(β) dβ

=
∫ β∗

0

d

dβ

∫
�

Hab Bab dµg dβ

+
∫ β∗

0

∫
�

Bab

(
− ∂

∂β
Hab + R Hab

)
dµg dβ

=
∫ β∗

0

∫
�

Bab

(
− ∂

∂β
Hab + R Hab

)
dµg dβ ,

(3.4)

(where we have exploited the Ricci flow evolution for dµg and the time-boundary
condition Hab ∈ C∞

0 (M4
Par, ⊗2T M4

Par)), and∫ β∗

0

∫
�

Hab(β) (−�L) Bab(β) dµg(β) dβ

=
∫ β∗

0

∫
�

Bab(β) (−�L) Hab(β) dµg(β) dβ ,

(3.5)

(where we have exploited the fact that �L is formally self-adjoint on each (�,g(β))),
we compute ∫ β∗

0

∫
�

Hab(β) ©L Bab(β) dµg(β) dβ

=
∫ β∗

0

∫
�

Hab
(

∂

∂β
− �L

)
Bab dµg dβ

=
∫ β∗

0

∫
�

Bab

(
− ∂

∂β
− �L + R

)
Hab dµg dβ

=
∫ β∗

0

∫
�

Bab(β) ©∗
L Hab(β) dµg(β) dβ .

(3.6)

Thus,

©∗
L

.= − ∂

∂β
− �L + R . (3.7)

The following results provide the geometrical meaning of ©∗
L .

Lemma 3.1. Let β �→ (�, g(β)), 0 ≤ β ≤ β∗, be a Ricci flow of bounded geom-
etry, and let Ker δg denote the corresponding β-dependent subspace of divergence-
free 2-tensor fields Hab(β) ∈ C∞(�, ⊗2T �), then Ker δg is an invariant subspace
for ©∗

L , i.e.
©∗

L

(
Ker δg

) ⊂ Ker δg , (3.8)

for all β ∈ [0, β∗].
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Proof. The commutation formula (2.42) provides

∇a�L Hab = �∇a Hab + Haj∇bRaj − Rb
a∇ j Haj − 2Haj∇ jRb

a , (3.9)

whereas along the Ricci flow we have

−∇a
∂

∂β
Hab = − ∂

∂β

(
∇a Hab

)
− Hrb∇rR − Har∇aRb

r − Har∇rRb
a + Hra∇bRar .

(3.10)

Inserting these relations into the expression for ∇a
(©∗

L Hab
)
, and cancelling terms,

we easily get

∇a

(
©∗

L Hab
)

= −∇a

[(
∂

∂β
+ �L − R

)
Hab

]
= −

(
∂

∂β
+ � − R

)
∇a Hab + Rb

a∇ j Haj ,

(3.11)

(note that the Laplacian in the last line is the rough Laplacian).
Thus, if ∇a Hab(β) = 0 then ∇a

(©∗
L Hab(β)

) = 0.

As expected under L2-duality, the action of ©∗
L on Im δ∗

g parallels the rather com-
plicate action of ©L on Ker δg . In particular, for the Lie derivative along a gradient
vector field Xa(η)

.= gak ∇k f , with f ∈ C∞(�, R), we have:

Lemma 3.2. Let (Hess f (β))ab .= gia(β)gkb(β) ∇i∇k f (x, β), be the (contravari-
ant) Hessian of a β-dependent function f ∈ C∞(�, R), then along the Ricci flow
β �→ gab(β) on � × [0, β∗] we have

©∗
L (Hess f (β))ab = ∇a ∇b

(
∂

∂β
+ � − R

)
f +

+ 2 ∇i

(
Ria ∇b f

)
+ 2 ∇k

(
Rkb ∇a f

)
+ 2

(
∇aRb

l + ∇bRa
l − ∇lRab

)
∇l f.

(3.12)

Note in particular that the component of ©∗
L (Hess f (β)) on Im δ∗

g is generated by

the L2(M4
Par)-adjoint

�∗ .= −
(

∂

∂β
+ � − R

)
, (3.13)

of the scalar heat operator

� .=
(

∂

∂β
− �

)
. (3.14)
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Proof. The proof of (3.12) is a long but routine computation exploiting the Ricci
flow identity

∇i ∇k

(
∂

∂β
+ �

)
f =

(
∂

∂β
+ �L

)
∇i ∇k f

− 2 (∇iRkl + ∇kRil − ∇lRik) ∇l f ,

(3.15)

(for this latter see [21, Chapther 2, Section 5]).

Consider the set of covector fields �v(β) ∈ C∞(M4
Par, T ∗M4

Par) obtained as solutions
of

∂

∂β
va(β) = �va(β) − Rb

avb(β),

va(β = 0) = v
(0)
a ,

(3.16)

where the initial �v(0) varies in C∞(�, T ∗�). According to Lemma 2.3, these flows
describe all possible solitonic solutions L�v(β)gab(β) of the linearized Ricci flow
(2.28). Let Hab(β), β ∈ [0, β∗], be a β-dependent 2-tensor field, and let us consider
the pairing ∫

�

Hab(β)L�v(β) gab(β) dµg(β) , (3.17)

for every 0 ≤ β ≤ β∗. By differentiating (3.17), and exploiting (2.40 ), we get

d

dβ

∫
�

Hab(β)L�v(β)gab(β)dµg(β)

=
∫

�

[
L�vgab

∂

∂β
Hab + Hab (�L − R) L�v gab

]
dµg

= −
∫

�

L�v gab ©∗
L Hab dµg,

(3.18)

which implies∫
�

Hab(β)L�v(β)gab(β)dµg(β)

∣∣∣∣
β∗

−
∫

�

Hab(β)L�v(β)gab(β)dµg(β)

∣∣∣∣
β=0

= −
∫ β∗

0

∫
�

L�v gab ©∗
L Hab dµg dβ.

(3.19)

Thus, if we evolve Hab(β) according to the flow

©∗
L Hab(β) = 0 , (3.20)

the inner product (3.17) will be preserved along the evolution, i.e.∫
�

Hab L�v gab dµg

∣∣∣∣
β∗

=
∫

�

Hab L�v gab dµg

∣∣∣∣
β=0

. (3.21)
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Since any solution β �→ gab(β) of the Ricci flow on �β × [0, β∗] can be converted
into a solution η �→ gab(η) of the backward Ricci flow on �η × [0, β∗] by the time
reversal β �→ η

.= β∗ − β, the above remarks motivate the following:

Definition 3.3. Let η �→ gab(η), η
.= β∗ − β, a backward Ricci flow on �η ×

[0, β∗], then the conjugated evolution ©∗
L Hab = 0, of a symmetric bilinear form

Hab(η = 0), along η �→ gab(η) takes the form of the parabolic initial value problem

∂

∂η
Hab = �L Hab − RHab ,

Hab(η = 0) = Hab∗ .

(3.22)

Note that, according to the backward β-parabolic character of the operator ©∗
L(β),

the initial data Hab(η = 0) = Hab∗ in (3.22) correspond to β = β∗. Lemma 3.1
trivially extends to the evolution (3.22) and we have the:

Corollary 3.4. If η �−→ Hab(η), 0 ≤ η ≤ β∗, is the solution of the parabolic
initial value problem (3.22) with ∇a Hab∗ = 0, then ∇a Hab(η) = 0, ∀η ∈ [0, β∗].
Moreover, we have the following result that explicitly shows that (3.22) is conju-
gated to (2.28).

Proposition 3.5. Let η �→ Hab(η), η ∈ [0, β∗], Hab(η = 0) = Hab∗ , be a so-
lution of the parabolic initial value problem (3.22). Also, let β �→ h̃ab(β), β ∈
[0, β∗], h̃ab(β = 0) = hab(β = 0) be a solution of reduced linearized Ricci
flow (2.28). Then, along the backward Ricci flow η �→ gab(η), η

.= β∗ − β,
on �η × [0, β∗], the flows η �→ Hab(η) and η �→ h̃ab(η) := h̃ab(β

∗ − β) are
L2(M4

Par) conjugated, in the sense that

d

dη

∫
�

Hab(η) h̃ab(η) dµg(η) = 0 . (3.23)

In particular,∫
�

Hab(η) h̃ab(η) dµg(η)

∣∣∣∣
η=0

=
∫

�

Hab(η) h̃ab(η) dµg(η)

∣∣∣∣
η=β∗

. (3.24)

Proof. A direct computation provides

d

dη

∫
�

Hab(η) h̃ab(η) dµg(η) =
∫

�

(
�L Hab − RHab

)
h̃ab dµg

+
∫

�

Hab (−�L h̃ab + h̃ab R
)

dµg = 0.

(3.25)
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This result and corollary 3.4 directly imply the:

Proposition 3.6. let η �→ (�, g(η)), 0 ≤ η ≤ β∗, be a backward Ricci flow of
bounded geometry. Assume that C∞(�η, ⊗2T ∗�η) ⊃ Ker δg �= ∅, 0 ≤ η ≤
β∗. Let η �→ Hab

(T )(η), ∇a Hab
(T )(η) = 0, η ∈ [0, β∗], Hab

(T )(η = 0) = Hab∗ , with

δg Hab∗ = 0, be a divergence-free solution of the parabolic initial value problem
(3.22). If β �→ h̃ab(β), β ∈ [0, β∗], h̃ab(β = 0) = hab(β = 0) denotes a solution
of reduced linearized Ricci flow (2.28), and η �→ h̃(T )

ab (η) := h̃(T )
ab (β∗ − β) is its

divergence-free part along η �→ (�, g(η)), then∫
�

Hab
(T )(η) h̃(T )

ab (η) dµg(η) , (3.26)

is constant along the coupled backward evolution η �→ (
gab(η), h̃ab(η)

)
.

Proof. By writing h̃ab(η) = h̃(T )
ab (η) + LX (η) gab(η), for some η-dependent vector

field X (η), and exploiting the L2-orthogonality between Hab
(T )(η) and LX (η) gab(η),

we get
∫
�

Hab
(T )(η) h̃ab(η) dµg(η) = ∫

�
Hab

(T )(η) h̃(T )
ab (η) dµg(η).

Thus, the conjugated flow (3.22) provides the directions in C∞(�β, ⊗2T ∗�β)

along which the non-trivial solutions β �→ h̃(T )
ab (β) of the linearized Ricci flow

(2.28) propagate without dissipation in the L2 sense. In this connection notice also
that along the the conjugated flow (3.22) we have the following monotonicity result:

Proposition 3.7. Let η �→ gab(η), η
.= β∗ − β, a backward Ricci flow of bounded

geometry on �η × [0, β∗] with R(η) ≥ 0, η
.= β∗ − β, where R(η) denotes the

scalar curvature of (�, g(η)). If η �→ Hab(η), η ∈ [0, β∗], Hab(η = 0) = Hab∗ ,
denotes a solution of the parabolic initial value problem (3.22) with δg(η)H(η) �= 0,
then

d

dη

∫
�

∣∣δg(η)H(η)
∣∣2

dµg(η) ≤ 0 , (3.27)

where
∣∣δg(η)H(η)

∣∣2 .= ∇a Hab(η) ∇c Hcd(η) gbd(η).

Proof. From (3.11) we get

∂

∂η
∇a Hab = �∇a Hab − R∇a Hab − Rb

a∇ j Haj , (3.28)

from which we compute

∂

∂η

∣∣δg(η)H(η)
∣∣2= 2gbd∇c Hcd�

(
∇a Hab

)
− 2R

∣∣δg(η)H(η)
∣∣2

= �
∣∣δg(η)H(η)

∣∣2 − 2
∣∣∇δg(η)H(η)

∣∣2 − 2R
∣∣δg(η)H(η)

∣∣2
,

(3.29)
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where
∣∣∇ δg(η)H(η)

∣∣2 .= ∇i
(∇a Hab

) ∇ i
(∇c Hcd

)
gbd . By integrating, and taking

into account that along the backward Ricci flow ∂
∂η

dµg(η) = R dµg(η), we get

d

dη

∫
�

∣∣δg(η)H(η)
∣∣2

dµg(η) = −
∫

�

R
∣∣δg(η)H(η)

∣∣2
dµg(η)

− 2
∫

�

∣∣∇ δg(η)H(η)
∣∣2

dµg ≤ 0 .

(3.30)

Since non-negative scalar curvature is preserved along the Ricci flow, the require-
ment R(η) ≥ 0, η

.= β∗ − β, in the above result is not particularly restrictive.
In particular, it can be easily removed by weighting the Riemannian measure dµg
with a positive solution of the forward conjugate scalar heat equation (I wish to
thank Lei Ni for this latter remark). According to Proposition 3.5, it also follows
that (3.28) is the backward flow L2(M4

Par)-conjugated to the forward evolution for
covector fields defined by Lemma 2.3.

These elementary aspects of the L2(M4
Par) conjugacy relation have an impor-

tant and rather unexpected consequence, which implies that the conjugate linearized
Ricci flow averages out the full Ricci flow:

Proposition 3.8. Let β �→ (�, g(β)), β ∈ [0, β∗] be a Ricci flow of bounded ge-
ometry, and let β �→ Rab(β) be the corresponding β-evolution of the Ricci tensor.
Denote by η �→ Hab(η), η ∈ [0, β∗], Hab(η = 0) = Hab∗ the solution of the
parabolic initial value problem (3.22) associated with the given β �→ (�, g(β)).
Then,

d

dη

∫
�

Hab(η)Rab(η) dµg(η) = 0 , (3.31)

and
d

dη

∫
�

(gab(η) − 2ηRab(η)) Hab(η) dµg(η) = 0 , (3.32)

along the backward Ricci flow. In particular, this implies∫
�

Hab Rab dµg

∣∣∣∣
η=0

=
∫

�

Hab(η)Rab(η) dµg(η) , (3.33)

and ∫
�

Hab gab dµg

∣∣∣∣
η=0

=
∫

�

(gab(η) − 2ηRab(η)) Hab(η) dµg(η) , (3.34)

for every 0 ≤ η ≤ β∗.
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Proof. It is easily checked that the forward evolution for the Ricci curvature

∂

∂β
Ri j = �Ri j − 6gklRilRk j + 3RRi j + 2gi jRklRkl − gi j R2 , (3.35)

can be expressed directly in terms of the Lichnerowicz-de Rham Laplacian as

∂

∂β
Ri j = �LRi j . (3.36)

Thus, from (3.22) we get

d

dη

∫
�

Hab(η)Rab(η) dµg(η)

=
∫

�

{
Rab

∂

∂η
Hab + Hab ∂

∂η
Rab + Hab Rab R

}
=

∫
�

{
Rab

[
�L Hab − R Hab

]
− Hab �LRab + Hab Rab R

}
dµg

=
∫

�

{
−Hab �L Rab + Rab �L Hab

}
dµg = 0 ,

(3.37)

from which (3.31) follows. Relation (3.32) follows similarly by observing that,
since η �→ gab(η) is covariantly constant, we can write

∂

∂η
(gab(η) − 2ηRab(η)) = − �L (gab(η) − 2ηRab(η)) . (3.38)

This result has an interesting converse:

Remark 3.9. Let η �→ gab(η) ∈ Met (�) be a one-parameter family of evolving
metrics on � × [0, β∗], not identified a priori with a backward Ricci flow. Let
η �→ (

gab(η) , Hab(η)
)

be the corresponding solution of the heat equation

η �→ gab(η) , 0 ≤ η ≤ β∗ ,

∂

∂η
Hab = �L Hab − RHab ,

Hab(η = 0) = Hab∗ , Hab∗ ∈ C∞(�, ⊗2 T �) .

(3.39)

Then among all possible such flows η �→ (
gab(η) , Hab(η)

)
, the backward Ricci

flow η �→ gab(η), ∂
∂η

gab(η) = 2Rab is characterized by the condition

d

dη

∫
�

gab Hab dµg(η) = 2
∫

�

Rab Hab dµg(η) . (3.40)
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Proof. A direct computation provides

d

dη

∫
�

gab Hab dµg(η)

=
∫

�

Hab
(

∂

∂η
gab − Rgab + 1

2
gabgik ∂

∂η
gik

)
dµg(η),

(3.41)

which yields 2
∫
�
Rab Hab dµg(η), for every possible solution η �→ Hab(η) of

(3.39), iff
∂

∂η
gab(η) = 2Rab . (3.42)

It is important to stress that actually the above results (as most results in this paper)
hold in any dimension n ≥ 3, this is true in particular for Propositions 3.5, 3.6, 3.7,
and 3.8.

Now we turn to the analysis of the conjugate flow η �→ (gab(η), Hab(η)) in its
role as the Ricci flow integral kernel.

4. The conjugate backward heat kernel

The averaging properties of the conjugate linearized Ricci flow become manifest
when we identify the flow η �→ Hab(η) with the heat kernel of ©∗

L along the
backward Ricci flow η �→ gab(η). To fix notation, let (⊗2T �) � (⊗2T ∗�)

denote the bundle over � × � whose fiber over (y, x) ∈ � × � is given by(⊗2T � � ⊗2T ∗�
)
(y,x)

= (⊗2T �)y ⊗ (⊗2T ∗�)x . Wheras for notational sim-
plicity we keep on assuming n = 3, it is perhaps appropriate to stress here once
more that the results which follow actually hold in any dimension n ≥ 3, with the
obvious changes in the range of tensorial indices involved. Let Uβ ⊂ (�β, g(β))

be a geodesically convex neighborhood containing the generic point x ∈ �β . For
a chosen base point y ∈ Uβ , let lβ(y, x) denote the unique g(β)-geodesic seg-
ment x = expy u, with u ∈ Ty�, connecting y to x . Parallel transport along
lβ(y, x) allows to define a canonical isomorphism between the tangent space Ty�β

and Tx�β which maps any given vector �v(y) ∈ Ty�β into a corresponding vector
�vPlβ (y,x)

∈ Tx�β . If {e(h)(x)}h=1,2,3 and {e(k′)(y)}k′=1,2,3 respectively denote basis
vectors in Tx�β and Ty�β (henceforth, primed indexes will always refer to com-
ponents of elements of the tensorial algebra over Ty�β ), then the components of
�vPlβ (y,x)

can be expressed as(
vPlβ (y,x)

)k
(x) = τ k

h′(y, x; β) vh′
(y) , (4.1)

where τ k
h′ ∈ T �β � T ∗�β denotes the bitensor associated with the parallel trans-

port along lβ(y, x). The Dirac p-tensorial measure in Uβ ⊂ (�β, g(β)) is defined
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according to

δ
k1...kp

h′
1...h

′
p
(y, x; β) := ⊗p

(α=1) τ
kα

h′
α
(y, x; β) δβ(y, x) , (4.2)

where δβ(y, x) is the standard Dirac measure over the Riemannian manifold
(�β, g(β)) (see [44]). If (�, gab(η)) is a smooth solution to the backward Ricci
flow on �η × [0, β∗] with bounded curvature, then we can consider the g(η)-
dependent fundamental solution K ab

i ′k′(y, x; η) to the conjugate heat equation (3.22),
i.e., (

∂

∂η
− �

(x)
L + R

)
K ab

i ′k′(y, x; η) = 0 ,

lim
η↘0+ K ab

i ′k′(y, x; η) = δab
i ′k′(y, x; ) ,

(4.3)

where (y, x; η) ∈ (� ×�\Diag(� ×�))×[0, β∗], η
.= β∗ −β, �

(x)
L denotes the

Lichnerowicz-de Rham laplacian with respect to the variable x , and K ab
i ′k′(y, x; η)

is a smooth section of (⊗2T �) � (⊗2T ∗�). The Dirac initial condition is under-
stood in the distributional sense, i.e., for any smooth symmetric bilinear form with
compact support wi ′k′ ∈ C∞

0 (�, ⊗2T �),∫
�η

K ab
i ′k′(y, x; η) wi ′k′

(y) dµ
(y)

g(η) → wab(x) as η ↘ 0+ , (4.4)

where the limit is meant in the uniform norm on C∞
0 (�, ⊗2T �). Note that the

elliptic generator, associated with ∂
∂η

− �
(x)
L + R, is the operator of Laplace type

on (�, g(η)) defined by �η + F(η) = �L − R where �η is the rough Lapla-
cian on (�, g(η)). The η-dependent endomorphism F(η) : C∞(�η, ⊗2T ∗ �η) →
C∞(�η, ⊗2T ∗ �η) is related to the endomorphism E , characterizing �L , by F ik

ab =
E ik

ab − R δik
ab, i.e. (see (2.19)),

F ik
ab(η)

.= −3Ri
aδk

b − 3Rk
bδ

i
a + 2Rik gab + 2

(
Rab − 1

2
Rgab

)
gik , (4.5)

where all geometric quantities refer to (�, g(η)). In analogy with the spectral prop-
erties of the Lichnerowicz-de Rham Laplacian recalled in Section 2.1, the spectral
theorem [29] implies that the operator

Pη
.= − (

�η + F(η)
) = −�L + R , (4.6)

has, for each given η ∈ [0, β∗], a discrete, finite multiplicity, spectral resolution{
φik

(n)(η), λ(n)(η)
}

, with λ(1)(η) ≤ λ(2)(η) ≤ . . . ∞ contained in [−C(η), ∞),
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where the constant C(η) depends on the geometry of (�, g(η)), and where{
φik

(n)(η)
}

, φik
(n)(η) ∈ C∞(�η, ⊗2T ∗ �η), with

− (
�η + F(η)

)
φik

(n)(η) = λ(n)(η) φik
(n)(η) , (4.7)

denotes the corresponding set of eigentensors providing a complete orthonormal
basis for L2(�η, ⊗2T ∗ �η). The η-dependence of {φik

(n)(η), λ(n)(η)} makes the

characterization of K ab
i ′k′(y, x; η) via the spectral theorem (see e.g., [29] and [1])

very delicate, and to prove the existence of K ab
i ′k′(y, x; η) is preferable to exploit

parametrix-deformation methods. These are readily available since, along a back-
ward Ricci flow on �η × [0, β∗] with bounded geometry, the metrics gab(η) are
uniformly bounded above and below for 0 ≤ η ≤ β∗, and it does not really matter
which metric we use in topologizing the spaces C∞(�η, ⊗2T ∗ �η). In particular,
heat kernels for generalized Laplacians, such as �η + F(η) (smoothly) depend-
ing on a one-parameter family of metrics ε �→ gab(ε), ε ≥ 0, are briefly dealt
with in [7]. The delicate setting where the parameter dependence is, as in our case,
identified with the parabolic time driving the diffusion of the kernel, is discussed
in [21, 34] (see Appendix A, Section 7 for a characterization of the parametrix of
the heat kernel in such a case), and in a remarkable paper by N. Garofalo and E.
Lanconelli [28]. Strictly speaking, in all these works, the analysis is confined to
the scalar laplacian, possibly with a potential term, but the theory readily extends
to generalized laplacians, always under the assumption that the metric gab(β) is
smooth as ↗ β∗. In particular, the case of generalized Laplacian on vector bundles
with time-varying geometry has been studied in considerable detail by P. Gilkey
and collaborators [31, 32]. By adapting to our more general setting the methods
used in [34] and in [21], when treating the scalar time-dependent Laplacian, we get
the following:

Theorem 4.1. Along a backward Ricci flow on �η × [0, β∗] with bounded geome-
try, there exists a unique fundamental solution η �−→ K ab

i ′k′(y, x; η) of the tensorial

heat operator ( ∂
∂η

− �
(x)
L + R).

Proof. The proof (kindly provided by Stefano Romano), is a quite lengthy con-
struction of the the heat kernel of a time-dependent generalized Laplacian. It is
presented in the appendix.

The kernel K ab
i ′k′(y, x; η) is singular as η0 → 0, and the general strategy for dis-

cussing its η ↘ 0+ asymptotics is, again, to model the corresponding parametrix

around the Euclidean heat kernel (4π η)− 3
2 exp(− d2

0 (y,x)

4η
) defined in Ty� by means

of the exponential mapping associated with the initial manifold (�, gab(η = 0)). To
this end, denote by dη(y, x) the (locally Lipschitz) distance function on (�, gab(η))

and by in j (�, g(η)) the associated injectivity radius. Adopt, with respect to the
metric gab(η), geodesic polar cordinates about y ∈ �, i.e., x j ′ = dη(y, x) u j ′ ,
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with u j ′ coordinates on the unit sphere S2 ⊂ Ty�. By adapting the analysis
in [21, 28], and [31, 32] to (4.3) we have that, as η ↘ 0+, and for all (y, x) ∈ �

such that d0(y, x) < in j (�, g(0)), there exists a sequence of smooth sections
�[h] ab

i ′k′ (y, x; η) ∈ C∞(� × �′, ⊗2T � � ⊗2T ∗�), with �[0] ab
i ′k′ (y, x; η) =

τ ab
i ′k′ (y, x; η), such that

exp

(
− d2

0 (y,x)

4η

)
(4π η)

3
2

N∑
h=0

ηh�[h] ab
i ′k′ (y, x; η) , (4.8)

is uniformly asymptotic to K ab
i ′k′(y, x; η), i.e.,∣∣∣∣∣∣∣∣K

ab
i ′k′(y, x; η) −

exp

(
− d2

0 (y,x)

4η

)
(4π η)

3
2

N∑
h=0

ηh�[h] ab
i ′k′ (y, x; η)

∣∣∣∣∣∣∣∣
η↘0+

(4.9)

= O
(
ηN− 1

2

)
,

in the uniform norm on C∞(� × �′, ⊗2T � × ⊗2T ∗�). A detailed presenta-
tion of the η ↘ 0+ asymptotics of generalized Laplacians on vector bundles with
time-varying geometries is discussed in [31, 32]. It is worthwhile recalling that the
asymptotics for the Laplace Beltrami operator plays a key role in discussing Li-
Yau-Hamilton type inequalities for the scalar conjugate heat equation in Ricci flow
theory (see e.g., [25, 46, 49]).

The heat kernel K ab
i ′k′(y,x;η) can be naturally normalized along the η-expanding

soliton on S3 according to:

Lemma 4.2. Let ḡab the round metric on the unit 3-sphere S3, and, for η ∈ [0, β∗],
let η �→ 4 (T0 −β∗ +η) ḡab be the expanding Ricci soliton on S3 with initial radius
r(η = 0) = 2

√
T0 − β∗ and final radius r(η = β∗) = 2

√
T0. Then, along such a

backward Ricci flow the heat kernel K ab
i ′k′(y, x; η) scales according to

r(η)3

3

∫
�

ḡi ′k′
(y) K ab

i ′k′(y, x; η) ḡab(x) dµ̄g(x) = 1 , (4.10)

where dµ̄g(x,η) is the volume element on (S3, ḡab).

Proof. From Proposition 3.8 we get that along the backward Ricci flow η �→
4 (T0 − β∗ + η) ḡab we can write, for all 0 ≤ η ≤ β∗,

Ri ′k′(y, η = 0) = lim
η↗0+

∫
�

K ab
i ′k′(y, x; η)Rab(x, η) dµg(η)

=
∫

�

K ab
i ′k′(y, x; η)Rab(x, η) dµg(η).

(4.11)
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Since the Ricci tensor is scale invariant we have Ri ′k′(y, η = 0) = 2 ḡi ′k′(y, η = 0)

and Rab(x, η) = 2 ḡab(x, η), moreover dµg(x,η) = r3(η) dµ̄g(x). By inserting
these expressions in (4.11), and tracing both members with respect to ḡi ′k′

(y, η =
0), we get the stated result.

Under natural assumptions on the curvature of the supporting backward Ricci flow,
the kernel K ab

i ′k′(y, x; η) also exhibits point-wise positivity properties according to
the following:

Lemma 4.3. If (�, gab(η)) is a smooth solution to a backward Ricci flow of
bounded geometry on �η × [0, β∗] with non-negative curvature operator, then
K ab

i ′k′(y,x;η), 0≤η≤β∗, is a positive integral kernel, i.e., K ab
i ′k′(y,x;η)vi ′(y)vk′

(y),
∀v ∈ Ty�, is a positive-definite quadratic form at T ∗

(x,η)�, for any (x, η) ∈
� × [0, β∗].
Proof. We exploit the Uhlenbeck trick in order to rewrite the evolution for
K ab

i ′k′(y, x; η) in a form making the proof of the positivity of K ab
i ′k′(y, x; η) manifest

under the stated assumptions. To this end, choose orthonormal sections {e(µ)}µ=1,2,3

for (T �, g(η = 0)) (locally e(µ)|U = ιkµ∂i ), and let us denote by ιαa the components
of the orthonormal (co)-basis {θ(α)} dual to {e(µ)}. It is easily seen that the evolu-
tion along the backward time η of ιkµ and ιαa , consistent with the forward β evolution
(2.10) of an orthonormal basis, is provided by

∂

∂η
ιkµ = −Rk

h ιhµ ,
∂

∂η
ιαa = Rk

a ιαk . (4.12)

With these preliminary remarks along the way, let us define

K
αβ

γ ′δ′(y, x; η)
.= ιαa (x, η)ι

β
b (x, η)K ab

c′d ′(y, x; η)ιc
′

γ ′(y, η = 0)ιd
′

δ′ (y, η = 0), (4.13)

and consider the η-evolution of K
αβ

γ ′δ′(y, x; η) (note that the primed indices do not

carry η-dependence since the orthonormal basis vectors {ιc′
γ ′ ∂c′ } refer to the fixed

spacetime point (y, η = 0)). From the defining equation (4.3) and Lemma 2.1
(applied to the η-evolution), we get (suppressing the η-dependence for notational
ease),

∂

∂η
K

αβ

γ ′δ′ = �DK
αβ

γ ′δ′ − RK
αβ

γ ′δ′

+ Eαβ
γ δ K

γ δ

γ ′δ′ + ιaµRk
aιαk K

µβ

γ ′δ′ + ιaµRk
aι

β
k K

αµ

γ ′δ′,
(4.14)

with Eαβ
γ δ (x, η)

.= ιαa (x, η)ι
β
b (x, η)Eab

cd (x, η)ιcγ (x, η)ιdδ (x, η). Since E jk
ab =−R j

aδk
b −

Rk
b δ

j
a + 2R j k

a b, the above expression reduces to

∂

∂η
K

αβ

γ ′δ′ = �D K
αβ

γ ′δ′ + 2 R
αβ
γ δ K

γ δ

γ ′δ′ − RK
αβ

γ ′δ′ , (4.15)
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where we have set R
αβ
γ δ(x, η)

.= ιαa (x, η)ι
β
b (x, η)Rab

cd (x, η)ιcγ (x, η)ιdδ (x, η). For

η ↘ 0+, K
αβ

γ ′δ′ approaches, in the distributional sense, the positive integral ker-

nel δ
αβ

γ ′δ′(x, y; η = 0), thus, Hamilton’s maximum principle [38] implies that if
η �→ gab(η), 0 ≤ η < β∗ ⊂ [0, T0), is a backward Ricci flow with non-negative
curvature operator, then K

αβ

γ ′δ′ , and consequently K ab
i ′k′(y, x; η), remains a positive

integral kernel for every η ∈ (0, β∗].

5. An Integral representation of the Ricci flow

We are now in a position to apply Proposition 3.8 to the heat kernel solution of
(4.3). We have:

Proposition 5.1. Let η �→ gab(η) be a backward Ricci flow with bounded ge-
ometry on �η × [0, β∗], and let K ab

i ′k′(y, x; η) be the (backward) heat kernel of
the corresponding conjugate linearized Ricci operator ©∗

L K ab
i ′k′(y, x; η) = 0, for

η ∈ (0, β∗], with K ab
i ′k′(y, x; η ↘ 0+) = δab

i ′k′(y, x). Then

Ri ′k′(y, η = 0) =
∫

�

K ab
i ′k′(y, x; η)Rab(x, η) dµg(x,η) , (5.1)

for all 0 ≤ η ≤ β∗. Moreover, as η ↘ 0+, we have the uniform asymptotic
expansion

Ri ′k′(y, η = 0)

1

(4π η)
3
2

∫
�

exp

(
−d2

0 (y, x)

4η

)
τ ab

i ′k′(y, x; η)Rab(x, η) dµg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫
�

exp

(
−d2

0 (y, x)

4η

)
�[h]ab

i ′k′(y, x; η)Rab(x, η) dµg(x,η)

+ O
(
ηN− 1

2

)
,

(5.2)

where τ ab
i ′k′(y, x; η) ∈ T �η � T ∗�η is the parallel transport operator associated

with (�, g(η)).

Proof. From Proposition 3.8 we get that along the backward Ricci flow on � ×
[0, β∗], we can write, for all 0 ≤ η ≤ β∗,

Ri ′k′(y, η = 0) = lim
η↗0+

∫
�

K ab
i ′k′(y, x; η)Rab(x, η) dµg(η)

=
∫

�

K ab
i ′k′(y, x; η)Rab(x, η) dµg(η) .

(5.3)

Since the asymptotics (4.8) is uniform, we can integrate term by term, and by iso-
lating the lower order term, we immediately get (5.2).
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This result illustrates the averaging properties of the backward conjugated heat ker-
nel η �→ K ab

i ′k′(y, x; η) for the Ricci curvature of the forward flow β �→ gab(β).
More explicitly, since Rab(x, η) = Rab(x, β∗ − η) and dµg(η) = dµg(β∗− η), we
can equivalently rewrite (5.1) along the forward Ricci flow as

Ri ′k′(y, β∗) =
∫

�

K ab
i ′k′(y, x; (β∗ − β))Rab(x, β) dµg(β)

∣∣∣∣
β=0

, (5.4)

which expresses the Ricci tensor at the point y and at time β = β∗ as a backward
heat kernel average of the initial Ricci tensor.

Note that a representation structurally similar to (5.2) holds also for the solu-
tion h̃i ′k′(y, η = 0) of the linearized Ricci flow (2.28), i.e.,

h̃i ′k′(y, η = 0)

= 1

(4π η)
3
2

∫
�

exp

(
−d2

0 (y, x)

4η

)
τ ab

i ′k′(y, x; η) h̃ab(x, η) dµg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫
�

exp

(
−d2

0 (y, x)

4η

)
�[h]ab

i ′k′(y, x; η)̃hab(x, η)dµg(x,η)

+ O
(
ηN− 1

2

)
.

(5.5)

By exploiting again Proposition 3.8 it is also straightforward to provide an integral
representation of the full Ricci flow in terms of the heat kernel K ab

i ′k′(y, x; η). Since
lim η↘0+

∫
�

K ab
i ′k′(y, x; η) gab(x, η) dµg(η) = gi ′k′(y, η = 0), the identity (3.34),

applied to K ab
i ′k′(y, x; η)), directly provides the:

Proposition 5.2. Under the same hypotheses of Proposition 5.1 we have the fol-
lowing integral representation of the backward Ricci flow on �η × (0, β∗]

gi ′k′ (y, η = 0) =
∫

�

K ab
i ′k′(y, x; η)

[
gab(x, η) − 2η Rab(x, η)

]
dµg(x,η) , (5.6)

for all 0 ≤ η ≤ β∗.
Moreover, as η ↘ 0+, we have the asymptotics

gi ′k′(y, η = 0)

= 1

(4π η)
3
2

∫
�

e− d2
0 (y,x)

4η τ ab
i ′k′(y, x; η)

[
gab(x, η) − 2ηRab(x, η)

]
dµg(x,η)

+
N∑

h=1

(η)h

(4πη)
3
2

∫
�

e− d2
0 (y,x)

4η �[h]ab
i ′k′(y,x;η)[gab(x, η)−2ηRab(x,η)]dµg(x,η)

+ O
(
(η)N− 1

2

)
,

(5.7)

where d2
0 (y, x), τ ab

i ′k′(y, x; η), and �[h]ab
i ′k′(y, x; η) are evaluated on (�, g(η = 0)).
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Proof. From Proposition 3.8, taking the limit η ↘ 0+, we get

gi ′k′(y, η=0)=
∫

�

K ab
i ′k′(y, x; η)

[
gab(x, η)−2ηRab(x, η)

]
dµg(x,η)

∣∣∣∣∀ η>0
, (5.8)

which provides (5.6). The asymptotics follows again from (4.8) under integration
term by term and time reversal.

Note that explicit expressions for the asymptotic coefficients �[h]ab
i ′k′(y, x; β∗) can

be worked out, at least for the first few terms, by adapting the relevant formulae
in the quoted Gilkey’s papers. An interesting application that we will not address
here but which seems appropriate to mention at this point is the possibility of (re)-
deriving Harnack type estimates, under non-negative curvature assumptions, by di-
rectly using the heat kernel of the conjugate Linearized Ricci flow. This application
is immediately suggested by the relation (5.1) and its asymptotics (5.2) in Proposi-
tion 5.1.

The integral representation (5.6) of the Ricci flow metric β �→ gab(β) can be
also interpreted as the proof of the following:

Theorem 5.3. The heat kernel flow

η �−→ K ab
i ′k′(y, x; η) (5.9)

is conjugated and thus fully equivalent to the Ricci flow β �−→ gab(β).

This can be considered as the most important consequence of the conjugacy relation
for the linearized Ricci flow. Clearly its utility is somewhat limited by the fact that
the flow η �−→ K ab

i ′k′(y, x; η) is constructed on top of the Ricci flow β �→ gab(β)

itself, and thus it does not come as a fully unexpected result. However, it opens
to the possibility of a weak formulation of the Ricci flow by exploiting the linear
evolution of η �−→ K ab

i ′k′(y, x; η).

6. Ricci flow conjugated constraint sets

To complete the geometrical picture associated with the properties of the conjugate
linearized Ricci flow, let us consider, along a Ricci flow of bounded geometry β �→
gab(β), 0 ≤ β ≤ β∗, the heat flow β �−→ �(β), associated with a smooth function
�(β = 0) = ρ0 ∈ C∞(�, R), i.e.,

∂ �

∂β
= �� , �(β = 0) = �0 . (6.1)

Recall (see (3.13)), that its L2(M4
Par)-conjugate, along the backward Ricci flow

η �→ gab(η), 0 ≤ η ≤ β∗, η
.= β∗ − β, is characterized by the flow η �→ 
(η)

defined by
∂ 


∂η
= �
 − R
 , 
(η = 0) = 
∗ , (6.2)
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where 
∗ ∈ C∞(�, R+), with
∫
�


∗ dµg(η=0) = 1. Since the Riemannian mea-
sure is covariantly constant (6.2) can be equivalently rewritten as ∂

∂η
d
 = �d
 ,

where d
(η)
.= 
(η) dµg(η) and

∫
�

d
(η) = 1, 0 ≤ η ≤ β∗. The conjugacy
between �(β) and 
(η) is associated with the conservation of the �(β)-content of
(�, gab(β)) under the flow of probability measures β �→ d
(η = β∗ − β), i.e.

d

dβ

∫
�

�(β) d
(β) = 0 . (6.3)

The properties of the conjugate heat flow [25, 46, 49] and those of the conjugate
linearized Ricci flow established in the previous sections suggest to shift emphasis
from the flows themselves to their dependence from the corresponding initial data.
Thus, along a Ricci flow of bounded geometry β �→ (�, g(β)), β ∈ [0, β∗] let
us consider the associated heat flow (β, �0) �→ �(β) and linearized Ricci flow
(β, hab) �→ h̃ab(β), as functionals of the respective initial data �(β = 0)

.= �0, and
h̃ab(β = 0)

.= hab appearing in the defining PDEs (6.1) and (2.28), respectively. In
a similar vein let us consider also, along the backward Ricci flow η �→ (�, g(η)),
η ∈ [0, β∗], η

.= β∗ − β, the conjugate flows (η, 
∗) �→ 
(η) and (η, Hab∗ ) �→
Hab(η), as functionals of the respective initial data 
(η = 0)

.= 
∗, and Hab(η =
0)

.= Hab∗ appearing in (6.2) and (3.22).
For a generic metric g ∈ Met (�), a generic symmetric bilinear form sik ∈

Tg Met (�), and a function f ∈ C∞(�, R+), let

T Met (�) × C∞(�, R) −→ R (6.4)

(gab, sik, f ) �−→ C(gab, sik, f ) = 0 ,

denote a (surjective) mapping defining a constraint set C−1(0) in T Met (�) ×
C∞(�, R), associated with a geometrical condition on the triple (gab, sik; f ).

The following definition is geometrically natural in the light of the properties
of the conjugated flows associated with the Ricci flow:

Definition 6.1. Let β �→ (�, g(β)), β ∈ [0, β∗] be a given Ricci flow of bounded
geometry, and let (β, ρ0) �−→ �(β) denote the corresponding heat flow associated
with the initial condition �(β = 0) = ρ0 ∈ C∞(�, R+). If the initial datum
h̃ab(β = 0)

.= hab for the linearized Ricci flow satisfies the geometrical constraint

C (gab(β = 0), hik, �0) = 0 , (6.5)

and the initial datum 
(η = 0)
.= 
∗, Hab(η = 0)

.= Hab∗ , for the conjugate heat
and the conjugate linearized Ricci flow, can be choosen such that

C
(

gab(η = 0), Hik∗ , 
∗
)

= 0 , (6.6)

then the constraints (6.5) and (6.6) are said to be conjugated along the given Ricci
flow.
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In order to understand the rationale of such a definition observe that we cannot
expect that a geometrical condition C(gab(β = 0), hik,�0) = 0 on the initial data
will be preserved along their Ricci flow evolution β �→ (gab(β), h̃ab(β), �(β)).
However if, along the associated backward Ricci flow η �→ gab(η), we can se-
lect initial data 
(η = 0)

.= 
∗, Hab(η = 0)
.= Hab∗ , for the conjugate flows

(6.2) and (3.22), such that C(gab(η = 0), Hik∗ , 
∗) = 0, then the conjugate flow
η �→ (gab(η), Hab(η), 
(η)) interpolates between C (gab(β = 0), hik, �0) =
0 and C

(
gab(η = 0), Hik∗ , 
∗

) = 0 by averaging the forward flow β �→
(gab(β), h̃ab(β), �(β)) according to the results obtained in Section 3, i.e.,

d

dβ

∫
�

Hab(β) h̃ab(β) dµg(β) = 0 , (6.7)

d

dβ

∫
�

Hab(β)Rab(β) dµg(β) = 0 , (6.8)

d

dβ

∫
�

Hab(β) gab(β) dµg(β) = −2
∫

�

Hab(β)Rab(β) dµg(β) , (6.9)

and
d

dβ

∫
�

�(β) d
(β) = 0 . (6.10)

A typical constraint C (gab(β = 0), hik, �0) = 0 one may wish to consider on the
triple (gab, hik, �0) is the of the form

R − |h|2 + (trg(h))2 − C �0 = 0 , (6.11)

where we have set |h|2 .= habhab, trg(h)
.= gabhab, and where C is a con-

stant. A constraint of this type occurs in general relativity (the Hamiltonian con-
straint) where it relates the matter density �0 ≥ 0, with the metric g, the scalar
curvature R and the second fundamental form hab of the Riemannian 3-manifold
(�, g) carrier of the inital data set for Einstein equations. The above character-
ization of a Ricci flow conjugated constraint set implies, in this particular set-
ting, that the Hamiltonian constraint is conjugated along a given Ricci flow β �→
(�, g(β)), β ∈ [0, β∗], if we can find triples of initial data (gab(β = 0), hik, �0)

and
(
gab(β = β∗), Hab∗ , 
∗

)
such that

R(β = 0) − |h|2β=0 + (trg(β=0)
(h))2 − C �0 = 0 , (6.12)

and
R(β = β∗) − |H∗|2β=β∗ + (trg(β=β∗)(H))2 − C 
∗ = 0 . (6.13)

In such a case, the resulting conjugate flows η �→ (gab(η), Hab(η), 
(η)) interpo-
lates between (gab(β = 0), hik, �0) and

(
gab(η = 0), Hik∗ , 
∗

)
by formally aver-

aging the Hamiltonian data (gab(β = 0), hik, �0) with the kernels
(
Hab(η), 
(η)

)
,



THE CONJUGATE LINEARIZED RICCI FLOW ON CLOSED 3-MANIFOLDS 715

i.e.,∫
�

Hab(β∗ − β) h̃ab(β)dµg(β) =
∫

�

Hab(β =0)̃hab(β =0)dµg(β=0), (6.14)

∫
�

Hab(β∗ − β)Rab(β) dµg(β) =
∫

�

Hab(β =0)Rab(β =0)dµg(β=0), (6.15)

and ∫
�

�(β) d
(β − β∗) =
∫

�

�(β = 0) d
(β = 0) . (6.16)

Thus, we can interpret the existence of a Ricci flow conjugate Hamiltonian
constraints as a statement of the possibility of averaging the initial data set
(gab(β = 0), hik, �0) over the support of the kernels

(
Hab(η), 
(η)

)
. This par-

ticular application of the conjugate flows is of potential interest in addressing the
possibility of a Ricci flow deformation of initial data sets in General Relativity, and
will be discussed in detail elsewhere.

7. Conclusions

The aspects of the conjugated linearized Ricci flow discussed here are the most
elementary consequences of the conjugacy relation in parabolic spacetime M4

Par.
However, already at this level, they suggests a number of useful and promising
applications to Ricci flow theory. Among these, the study of the stability of sin-
gularity formation is perhaps the most interesting. Let us recall that if a solu-
tion β �→ gab(β), 0 ≤ β < T0, to the Ricci flow develops a singularity at
the maximal time T0, then such a singularity is said to be a Type-I singularity if
supβ∈[0,T0)

(T0 − β)Kmax(β) < +∞, whereas it is said to be a Type-II singularity
if supβ∈[0,T0)

(T0 − β)Kmax(β) = +∞, where Kmax(β)
.= supx∈�{|Rm (x, β)|}.

The analysis of Type-II singularities is particularly difficult and only recently their
existence has been rigorously established for compact manifolds [36] (for a nice dis-
cussion on Type-II singularities see [18, 23, 27] and [58]). In particular, since their
development requires a fine tuning between curvature blow-up and neck-pinching,
it is not yet clear if they are stable. In known examples, heuristic analysis, and
rigorous proofs, Type-II singularities occur when the Ricci flow uses a “critical ge-
ometry” for its initial data [27]. Thus, one would expect that a suitable perturbation
of such a critical data would remove the degenerate neck-pinching leading to the
singularity. However, it is difficult to control what kind of perturbation would gener-
ically remove the criticality. For instance, if {xi , βi } is a sequence of points and of
times corresponding to which the curvature, along β �→ gab(β), attains its max-
imum, one may think of performing a conformal transformation ϕ(xi , βi ) gab(βi )

on the metrics gab(βi ), and then deform ϕ(xi , βi ) gab(βi ) with a corresponding se-
quence of non-trivial perturbations

{
h̃ab(βi )| δ h̃(βi ) = 0

}
, in such a way that the
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fine-tuning, between neck-pinching and rounding, leading to the singularity forma-
tion, is removed. However, as we have seen, the linearized Ricci flow β �→ hab(β)

does not preserve the non-triviality condition δ h̃(βi ) = 0, and consequently we
do not know a priori which set of perturbations, (ϕ(β = 0), hab(β = 0)), of the
critical initial data gab(β = 0), will produce the required sequence of deformations{
(ϕ(xi , βi ) gab(βi ), h̃ab(βi ))

}
. Thus, the above strategy is difficult, if not impos-

sible, to implement. However, the conjugate linearized Ricci η �→ Hab(η) flow
preserves the δ H = 0 conditions, and one may think to modify the above strat-
egy accordingly: along the sequence {xi , βi } choose conformal factors {φ(i)}, and
div-free {Hab(i)} which perturb the sequence of metrics gab(βi ) by blocking the
singularity formation. One can then use the sequence of pairs {(φ(i), Hab(i))} as
initial data for the conjugate heat flow and for the conjugate linearized Ricci flow.
The resulting backward flows ηi �−→ {(φ(ηi ), Hab(ηi ))}, with ηi

.= βi − β, then
generate a sequence of perturbations {(φ(ηi = βi ), Hab(ηi = βi ))} at β = 0 that
can be used to generate, by a limiting procedure, perturbation data (φ, Hab) on the
initial metric gab(β = 0) that will avoid the singularity formation. This is an ex-
ample where the characterization of Ricci flow conjugated constraint sets appears
to be a promising direction for future research.

A. The heat kernel of a time-dependent generalized Laplacian
by Stefano Romano

In this appendix we carry out the explicit construction of the heat kernel of a time-
dependent generalized Laplacian; it has been kindly provided by Stefano Romano
who adapted to our more general setting the methods used in [34] and in [21] when
treating the scalar time-dependent Laplacian. Although the vector bundle case does
not really add anything new from a conceptual point of view, its special importance
in the study of the conjugate linearized Ricci flow motivated us to carry out the
full computation. Note that here, for technical reasons, we adopt the analyst sign
convention on Laplacians, e.g., � :=here − gab∇a∇b. Also, the result is discussed
in the very general setting of vector bundles over a closed manifold carrying a time-
dependent metric g(t).

Let E → Mn be a vector bundle over a closed manifold Mn and, for t ∈ [0, T ],
let g(t) be a time-dependent uniformly bounded family of metrics on Mn and Ht
a time-dependent family of generalized Laplacians acting on �(Mn, E). Consider
the heat equation 

(
∂

∂t
+ Ht

)
st = 0

st=0 = s0

(A.1)

where st is a smooth time-dependent section of E . As usual, Ht determines a unique
connection ∇E

t on E and a unique endomorphism Ft ∈ �(Mn, End(E)) such that
Ht = �E

t + Ft . We look for a fundamental solution of (3.21), that is a smooth
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time-dependent section Kt ∈ �(Mn × Mn, E �E∗) defined for t > 0 such with the
following properties:

(a) (∂t + Ht )Kt (x, y) = 0, where Ht acts on the x variable, for all t > 0.

(b) limt→0
∫

Mn Kt (x, y)s(y)dµg(t)(y) = s(x) for all s ∈ �(Mn, E).

We refer to condition (b) as the delta property.
We remark that the notation we have used is imprecise: in fact, since the pro-

cess we are considering is non-autonomous, i.e. it is not invariant under time-
translation, the kernel K should carry explicit dependence on both the inital and
final time. By writing Kt we really mean K(t,0) and we will always use the shorter
notation when the initial time is intended to be t = 0. We will write K(t,τ ) whenever
we need to consider a different initial time τ �= 0.

Our main result is the following:

Theorem A.1. Under the above hypothesis, there exists a unique fundamental so-
lution Kt (x, y) of the heat equation fo r the time-dependent generalized Lapla-
cian Ht .

Proof. We only prove existence, since uniqueness easily follows from properties
(a) and (b) by standard methods.

We will adopt the technique of first constructing a parametrix for the heat ker-
nel Kt modeled on the euclidean heat kernel and then recovering the full heat ker-
nel form the parametrix. This method only gives a rather generic description of the
kernel’s behavior for small times, but has the advantage of being straightforward.
Define

et (x, y)
.= 1

(4π t)n/2
exp

(
−dg(0)(x, y)

4t

)
(A.2)

where dg(0) is the distance function associated to g(0). Choose now a neighborhood
U of the diagonal in Mn × Mn such that dg(0)(x, y) is less than the injectivity radius
of Mn for all (x, y) ∈ U . On U , define

h(K )
t (x, y)

.= et (x, y)

K∑
α=0

φα(x, y; t)tα (A.3)

where both h(K )
t and the φα’s are smooth sections of E � E∗ over U , and, although

h(K )
t is formally defined only for t > 0, we require the φα to be smooth as t → 0.

Notice that, differently from the case of a time-independent Laplacian, the inhomo-
geneity in time of the problem forces us to let the φα’s depend on time1. Our goal

1 This is perhaps clearer if we rewrite (A.3) with respect to an arbitrary initial time τ instead of
t = 0:

h(K )
(t,τ )

(x, y) = et (x, y)

K∑
α=0

φα(x, y; τ)(t − τ)α

where it is manifest that the kernel h(K ) is not invariant under time-translation.
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is to define the φα’s in such a way that

(∂t + Ht )h
(K )
t = t K et (∂t + Ht )φK (A.4)

and that h(K )
t has the delta property.

We start by fixing y and choosing coordinates (x1, · · · , xn) near y; we also
choose normal polar coordinates (r, θ , · · · , θn−1) centered at y with respect to g(0).
Denoting by �0 the scalar Laplacian at t =0 and by J the function

√
det g(0)/rn−1,

a standard computation gives

(∂t + �0)et = r

2t

∂ log(J )

∂r
et . (A.5)

From now on we drop the subscripts 0 and adopt the convention that all quantities
that do not exhibit explicit dependence on time refer to t = 0. We now expand all
the relevant quantities in powers of t :

gi j (t) = gi j +
K∑

α=1

(hα)i j t
α + O(t K+1) (A.6)

∇E
t = d + ω(t) = ∇E +

K∑
α=1

ωαtα + O(t K+1) (A.7)

Ht = �E
t + Ft = −gi j (t)

(
(∇E

t )i (∇E
t ) j − �k

i j (t)(∇E
t )k

)
+ Ft

= H +
K∑

α=1

(
hi j

α ∇E
i ∇E

j + Bi
α∇E

i + Cα

)
tα + O(t K+1)

(A.8)

where the ωα’s are End(E)-valued 1-forms and the Bi
α,Cα’s are sections of End(E).

Similarly, for the scalar Laplacian we have the expansion

�t = � +
K∑

α=1

(
hi j

α ∂i∂ j + bi
α∂i

)
+ O(t K+1) (A.9)

and using (A.5) we get

(∂t + �t )et = r

2t

∂ log(J )

∂r
et +

K∑
α=1

(hi j
α ∂i∂ j + bi

α∂i )t
αet + O(et t

K )

= r

2t

(
K−1∑
α=−1

zαtα
)

et + O(et t
K )

= r

2
et z−1t−1 + r

2
et z0 + r

2
et

K−1∑
α=1

zαtα + O(et t
K )

(A.10)
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for some smooth functions zα’s. Notice that, since every spatial derivative of et
brings a factor t−1, there is a correction to the lowest order term ∂r log(J ) coming
from the term thi j

1 ∂i∂ j et .
The construction of the parametrix now amounts to expanding everything in

(∂t + Ht )h
(K )
t in powers of t , gathering terms of the same order and imposing can-

cellations up to order K . Abbreviating �
(K )
t

.= ∑K
α=0 φαtα , we have the formula

(∂t + Ht )h
(K )
t =(∂t + Ht )et�

(K )
t =((∂t + �)et )�

(K )
t + et (∂t + Ht )�

(K )
t

− 2gi j (t)∂i et (∇E
t ) j�

(K )
t .

(A.11)

Using formulas (A.6) (A.7) and (A.8) we find the following expansions:

(∂t +Ht )�
(K )
t = (∂t + H)φ0 + φ1

+
K∑

α=1

(
(hi j

α ∇E
i ∇E

j +Bi
α∇E

i +Cα)φ0+(∂t +H)φα+(α+1)φα+1

)
tα

+
K∑

α=2

 ∑
γ,δ≥1
γ+δ+α

(hi j
γ ∇E

i ∇E
j + Bi

γ ∇E
i + Cγ )φδ

 tα + O(t K+1)

(A.12)

−2gi j (t)∂i et (∇E
t ) j�

(K )
t

= etr(∇E
r φ0)t

−1 + etr(∇E
r φ1 + (ω1)rφ0 − hi j

1 ∂i r∇E
j φ0)

+ etr
K∑

α=1

[
∇E

r φα+1+(ωα+1)rφ0 − hi j
α+1∂i r∇E

j φ0

+
∑

γ,δ≥1
γ+δ=α+1

(
(ωγ )rφδ − hi j

γ ∂i r∇E
j φδ − hi j

γ ∂i r(ωδ) jφ0

) ]
tα

+ etr
K∑

α=2

 ∑
β,γ,δ≥1

β+γ+δ=α+1

− hi j
β ∂i r(ωγ ) jφδ

 tα + O(et t
K+1) .

(A.13)

In the last expression we have exploited the fact that et is a radial function in the g-
normal polar coordinates we have chosen and that ∂i et = ∂i r∂r et = (−r/2t)et∂i r .
We have also written (ωα)r for the radial component of the 1-forms ωα’s.

To finish the computation, we need to substitute the expressions (A.10), (A.11)
and (A.12) into (A.13) and impose that all terms of order less than t K cancel to
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obtain a chain of differential equations for the φα’s. To limit the amount of ugly-
looking expressions, we only write down the three lowest order equations:

∇E
r φ0 + 1

2
z−1φ0 = 0 (A.14)

∇E
r φ1 +

(
1

r
+ 1

2
z−1

)
φ1 =

(
−1

2
z0 − 1

r
(∂t + H) − (ω1)r + hi j

1 ∂i r∇E
j

)
φ0

= F1(r, φ0, z0; ω1, h1)

(A.15)

∇E
r φ2 +

(
2

r
+ 1

2
z−1

)
φ2 =

(
− 1

2
z1 − 1

r
(hi j

1 ∇E
i ∇E

j + Bi
1∇E

i + C1)

− (ω2)r + hi j
2 ∂i r∇E

j + hi j
1 ∂i r(ω1) j

)
φ0

+
(

− 1

2
z0−(∂t + H) − (ω1)r +hi j

1 ∂i r∇E
j

)
φ1

= F2(r, φ0, φ1, z0, z1, ω1, ω2, h1, h2)

(A.16)

and one could continue to arbitrary order to eventually satisfy (A.4). We still need
to verify that h(K )

t has the delta property, but this is easily achieved imposing to
equation (A.14) the boundary condition φ0(y, y; 0) = IEy (in fact, only the 0th
order term counts in the small time asymptotic and et (x, y) → δ(x, y) as t → 0).

Despite their complicated appearance, equations (A.14), (A.15) and (A.16) are
just ODE’s to be solved along rays emanating from y.

Strictly speaking, h(K )
t is not yet the parametrix, since it is only defined in a

neighborhood of the diagonal. To extend it to all Mn × Mn , we choose a smooth
cutoff function η : [0, ∞) → [0, 1] such that η(x) = 1 if x ≤ inj(g)/2 and
η(x) = 0 if x ≥ inj(g) and define

p(K )
t (x, y)

.= η(dg(x, y))h(K )
t (x, y) (A.17)

for all (x, y) ∈ Mn × Mn . The last step of the proof consists in constructing the
full heat kernel Kt from the parametrix p(K )

t . This is achieved by the following:

Lemma A.2. Let p(K )
t be a parametrix for the heat equation of a time-dependent

Laplacian with K > n/2. Then there exists a smooth time-dependent section �t ∈
�(Mn × Mn, E � E∗) such that

Kt (x, y)
.= p(K )

t (x, y) +
∫ t

0
dτ

∫
Mn

p(K )
(t,τ )(x, z)�τ (z, y)dµg(τ )(z) (A.18)

is the heat kernel.
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To prove this lemma, we look for �t as a sum
∑∞

α=1(ψα)t with the sections
(ψα)t ∈ �(Mn × M ,, E � E∗) defined recursively by

(ψ1)t (x, y) = (∂t + Ht )p(K )
t (x, y) (A.19)

and

(ψα+1)t (x, y) =
∫ t

0
dτ

∫
Mn

[
(∂t + Ht )p(K )

(t,τ )(x, z)
]
(ψα)τ (z, y)dµg(τ )(z). (A.20)

Assuming that the series of the ψα converges, one checks that the above conditions
together with equation (A.18) imply (∂t + Ht )Kt (x, y) = 0. Thus we only need to
prove that

∑∞
α=A(ψα)t converges and that the Kt we have constructed has the delta

property.
Let V (t) be the volume of Mn at time t and V

.= maxt∈[0,T ] V (t). Fix a fibre
metric on E and define

C = max
U×[0,T ]

∣∣∣(∂t + Ht )φK (x, y; t)
∣∣∣

with respect to this metric. Then

|(ψ1)t | ≤ Ct K−n/2

and inductively

|(ψα)t | ≤ CαV α−1T (α−1)(K−n/2) t K−n/2+α

(K − n/2 + α − 1) · · · (K − n/2 + 1)

and recalling that K > n/2 we conclude that �t = ∑∞
α=1(ψα)t converges uni-

formly for all t .

To see that Kt has the delta property, recall that p(K )
t has it; therefore if

we show that the double integral in the right hand side of equation (3.38) van-
ishes as t → 0, we are done. For this condition to be verified, it suffices that
| ∫Mn p(K )

(t,τ )(x, z)�τ (z, y)dµg(τ )(z)| is bounded, or, since |�| is bounded, that

| ∫Mn p(K )
(t,τ )(x, z)dµg(τ )(z)| is bounded. But this last integral is bounded in the limit

τ → t because it becomes |IEx |, as we can easily check using the asymptotics of
p(K )

t (recall that we imposed the boundary condition φ0(x, x; 0) = IEx ). Moreover,
since the metric and the terms φα in the expansion of p(K )

t have uniform bounds
over time, we conclude that the integral must be bounded for all τ ∈ [0, T ]. This
completes the proofs of the lemma and of Theorem A.1.
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Études Sci. Publ. Math. 10 (1961), 56 pp.
[45] J. LOTT, Renormalization group flow for general sigma models, Comm. Math. Phys. 107

(1986), 165–176.
[46] L. NI, A note on Perelman’s LYH inequality, Comm. Anal. Geom. 14 (2006), 883–905.
[47] L. NI, A matrix Li-Yau-Hamilton estimate for Kähler-Ricci flow, J. Differential Geom. 75

(2007), 303–358.
[48] T. OLIYNYK, V. SUNEETA and E. WOOLGAR, A gradient flow for worldsheet nonlinear

sigma models, Nucl. Phys. B 739 (2006), 441-458.
[49] G. PERELMAN, The entropy formula for the Ricci flow and its geometric applications,

math.DG/0211159
[50] G. PERELMAN, Ricci flow with surgery on Three-Manifolds, math.DG/0303109.



724 MAURO CARFORAwith an appendix by Stefano Romano

[51] G. PERELMAN, Finite extinction time for the solutions to the Ricci flow on certain three-
manifolds, math.DG/0307245.

[52] O. C. SCHNURER, F. SCHULZE and M. SIMON, Stability of Euclidean space under Ricci
flow, Comm. Anal. Geom. 16 (2008), 127–158.

[53] N. SESUM, Curvature tensor under the Ricci flow, Amer. J. Math. 127 (2005), 1315–1324.
[54] N. SESUM, Linear and dynamical stability of Ricci flat metrics, Duke Math. J. 133 (2006),

1–26.
[55] M. SIMON, Deformation of C0 Riemannian metrics in the direction of their Ricci curvature,

Comm. Anal. Geom. 10 (2002), 1033–1074.
[56] W. P. THURSTON, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry,

Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357–381.
[57] W. P. THURSTON, “Three-dimensional Geometry and Topology”, Vol. 1, S. Levy (ed.),

Princeton Math. Series, Vol. 35, Princeton Univ. Press, Princeton NJ, 1997.
[58] P. TOPPING, “Lectures on the Ricci Flow”, London Math. Soc. Lecture Notes Series,

Vol. 325, Cambridge Univ. Press, 2006.
[59] R. YE, Ricci flow, Einstein metrics and space forms, Trans. Amer. Math. Soc. 338 (1993),

871–896.

Dipartimento di Fisica Nucleare e Teorica
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